

Streaming Databases & PipelineDB

REPORT STUDY ON STREAMING DATABASES

AND

USE CASE IMPLEMENATION WITH PIPELINEDB

Batuhan Tüter | ULB Student Id: 000460176

Marc Garnica | ULB Student Id: 000456513

Advanced Databases

Prof. Esteban Zimanyi

Université Libre de Bruxelles

Winter semestre 2017 - 2018

 Streaming DB with PipelineDB

PAGE 1

Table of Contents

Introduction ... 2

Streaming databases .. 4

Data-at-rest VS Data-in-motion .. 4

Events, data streams and continuous queries .. 6

Quick view into the history: Real-time processing systems ... 7

PipelineDB .. 10

Why stream in SQL? ... 10

PipelineDB: Streaming PostgreSQL ... 11

Streams and continuous views .. 12

Data streams syntax .. 12

Continuous views syntax .. 13

Continuous aggregates, transforms and joins ... 14

Sliding windows.. 15

Built-in Integrations .. 17

Use case study ... 18

Definition .. 18

Data model and use cases .. 19

Hashtags Use Case .. 19

Likes Use Case .. 24

Performance analysis: PipelineDB vs Postgresql.. 28

Data visualization .. 34

Conclusion .. 35

SWOT analysis on PipelineDB ... 35

Streaming Databases overview conclusion ... 36

References ... 37

 Streaming DB with PipelineDB

PAGE 2

Introduction

Computer science industry has on its own nature to be driven by strong and frequent revolutions.

The emergence of the computers using microprocessors meant the spread of the computer science

to all the sectors in human life. Relational databases and the RDBMS have been used around all

the sectors since its first appearance in 1979. For all the experts, one of the most revolutionary and

with highest impact topics currently is the emerging of Big Data and the current link with business

insights and analytics.

Although being used in many companies for the past years, the words ‘Big data’ are still undefined

in so many terms. Data volumes are growing rapidly, and this implies a huge challenge for all the

businesses. It is more than probably that while reading this introduction article more than 29

Million WhatsApp messages have been sent, 500 hours of video uploaded to YouTube, over

150,000 emails, 3.3 million posts on Facebook and over 3.8 google searches have been done in the

internet [1].

Beyond this example, real world gathers a lot of use cases where high volumes of data are collected

and used, from big e-commerces like Amazon or governments data warehouses to Smarts Cities.

All of them share the principle of “process data and extract actionable insights from it”. Most Big

Data applications are currently storing all the incoming data and processing them later usually by

means of batch processing and analytical queries.

But a new paradigm is emerging from the needs of all this use cases where storing huge volumes

of data is not enough. Some of the process may take quite a lot of time to generate the

corresponding output. In some use cases is much useful to know the results faster. Even more,

once we know the output, data is just redundant.

Mainly often, on these use cases the output is the priority of all the end-to-end process, and being

able to act to fix problems or situations is the key to success. Think about Trading algorithms,

smart patient care, monitoring tools, fraud detection, smart applications (smart car, smart

homes...), vehicles tracking, sport monitoring and analytics. Being able to generate real-time

analytics to drive instant decision can make the difference in all these sectors and more.

Stream processing is a computer programming paradigm, equivalent to data-flow programming,

event stream processing and reactive programming that allows some applications to more easily

exploit the data. Data stream management systems (DSMS) also called Streaming Databases are

software systems handling data streams by offering a flexible processing of them concurrently.

This kind of systems prioritizes data processing and computation over data storage.

This study reviews the topic of the Streaming databases, evaluating the initial state of art and the

emerge of this paradigm as well as the different schemas and technologies applied to the systems.

 Streaming DB with PipelineDB

PAGE 3

The study drives this database system analysis from the general concepts presented in Streaming

databases to the specific details of PipelineDB.

PipelineDB is an open-source, PostgreSQL based, project and it applies the concept of streaming

processing to the relational databases. The study concludes with a simple introduction to the

PipelineDB implementation. The main objectives of this implementation are to benchmark the

performance and characteristics of this type of database systems, how PostgreSQL is adapted in

PipelineDB to serve the high output requirements of the stream processing system [2].

 Streaming DB with PipelineDB

PAGE 4

Streaming databases

DATA-AT-REST VS DATA-IN-MOTION

The introduction of streaming databases or Data Stream Management systems (DBMS) can be

summarized as processing data without storage to maximise the throughput and speed the system

up.

As presented in the introduction of this study, since the emerge of Relational Databases and even

with the new era of Big Data, most systems focus its efforts in store high volumes of data in

different schemas: databases, file systems or other forms of massive storage. Applications then,

would query the data or compute directly over the data as needed with ad-hoc query systems.

This approach involves so many technologies and is generally called as the batch processing or

data-at-rest infrastructure approach (Figure 1), where by means of a query processing system

the data is analysed. In the data-at-rest infrastructure approach, a process is needed to compute and

query the data that will be used for further analytics.

Figure 1: Data-at-rest infrastructure

Stream processing is the process of data-in-motion (Figure 2), the data is computed directly as it

is produced or received. This new paradigm differs from its root with the data-at-rest

infrastructure, the application logic, analytics and queries exist continuously and data flows

through them continuously.

 Streaming DB with PipelineDB

PAGE 5

Figure 2: Data-in-motion infrastructure

The direct benefits of this new architecture and paradigm are present in day to day challenges of

the real world:

• Analytics react to events instantly. No lag time between the occurrence of the event, the

treatment of the event and the action taken.

• Stream databases can handle larger volumes than other processing systems.

• The nature of the data is indeed continuous in the real world.

• Decentralization of the infrastructure. No more large and expensive data centres, way

towards microservices architecture.

As we can see in Figure 2, sometimes the computation of data needs to maintain a contextual state

or historical data. This state can be used to store needed information from the events treated. This

variant of the data-in-motion infrastructure is called Stateful Stream Processing.

For instance, a fraud detection system would keep the last made transactions for each credit card

to be able to compare the new transactions with them. Or the system state can keep the previous

added items to shopping cards for responding immediately to the user needs.

 Streaming DB with PipelineDB

PAGE 6

EVENTS, DATA STREAMS AND CONTINUOUS QUERIES

Most of data nowadays is based on continuous streams, think about sensor events informing about

the weather state of a city or a monitoring tool for a complete manufacturing chain of cars. All this

data is created as a series of events over time.

A data stream is defined as a none ending, real-time and continuous sequence of items, ordered

(by arrival time or timestamp). Usually we can analyse two types of data streams:

• Transactional DS: Interactions between actors in a process: Credit card operations, web

monitoring, etc.

• Measurement DS: State broadcast from entities to the central gateway of control: Sensors,

climate, real-time patient care or IoT devices.

Continuous queries are the engine running behind Continuous processors and real-time analytics.

The basic definition of a continuous query is a query support that updates previously emitted

results. In other words, a continuous query outputs the results in a dynamic table that is

continuously updated and can be queried like any regular static table. In contrast to a normal query

which terminates and returns a static table, continuous queries run over-time and produce a

dynamic table updated on the fly. This concept is a similar approach to what materialized view

maintenance tried to implement in SQL.

A materialized view is defined as a regular query where all the results are stored in memory or

disk so then the view does not need to be computed on-the-fly when it is needed. In traditional

Database Systems the system is the responsible to update this view whenever the base relation

changes. Following the change of paradigms to data-in-motion, the data streams are the equivalent

entity to the changes in the base relations, with the major difference that this streams are directly

treated to update the view.

Figure 3: Data streams processing

By means of streams and continuous queries, several applications can consume the data for their

own benefits and event produce streams for some other applications. With this approach data flows

through the application logic of the system without an implicit store. See Figure 3.

 Streaming DB with PipelineDB

PAGE 7

QUICK VIEW INTO THE HISTORY: REAL-TIME PROCESSING SYSTEMS

Processing data on the fly has been a constant requirement in most of the systems. The earliest

attempt to create an engine able to capture the changes in real time and update its data was at the

end of 1980s with Active Databases.

Triggers and other mechanisms implemented in Active Databases enable the system to respond

automatically to the events from the real world and from the database itself. The evolution from

passive databases to active databases was the first step towards the design of database systems

responding to the income of events.

Although being used around all relational databases the active model was mainly derived to rules

processing and maintenance actions. Several times, the syntax was too complex and drove the

systems to actions with high computational cost.

Between the 1990s and early 2000s various systems for managing data streams emerged. Most of

them differed from the traditional database management systems in several key points:

Table 1: DBMS and DSMS comparison

Traditional DBMS Data Stream Management systems

Persistent data in relations Volatile data streams

Random access Sequential access in time

One-time queries Continuous queries

Unlimited (or limited by hardware)

secondary storage

Limited to main memory storage

Focus on the current state More and more focus on the sequentially of

the data events

Relatively low update rate Real-time requirements in updates and

analytics

Query processing predictable by physical

plan optimization

Data arrival and metadata variable

 Streaming DB with PipelineDB

PAGE 8

The first tools came from the relational databases and tried to manage streams as tables to be able

to use SQL over it. These systems were facing the challenge to handle data streams using a limited

amount of memory and no random access to the data. To achieve this, two main strategies were

applied initially:

• Synopses: this strategy is based in the idea to summarizes the incoming data by

compression techniques. Maintaining only a synopsis of the data obtained by statistical

methods as sketching. Even though reducing the amount of data, this strategy may lead to

wrong results and interpretations due to accuracy lose in the data.

• Windows: cut the incoming streams into parts and manage each part as a static table.

Instead of compressing the data, window operators only look to a portion of it. The nature

of the cutting windows may differ depending on the objectives of the analysis, element

based windows, time based windows...etc.

Several tools appeared following these approaches, TelegraphCQ (a PostgreSQL fork),

StreamBase or StreamSQL. TelegraphCQ uses a continuous query processor based in timestamped

windows cutting the incoming data streams. On the other hand, StreamSQL has been used in some

sectors of the industry. This software extends the SQL system to support streams addition to tables,

streams then can be treated as tables which means that projections, joins, unions and aggregations

can be executed on them.

These strategies meant a remarkable improvement, but they were not able to provide a high and

efficient throughput when working with large streams of data. With the new wave of NoSQL

database technologies, a lot of stream processing systems have emerged to face the data-in-motion

paradigm. Well-known examples are Apache Storm, Heron or recently launched Google Dataflow.

• Apache Storm is distributed computational system to support for real-time data processing

to Hadoop System. It can process large volumes of high-velocity data (more than 100 bytes

messages per second per node). Storms uses spouts to read tuples form an external source

and emit them as streams to be treated. Bolts are the responsible to filter, operate,

aggregate, join or interact with databases during the stream process.

• Heron (from Twitter) is a real-time and distributed stream processing engine.

• Google Dataflow is an easy to use and simplified stream data processing engine. As many

other products of Google Cloud, it enables the user to develop and built a operative stream

processing engine in a short time and without many expertise. The user can stream data or

batch some historical repository to build real-time analytics on them. It is automatically

integrated with Google Cloud services as Cloud Pub/Sub, Big Query or Cloud machine

learning or even with Apache Kafka.

 Streaming DB with PipelineDB

PAGE 9

All this solutions and even more emerging solutions in the NoSQL world can provide a truly

efficient system to manage data in motion and real-time analytics. Their main drawback is that

they are extremely developed for this concept, new conceptual design, new frameworks which

sometimes lead companies not to use these technologies.

For the purpose of this study, PipelineDB was selected as the Stream processing tool to analyse.

All its characteristics will be explained with details in the following sections of the study but

PipelineDB has one main advantage: PostgreSQL code-based, which means that everything is

inside the PostgreSQL engine. SQL is one of the most used and spread technologies around the

Database systems sector, so companies have years of experience using it.

Moreover, setting up PipelineDB and PostgreSQL as the stream processing system can be

combined in the same instance with having a standard PostgreSQL database design. All the

advantages of PostgreSQL as a database management system are included inside PipelineDB. This

can include for instance, complex operators, joins, query plan optimization or geographical and

temporal database easy integration.

 Streaming DB with PipelineDB

PAGE 10

PipelineDB

WHY STREAM IN SQL?

 Over the past 5-6 years, more and more new technologies have emerged to cope with the new and

useful data-in-motion management. Apache Flume, Kafka, Spark, Storm, Google Data flow. Smart

tools included in the wave of NoSQL were the relational model is replaced by more efficient,

flexible and ad-hoc models.

These systems have not failed in stand in the industry and represent a huge block in the Streaming

databases race. Then, why can be useful to implement streaming concepts on SQL? Which is the

main benefit the companies can get through?

All these systems have great performance rates and scalability. But in contrast, the installation and

setup require high level of expertise and includes a very difficult learning curve. Having systems

implementing streaming concepts in SQL boost up all the advantages of SQL with the addition of

the streaming features.

Companies feel more comfortable with SQL and the resources are more available. This is the

reason why some other companies working with streaming databases are extending their products

to handle streams on SQL models: StreamBase, StreamSQL, Truviso (Also a fork of PostgreSQL)

and Apache SparkSQL.

PipelineDB provides an easy setup and use as it is based (originally forked) from PostgreSQL.

PipelineDB can do everything PostgreSQL can do, but with some powerful addition to handle high

throughput and streaming workloads.

Figure 4: Streaming and SQL, a trustful environment

 Streaming DB with PipelineDB

PAGE 11

PIPELINEDB: STREAMING POSTGRESQL

PipelineDB was founded on 1st of December in 2013 by

Derek Nelson and Jeff Fergusson, and the first enterprise

version was launched on 14th of January in 2016. The last

version of this software, PipelineDB 0.9.8, was released on

August 2017.

PipelineDB is a open-source SQL analytics databases that

runs SQL queries continuously on streaming data. Results

for the queries specified are updated incrementally as new

data arrives. This enforces low latency rates, no need to

deploy real time application code managing the database

and no external data marts or data warehouse to manage

analytical data from operational data. It is fully compatible

with PostgreSQL.

This software differentiates form PostgreSQL by handling streaming data and using SQL queries

instead of some expert and special programming languages. In other words, anyone familiar with

SQL queries should be able to setup and deploy the software quickly.

It is important to understand that PipelineDB excels SQL management in Postgres reducing the

amount of information that needs to be persisted in the database. Raw data is no longer a priority.

Moreover, PipelineDB paradigm is only efficient when the queries are known a priori. In other

words, the data warehouse extracted from the continuous views is not an easy-changeable schema.

Continuous views can be explored and analysed in ad-hoc way, but the data that flowed into the

system cannot be analysed in ad-hoc fashion, the exploit process this data receives is fixed in

advance.

Practically speaking, PipelineDB is a stream processor, that enables the DBMS the possibility to

avoid the ETL stage between Operational and Analytical data. With an a priori definition of the

required queries, PipelineDB continuously build your analytical data.

Figure 5: PipelineDB and

PostgreSQL logos

 Streaming DB with PipelineDB

PAGE 12

STREAMS AND CONTINUOUS VIEWS

PipelineDB is based around the abstraction of continuous

views. As presented in previous sections of this study, the

concept of continuous views extends the tradition SQL

views but with the main difference that these views

define SELECT clauses including streams as a source to

read FROM.

Data streams are defined as events containing a subset of

data referent to the event. The main feature of continuous

views is that they store uniquely their output in the

database. Furthermore, the output is continuously

updated incrementally as new data is ingested as streams

by the system. The stream is no longer used neither stored

once all views that require have use it.

An event contained in a data stream only exists until it is consumed by all the continuous views

reading from it. Different continuous views can share as a source the same stream channel. This

enables the possibility to analyse the data flowing into the system in different ways.

Data streams syntax

As mentioned, PipelineDB is strictly using the syntax of PostgreSQL. Creating a stream is similar

to create a table:

CREATE STREAM stream_name([{
 column_name data_type[COLLATE collation] | LIKE parent_stream
}[, …]]);

The most interesting thing of this syntax is the COLLATE collation. Specifying a collation means

to assign to each column the methods to compare and sort. The LIKE clause enables the stream to

extend the column names and data types of an existing entity.

Streams can be modified by simply using ALTER STREAM close:

ALTER STREAM stream_name ADD COLUMN new_column new_data_type;

To push data to the streams in order to let the continuous views exploit them, the same syntax as

PostgreSQL INSERT statement is used. The insert into streams can be performed at once, batched,

using some system and user-specific functions or even with subselects inside.

 Streaming DB with PipelineDB

PAGE 13

INSERT INTO stream_name(column_1_name, …, column_N_name) VALUES(column_1_value, …, column_N_va
lue);

INSERT INTO stream_name(column_1_name, …, column_N_value) VALUES(value_set_1), …, (value_set_M
);

Where each value set is of type (column_1_value, … , column_N_value)

INSERT INTO stream_name(column_1_name, …, column_N_name) VALUES(system_function(), user_specif
ic_function());

INSERT INTO stream_name(column_1_name, …, column_N_name) SELECT(column_1_name, …, column_N_nam
e) FROM table_name;

Insert into streams can also be used by SQL prepared inserts syntax:

PREPARE insert_to_stream_name AS INSERT INTO stream_name(column_1_name, …, column_N_name) VALU
ES(column_1_value, …, column_N_value);

EXECUTE insert_to_stream_name

Copy into streams is also available in PipelineDB:

COPY stream_name(column_1_value, …, column_N_value) FROM‘ path / to / file’

This statement can be extremely useful to get data from a bash process copying from the standard

input channel:

$> ./executeBashProcess |

> pipeline -c “COPY stream_name ((column_1_value, … , column_N_value) FROM STDIN”

Due to the direct compatibility with PostgreSQL, all clients working with PostgreSQL can insert

data into streams.

Continuous views syntax

Once understood the creation and population of data streams. The syntax is the following:

CREATE CONTINUOUS VIEW view_name AS select_query

Select_query is a subset of PostgreSQL SELECT statement but referencing streams but using

STREAMS in the FROM clause:

SELECT[DISTINCT[ON(expression[, …])]]
Expression[[AS]] output_name][, …]
[FROM from_item[, …]]
[WHERE condition]
[GROUP BY expression[, …]]
[HAVING condition[, …]]
[WINDOW window_name AS(window_definition)[, …]]

The from_item is the item from where the continuous view will populate and can be one of the

followings:

 Streaming DB with PipelineDB

PAGE 14

A data stream: stream_name[[AS]] alias[(column_alias[, ...])]]

A table name: table_name[[AS]] alias[(column_alias[, …])]]

Or a join of different from_item entities:

from_item[NATURAL] join_type from_item[] ON join_condition]

The expression on the create statement is purely a PostgreSQL expression and can be given an

alias. An important concept that will be explained in detail in the following sections of this

document is the WINDOW entity, used to reference from OVER clauses or subsequent window

definitions.

Data retrieval from a continuous view is as simple as PostgreSQL SELECT clause.

SELECT * FROM continuous_view_name;

As the continuous views may grow exponentially, PipelineDB provides native support for row

expiration via time-to-live TTL specified at continuous view level. The complete syntax is

available online .

CREATE CONTINUOUS VIEW continous_view_name WITH(ttl = ‘1 week’, ttl_column = ‘minute’)

AS SELECT minute(arrival_timestamp), COUNT(*) FROM stream_name GROUP BY minute;

Continuous view can be easily deleted from the database with the statement DROP

CONTINUOUS VIEW, and PipelineDB provides a useful way to delete the rows of a continuous

view without having to delete the view itself by

SELECT truncate_continuous_view(‘continuous_view_name’)

The stream processing implicitly attached to the continuous view can be activated or deactivated

by the user at any time required by this both functions:

SELECT activate(‘continuous_view’)

SELECT deactivate(‘continuous_view’)

Continuous aggregates, transforms and joins

As presented in the definition of continuous views, one of the main features of PipelineDB is the

easy and light computation of continuous aggregations. Continuous aggregates are updated in

real time as new streams flow into the system and are consumed by the continuous views. More

complex aggregate functions are managed transparently in PipelineDB as Avg, stddev, percentile

etc.

 Streaming DB with PipelineDB

PAGE 15

Continuous Joins

Although Continuous Views are selecting tuples from stream, sometimes it is necessary to

combine incoming streaming data with static data stored in PipelineDB tables, thus streams can be

joined with existing tables to retrieve information, that can be achieved with stream-table joins.

An example query which augments incoming user data with richer user information stored in the

“users” table is as follows;

CREATE CONTINUOUS VIEW augmented AS SELECT user_data.full_name, COUNT(*)
 FROM stream JOIN user_data on stream.id::integer = user_data.id
 GROUP BY user_data.full_name;

Whereas, joining a stream with another stream is not supported by PipelineDB yet.

Continuous transforms

Continuous transforms are defined as streaming operations performed to the data flowing into the

system without storing it. No data is stored explicitly in the system, which means that no

aggregations are possible for continuous transforms.

What PipelineDB manage to perform by continuous transformations is to mimic the functionality

of trigger AFTER INSERT FOR EACH ROW. The output of the continuous transforms is by

default inserted in their output streams. The syntax for creating Continuous Transforms is the

following:

SELECT expression[[AS]] output_name][, …]
[FROM from_item[, …]]
[WHERE condition]
[GROUP BY expression[, …]]

As presented before from_item can be either a stream, a table in the database or a join of

from_items.

Sliding windows

PipelineDB is also capable of using the current time when a Continuous View is being updated.

Queries that are relating to this current time within the “Where” clause are called sliding-window

queries. In other words, sliding windows only consider data within a certain time window at read

time. Data outside of the specified window will never be visible at read time, and consequently the

aggregations are only using the data within the window boundaries.

To get the users that are seen in the last minute (from a stream) we can create a Continuous View

by write the following query;

CREATE CONTINUOUS VIEW recent_users AS
SELECT user_id::integer FROM stream
WHERE(arrival_timestamp > clock_timestamp() - interval '1 minute');

 Streaming DB with PipelineDB

PAGE 16

Where clock_timestamp() is a built-in function that returns the current timestamp and

arrival_timestamp is a special attribute of the all incoming events to the PipelineDB.

“clock_timestamp() - interval '1 minute' returns the timestamp corresponding to 1 minute

previously and we the continuous query will compare this with the arrival_timestamp every time

a new event is read. This gives us a sliding window with 1-minute width.

Although this is a standard PostgreSQL syntax, it is not necessary to add this “Where” clause

explicitly; the query can also be written in the following way;

CREATE CONTINUOUS VIEW recent_users WITH(sw = '1 minute') AS
SELECT user_id::integer FROM stream;

“With” clause, having the “sw” (sliding window) storage parameter is internally translated into the

previous “Where” clause, by the PipelineDB.

Sliding-window queries also work with aggregate functions and it is also possible to create regular

views over a sliding window continuous view to have multiple sliding windows for the same query,

which can be done as follows:

CREATE CONTINUOUS VIEW sw0 WITH(sw = '1 hour') AS SELECT COUNT(*) FROM event_stream;

CREATE VIEW sw1 WITH(sw = '5 minutes') AS SELECT * FROM sw0;

CREATE VIEW sw2 WITH(sw = '10 minutes') AS SELECT * FROM sw0;

This query will be keeping track of user event counts for the last 5 minutes, 10 minutes on different

views by using the 1 hour continuous view.

Continuous views can also be declared using a window definition:

SELECT[DISTINCT[ON(expression[, …])]] Expression[[AS]] output_name][, …]
[FROM from_item[, …]]
[WHERE condition]
[GROUP BY expression[, …]]
[HAVING condition[, …]]
[WINDOW window_name AS(window_definition)[, …]]

In this case, window_name should reference OVER clauses or window definitions. A window

definition is set up as follows:

[existing_window_name]
[PARTITION BY expression[, ...]]
[ORDER BY expression][NULLS { FIRST | LAST }][, ...]]
[frame_clause]

The frame_clause is a set of related rows for each row consumed by the continuous query (

current row). The frame_clause has the following syntax:

 Streaming DB with PipelineDB

PAGE 17

[RANGE | ROWS] frame_start
[RANGE | ROWS] BETWEEN frame_start AND frame_end

 Where frame_start and frame_end can be:

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW
value FOLLOWING
UNBOUNDED FOLLOWING

Built-in Integrations

One of the greatest features of PipelineDB is its full compatibility with PostgreSQL 9.5, which

means that all PostgreSQL built-in functionality is available to PipelineDB users

PipelineDB supports ingestion of data from Kafka topics, which consist of stream of records

holding different information, into streams with pipeline_kafka extension and from Amazon

Kinesis streams with pipeline_kinesis extension.

As a generic JVM-based service wide used for stream messaging and real-time infrastructures,

Kafka is present in many streaming databases projects. Pipeline_kafka is an extension to produce

streaming data from Kafka ingestible at PipelineDB side.

 Streaming DB with PipelineDB

PAGE 18

Use case study

In this section of the project, an end-to-end use case has been implemented using PipelineDB with

two main objectives:

• Test and interact with the most important features of the tool

• Analyse and compare the performance of PipelineDB against PostgreSQL in some specific

queries.

The complete repository with all the source code for this project can be found in

https://github.com/marcgarnica13/Pipeline-DB-project.git .

DEFINITION

The topic selected for the implementation is ‘Events and social monitoring in real time’. From an

event organizer point of view, it is important to keep a real tie analysis on the social media opinions

regarding the event, for example, the hashtags used, or the likes given to the different speakers.

For that reason, a set of data visualizations tools have been implemented to improve their tracking

of the event, and the reactions in the social media as well.

In this virtual social media from where the real-time dashboard is consuming data from have these

main features:

• Organizers post photos and they tag other organizers.

• Users can like the photos.

• Users can post comments and use hashtags.

The real-time monitoring dashboard is extremely useful for the event organizer team to track how

the event is behaving in the social media by means of hashtags analysis and the performance of

the organizers. In order to do that, the dashboard contains:

• List of all hashtags used.

• Search for hashtags.

• Top hashtags used

• Likes per organizers.

• Evolution of hashtags in a time frame.

https://github.com/marcgarnica13/Pipeline-DB-project.git

 Streaming DB with PipelineDB

PAGE 19

As the list of queries and visualizations is fixed a priori from the requirements of the clients, there

is no need for a further analysis of the data, this is an exemplar case for the streaming process

implemented by PipelineDB.

It is important to mention that the social media source has been virtualized to minimize the scope

of the use case to only PipelineDB related implementation. In order to do that, several bash scripts

have been implemented simulating the generation of hashtags and likes. Refer to the main page of

the GitHub repository to know the details on how to insert data in the streaming system, as well

as, how to install PipelineDB and the use case implementation.

DATA MODEL AND USE CASES

For the test of the main features of PipelineDB, two different use cases have been implemented.

On each use cases different functionalities of PipelineDB have been introduced in order to analyse

its capabilities. The first use case includes the treatment of the hashtags flowing form the social

medias to the system. In this case, the analyses focused on the implementation of Continuous

Aggregates and Sliding Windows. The second use case analyses the Continuous Transforms and

Joins by means of continuous streaming of likes into the system.

Hashtags Use Case

In this use case two different analysis will be taken into account: A simple streaming analysis

implementing the concept of continuous views of PipelineDB and a streaming analysis with sliding

windows.

Simple Streaming Analysis: Continuous aggregates

The main concept of this use case is having a total count of hashtag appearances. For that reason,

two main entities need to be created. First, the data stream flowing into the system as a hashtag

hashtag_stream.

create stream hashtag_stream (h varchar(100))

Figure 6: Stream creation in PipelineDB (psql) command line

This data stream will be consumed then by a simple continuous view counting each hashtag

appearance as follows:

create continuous view hashtags_view as
select h, count(*) as total from hashtag_stream group by h;

 Streaming DB with PipelineDB

PAGE 20

Figure 7: Continuous view in PipelineDB command line

General schema for the implementation is as follows:

Figure 8: Hashtag use case data flow

Every time a streaming data is inserted into stream, this continuous view is performing a counting

on the hashtag name. After data ingestion this is how the continuous view looks with the data

streams consumed:

 Streaming DB with PipelineDB

PAGE 21

Figure 9: Data captured in hashtags_view

The data visualization tools implemented for this case are a dynamic bar chart and a complete list

of hashtags with its number of appearance in the social network.

 Streaming DB with PipelineDB

PAGE 22

Figure 10: Visualization of hashtags_view: Histogram and complete list of hashtags

Streaming Analysis with Sliding Windows

Secondly, one main objective of this implementation was also to test the Sliding Windows features

of PipelineDB. By means of the where clause, PipelineDB is defining a moving in time window

from where all the aggregations are computed. No other data is used apart from the included inside

the boundaries of the window.

For this use case, the system is still using the same stream hashtag_stream presented before. This

is also a proof of concept that with the same stream defined in the system, PipelineDB allows the

users to consume the stream as many times and in as many different manners regarding the user

visualizations and analytics requirements.

The statement to create the sliding windows view for hashtags is the following:

CREATE CONTINUOUS VIEW timing_hashtags WITH(sw = '5 minutes') AS
SELECT h, minute(arrival_timestamp) as minuteOfArrival, COUNT(*) as quantity
FROM hashtag_stream GROUP BY h, minuteOfArrival;

 Streaming DB with PipelineDB

PAGE 23

Figure 11: Sliding hashtags use case data flow

This view is only looking at the window of time of 5 minutes before and is aggregate the number

of hashtags appearance by hashtag name and minute of arrival. With these data, the following time

series have been added to the data visualization.

Figure 12: Data captured in timing_hashtags continuous view

 Streaming DB with PipelineDB

PAGE 24

Figure 13: Data visualization for the sliding windows use case

Likes Use Case

In this particular use case, a complete and isolated reference table is already stored in the system

with information about pictures tags.

Figure 14: Static reference table pictures_tags

Basically, this table contains pairs such as <photo_id, person_name> that means that person name

is tagged in photo with id photo_id. When the system receives a like, it only receives the photo

identifier and the number of likes, but to process this information and be able to account this like

to all the people tagged in the photo some operations needs to be done.

 Streaming DB with PipelineDB

PAGE 25

There are four schemas that are used in the PipelineDB for this use case. Three of them are special

schemas that are belong to PipelineDB; Stream, Continuous Transform and Continuous Table.

Figure 15: Likes_stream representing the incoming likes to the system

Likes streams are going to represent the likes incoming into the system. But as explained before,

this likes cannot go directly to the visualization because the system does not know who is tagged

in the picture at this moment. To know that, the system needs to look up for the photo id on the

reference table pictures_tags (Figure 11) and get all the names of the people tagged in this photo.

(See figure 15). This join between the incoming data and the reference table is efficiently done by

the continuous transform feature of PipelineDB. The syntax goes as follows:

CREATE CONTINUOUS TRANSFORM likes_ct AS
SELECT t.name, l.likes
FROM likes_stream l JOIN pictures_tags t ON l.pid = t.pid;

Figure 16: Likes_continuous transform operation on the incoming likes

Likes_ct continuous transform is continuously joining the likes streams flowing into the system

with the pictures tags table in order to output data streams indicating the likes per name. This

output data streams then can be consumed by a continuous view as follows:

CREATE CONTINUOUS VIEW likes_ctView AS
SELECT name, sum(likes) as sumLikes
FROM output_of('likes_ct') GROUP BY name;

The from statement of this continuous view is directly linked with the streams form the output

channel of likes_ct continuous transforms.

 Streaming DB with PipelineDB

PAGE 26

Figure 17: Likes continues views

Apart from the Picture Tags table that is stored in PostgreSQL, only the Continuous View is stored

in PipelineDB where it stores the results of the desired analysis queries, such as aggregation etc.

Continuous View is updated automatically every time when an insertion into Stream occurs and

this update is a fast process. Selection of rows from Likes Stream is not possible since it is just an

intermediate table that only pushes data to Continuous Transform and selection from Continuous

Transform is also not possible, since it only works for joining data that is coming from Likes

Stream and passing it into Continuous Views.

The complete data flow is shown in the following figure.

Figure 18: Likes streaming transformation

For this use case, random likes are created with a bash process, in the form of (PhotoID, # of likes),

to simulate a streaming data and the created data is inserted into Likes Stream instantly. Picture

Tags Table is stored in PostgreSQL, where the information is being kept in the form of (PhotoID,

Name of the person who is tagged in the photo). Every time a like data is inserted into Likes

Stream, Likes Continuous Transform performs a lookup on Picture Tags table and selects Name

 Streaming DB with PipelineDB

PAGE 27

with the # of likes that person receives. Continuous View, calculates the total number of likes each

person has by aggregating on the name of the person. This is a simplified case analysis to show

the capabilities of the PipelineDB, whereas more complex lookups and joins could also be done.

Figure 19: Likes use case data flow

When the Continuous View is updated automatically after an insertion is done into Stream, only a

simple select query is needed to view the data that is kept in the Continuous View.

Figure 20: Likes continuous view with data

 Streaming DB with PipelineDB

PAGE 28

Querying the results in the Continuous View is similar to querying a Materialized View in standard

SQL, it is very fast and efficient. To see the query execution plan and execution time of the above

query, PostgreSQL’s standart “Explain Analyze” expression can be added to the beginning of the

query;

Selection from Continuous View is a fast process since the Continuous View is updated already

automatically; the execution time is 0.029 ms and the cost is 1.33. Again, it is important to note

that, only the Continuous View is kept stored in PipelineDB and it only stores the results of queries

known a-priori.

PERFORMANCE ANALYSIS: PIPELINEDB VS POSTGRESQL

Once implemented and analysed the different features of PipelineDB, the objectives of this section

is to benchmark its performance with normal PostgreSQL installations. In order to compare both

performances and characteristics Likes use case has been selected since it has Join operations with

the table that is present in PostgreSQL Database.

A parallel use case has been implemented using the same streaming data source than Likes use

case but storing every stream in a Relational Table called Likes_table. After this, this relational

table can be exploited to get the same results as the likes continuous view explained in the previous

section. To mimic the same results as the continuous views on PipelineDB, two main options have

been selected:

• Simply implement a normal SQL view to encapsulate the query and then simply query this

view. This view will need to compute the results every time they are needed.

• Implement a materialized view that joins the data from the reference pictures_tags table

and the likes_table previously mentioned. The concept is mainly the same but in this case

the view is physically stored in the system.

Consequently, Likes Table is very similar to PipelineDB’s Stream and Materialized View is very

similar to PipelineDB’s Continuous View, in terms of their schema.

 Streaming DB with PipelineDB

PAGE 29

Table 2: PipelineDB and PostgreSQL declarations for the comparison

PipelineDB declarations PostgreSQL declarations
1. CREATE STREAM likes_stream
2. (pid integer, likes integer);

1. CREATE TABLE likes_table(pid integer, likes integer);

1. CREATE CONTINUOUS TRANSFORM likes_ct
2. AS
3. SELECT t.name, l.likes
4. FROM likes_stream l
5. JOIN pictures_tags t
6. ON l.pid = t.pid;
7.

1. CREATE VIEW likes_view
2. AS
3. SELECT name, sum(likes)
4. FROM likes_table l
5. JOIN pictures_tags t
6. ON I.pid = t.pid
7. GROUP BY name;

1. CREATE MATERIALIZED VIEW
2. likes_mtView
3. AS
4. SELECT name, sum(likes)
5. as sumLikes
6. FROM likes_table l
7. JOIN pictures_tags t
8. ON l.pid = t.pid GROUP BY name;

1. CREATE CONTINUOUS VIEW likes_ctView
2. AS

SELECT name, sum(likes) as sumLikes
3. FROM output_of('likes_ct')
4. GROUP BY name;

Comparing PipelineDB with Views on PostgreSQL

As introduced before, the main conceptual difference is that in the traditional SQL Analysis the

database does not keep the results of the view in the system, but it computes them every time the

view is asked. In the Stream Analysis the continuous transform will be operating on the streams

flowing into the system and output them towards the continuous view.

On the other side, in the Traditional SQL analysis the streams will represent inserts in a table and

then the view will perform the join on every execution.

Views on PostgreSQL are just encapsulations of SQL queries to fix the queries and structure the

analysis of the data. The main difference with PipelineDB in this case is that while the Continuous

Views are updated on the fly and consequently their time to access is fast and constant, Views

need to be computed every time they are asked which add a computation cost that can be clearly

noticed in the following graphs.

 Streaming DB with PipelineDB

PAGE 30

Figure 21: Execution times PostgreSQL views vs PipelineDB continuous views

As shown, the time to get the results from a continuous view (green label) is constant and does not

depend on the number of events of the system. This is because, the streams are consumed on the

fly and they update directly the continuous view, more precisely, is the continuous transform

implemented that operates on each stream to perform the join with the reference table. On the other

side, yellow label represents the execution time of selecting the views in Traditional PostgreSQL.

Clearly, the time increases on the number of likes received, this comes from the fact that every

time the view needs to be shown, a join is performed between the tables containing the likes and

the table containing the pictures tags.

Comparing PipelineDB vs PostgreSQL with Materialized views

As it is shown on the figure, on the traditional SQL analysis the incoming data is translated into

INSERTs in the likes table. The materialized view is the one in charge of performing the join

between the likes and pictures tags and show the desired output to the user. The materialized view

can solve the problem shown in the previous analysis where the view needed to compute the result

at every execution. Materialized views aim to store the result and only refresh its content in specific

circumstances.

 Streaming DB with PipelineDB

PAGE 31

In contrast, and explained in previous sections of the study, the Stream analysis is mainly inserting

the incoming data into streams and then consumed by a continuous transform where the join with

pictures_tags is performed. The output of this continuous transforms are streams that as well are

consumed by the Likes continuous view to show the desired result to the user.

To have the same views in both Analysis, the same query that is applied to Likes Continuous View

is going to be applied on Likes Materialized View first, a refresh on the Materialized View is

necessary. This refresh will be discussed in the next part as the main downside of doing such

analysis on PostgreSQL:

Figure 22: Execution time of refreshing the materialized view

Figure 23: Materialized view results

Above query can also be analysed:

Figure 24: Execution plan and time of querying the materialized view

 Streaming DB with PipelineDB

PAGE 32

The execution time of this Traditional SQL Analysis is 0.026 ms and the cost is 70.25, where the

previous execution time of Stream Analysis was 0.029 ms with the cost of 1.33. Since above query

is running on a Materialized View, it’s execution time is very similar to the execution time of the

query of Continuous View but the cost much more since we are doing a sort on a table.

When comparing PipelineDB and PostgreSQL, there is one major difference that must be

underlined; PipelineDB stores no data compared to PostgreSQL. Since PipelineDB is a stream

analysis database, it does not store streaming data and in order to do the same analysis on

PostgreSQL, streaming data has to be kept in a table:

Figure 25: Size in rows of the Relational table ingesting all the likes flowing into the system

Regarding the materialized view analysis, both entities, materialized views and continuous views

have a relatively small and constant cost of query. Despite that, Continuous View automatically

updates itself every time a stream data is inserted into stream, Materialized View is not capable of

updating itself after every insertion. A possible solution to this problem can be creating a trigger

on the likes_table to update Materialized View every time there is an insertion but since this update

is going to be working when there is already another stream insertion into the table occurs, the

trigger is going to refresh the materialized view when a refresh is already in progress. Since this is

not a desired option, Materialized View needs to be refreshed before every view and the time that

this refresh takes is proportional to the size of the table since the refresh operation completely

replaces the contents of a materialized view.

 Streaming DB with PipelineDB

PAGE 33

Figure 26: Analysis of the execution time of refreshing the materialized view by number of rows

in Likes_table

The figure clearly shows that when table has more entries, the execution time of the update of

materialized view increases proportionally. Reason why the execution time does not take too long

is because the data in likes_table is very small (kilobytes) since our streaming data generator

creates very small data. When the streaming data is bigger, the refresh time of Materialized View

is expected to be bigger as well.

To conclude; PipelineDB is not a data warehouse, it is designed to be working with continuous

queries where the queries are known a priori. While the output of continuous queries may be

explored in an ad-hoc fashion, all of the raw data that has ever passed through PipelineDB are

discarded after they’ve been read. PipelineDB can work on analysis that can be expressed with

SQL. To do the such analysis by using traditional PostgreSQL, a data table needs to be kept and a

materialized view needs to be refreshed to see the current state of the table before every view.

 Streaming DB with PipelineDB

PAGE 34

DATA VISUALIZATION

Most of the analytics systems are mainly used by means of nice and fashion data visualizations.

Even is not explicitly included in the scope of this project, it was decided to build an efficient

data visualization module to exploit the data and show the features of PipelineDB in a user-

friendly manner.

Figure illustrates the schema defined for the data visualization module.

Figure 27: Main schema of the technologies used by the data visualization

It is important to mention the difference between a streaming database and a real-time interface.

As mentioned in previous chapters the database content is updated in real time by means of the

streaming processing implemented with PipelineDB. However, this does not imply directly that

the interface on the client side is showing the last update of the content of the database. For that,

out of topic technologies are needed to connect the data model of the client side with the data

stored in the database, an example can be the implementation of continuous pool between Nodejs

and PostgreSQL or sockets that keeps both data models synchronized. Further versions of this

project should consider these possibilities to propagate the change of the database to the interface

in real time.

 Streaming DB with PipelineDB

PAGE 35

Conclusion

In this project, Stream Databases are examined via PipelineDB and its features. PipelineDB is a

new Streaming Database which is an extension of PostgreSQL and it allows to use SQL for the

analysis. PipelineDB offers fast and high throughput data analysis without storing the stream data

on any table and its internal view, called continuous view, can update itself regularly, which yields

a fast query analysis. Internal features of PipelineDB are examined within two use-cases; Hashtags

and Likes, to demonstrate some basic capabilities on today's most popular social media data

concepts. These use-cases analyses are then compared with traditional PostgreSQL data analysis,

to show how tedious to do a streaming analysis by using tables and views.

The conclusion of this study will be conducted by two main discussions. First of all, a SWOT

analysis has been performed on PipelineDB to evaluate its main features, and then a final

conclusion has been extracted from Streaming Databases paradigm.

SWOT ANALYSIS ON PIPELINEDB

Table 3: SWOT analysis on PipelineDB

Strengths Weaknesses

• Streaming processing on SQL.

• Easy installation and setup.

• Familiar and easy data model.

• Postgres full compatibility (PostGis,

temporal databases, pg clients..)

• Small community

• Young tool (version 0.9.*)

• Queries defined a priori.

Opportunities Threats

• PostgreSQL official extension. • SQL is the limit

 Streaming DB with PipelineDB

PAGE 36

STREAMING DATABASES OVERVIEW CONCLUSION

As an important conclusion of this study, it has been shown that the data-in-motion paradigm is

representing a high number of data types from the real world: Sports analytics, health applications,

social media, sensors... all this data sources are continuous by definition, consequently DBMS

needs to adapt to the nature of this data.

In detail, new waves of technologies and paradigms cannot ignore the tools that are currently active

and used by the users. People do not like changes, that’s why Streaming processors using SQL

environments will still be needed. The trust, and familiarity on SQL by most of the users can speed

up the spread of streaming paradigms all over the sectors. PipelineDB has this on his main business

strategy and that’s why the tool is going to be released as an official extension of PostgreSQL

soon.

Regarding the project objectives presented at the beginning of this document, a general and

accurate description of Streaming Databases has been document through the study and a proof of

concept has been implemented by means of PipelineDB. Furthermore, PostgreSQL has been used

as a comparison to highlight the main advantages of choosing PipelineDB for Stream Analysis

purpose.

 Streaming DB with PipelineDB

PAGE 37

References

[1] R. Allen, "Internet Marketing Statistics," 6 February 2017. [Online]. Available:

https://www.smartinsights.com/internet-marketing-statistics/happens-online-60-

seconds/attachment/what-happens-online-in-60-seconds/.

[2] PipelineDB, 2017. [Online]. Available: https://www.pipelinedb.com/.

[3] "PipelineDB Docs," 2017. [Online]. Available: http://docs.pipelinedb.com/.

[4] "What is Stream Processing," Data Artisans, 2017. [Online]. Available: https://data-

artisans.com/what-is-stream-processing.

[5] K. Paramasivam, "Stream Processing Hard Problems Part II: Data Access," LinkedIn, 22

August 2016. [Online]. Available: https://engineering.linkedin.com/blog/2016/08/stream-

processing-hard-problems-part-ii--data-access .

[6] Fabian Hueske, Shaoxuan Wang, and Xiaowei Jiang, "Continuous Queries on Dynamic

Tables," Apache Flink, 4 April 2017. [Online]. Available:

https://flink.apache.org/news/2017/04/04/dynamic-tables.html.

[7] "APACHE FLINK: SCALABLE STREAM AND BATCH DATA PROCESSING,"

Apache Flink, [Online]. Available: https://flink.apache.org/.

[8] H. Freeman, "Streaming Analytics 101: The What, Why, and How," Data Versity, 26

April 2016. [Online]. Available: http://www.dataversity.net/streaming-analytics-101/.

[9] "Heron's Design Goals," Heron, [Online]. Available:

https://twitter.github.io/heron/docs/concepts/design-goals/.

[10] "APACHE STORM," Hortonworks, [Online]. Available:

https://hortonworks.com/apache/storm/ .

 Streaming DB with PipelineDB

PAGE 38

[11] K. Wähner, "Real-Time Stream Processing as Game Changer in a Big Data World with

Hadoop and Data Warehouse," 10 September 2014. [Online]. Available:

https://www.infoq.com/articles/stream-processing-hadoop .

[12] J. Touffe-Blin, "Angular Chart," [Online]. Available: http://jtblin.github.io/angular-

chart.js/.

[13] J. Kreps, "Introducing Kafka Streams: Stream Processing Made Simple," Confluent, 10

March 2016. [Online]. Available: https://www.confluent.io/blog/introducing-kafka-

streams-stream-processing-made-simple/.

[14] "Newest "PipelineDB" Questions," PipelineDB, [Online]. Available:

https://stackoverflow.com/questions/tagged/pipelinedb?page=2&sort=newest&pagesize=1

5.

[15] C. TOZZI, "Big Data 101: Dummy’s Guide to Batch vs. Streaming Data," 25 July 2017.

[Online]. Available: http://blog.syncsort.com/2017/07/big-data/big-data-101-batch-stream-

processing/.

[16] A. Yemelianov, "PipelineDB: Working with Data Streams," Selectel, 16 May 2017.

[Online]. Available: https://blog.selectel.com/pipelinedb-working-data-streams/.

