UNIVERSITE LIBRE DE BRUXELLES

ADVANCED DATABASES

PRrROJECT

Perst embedded database

Author:
Pierre-Alexandre Superuvisor:
BOURDAIS Prof. Esteban ZIMANYT

Sofiane MADRANE

December 19, 2017

Contents

(1 _Introduction|

2 Object Database)
2.1 Relational DBMS issuesl 0L
[2.2 Oriented-Object approach|
2.3 Oriented-Object DBEMS|.

[3 Perst - object-oriented embedded database]

(3.3 Perst Design Principles|
[3.4 Perst embedded database specifications|

[4 Perst Vs SQLite|
4.1 Application descriptionl
4.2 FEnvironmentl. L

14
14
15
15
16

19

20

21

1 Introduction

Nowadays, the usefulness of databases in any computer application is well
established. But for some complex projects, the structuring of data becomes
more complex. It is often necessary to store complex data and access it as
quickly as possible. Thus, this application project is to prove the limitation
of a relational database in the world of the embedded, in the case mobile
applications, compared to the object-oriented model. This is what will be
demonstrated during this document using SqLite and Perst.

2 Object Database

A Database Management System is a tool for managing a collection of in-
terdependent data, shared among multiple users or applications, persistently
stored and independently of the programs that use them.

A database management system must perform three main functions:
e A description function to describe the data or entities handled.

e A manipulation function that must allow users (or application pro-
grams) to create, retrieve, modify or delete data in the database.

e A control function that must guarantee the integrity, security and con-
fidentiality of the data in the database.

NB: I would talk about the ODMG standard in the general sense of the
term. Because Perst does not implement it.

2.1 Relational DBMS issues

The relational model is very successful and is very suitable for traditional
database applications (management). His model is relatively simple and his
approach formally defined by normalization and algebra is effective.

But because of its poor semantics, RDBMS is much less suitable for new,
more complex applications such as:

e DB of images and graphics
e Geographic Databases (GIS: Geographic Information Systems)
e Multimedia DB (sound, picture, text, etc. combined)

These new applications have different characteristics from traditional man-
agement applications and introduce new needs, including;:

e More complex object structures,
e Transactions of longer duration and unsuitable for new applications,
e New types of data for storing images or large text documents

e The ability to define non-standard operations that are specific to the
applications,

Moreover, the development of an application is tedious because there are
two different philosophies to respect. Two worlds forced to communicate
(conversions to perform - tedious for developers). ODBMS are an attempt
to answer these new needs.

2.2 Oriented-Object approach

An object database first assumes the existence of an object language to repre-
sent the data stored in the database. We will study here the specific proper-
ties that this approach must present. It is a set of methodologies and tools for
designing and producing structured and reusable software, by composition
of independent elements. Which aims the productivity of the programmers
and a means of reuse of each element. As essential concepts encapsulation,
interface, inheritance, etc. These concepts are used in OO programming lan-
guages such as Java, C ++, C#, ...

All these fundamental concepts of the object-oriented are implemented in
a ODBMS, making it possible to carry out processing on the data, in partic-
ular:

Identifies an object:

— Promotes data sharing

— Supports typed pointers

Encapsulation of data:

— Allows data isolation of operations

— Facilitate the evolution of data structures

Structure operation inheritances:

— Facilitates data type reuse

— Allows programs to be customized to the needs of the application

Polymorphism:

— Increases developer productivity in DB implementation

This technology brings a revolutionary approach. Allowing easy access, de-
velopment and maintenance. Respecting all the SI constraints of the appli-
cation, ensuring logical and physical model independence, versionning and
persistence of data.

2.3 Oriented-Object DBMS
2.3.1 Bases of OO DBMS

The approach of using a SQL data manipulation language to access an object
database from a programming language seems quite inefficient if the language
itself is also an object language. In fact, we would like to hide as much
as possible the syntax differences between objects in memory and objects
on disk. A regulatory standard is problematic, created by many industry
leaders. The ODMG standard. But many ODBMS do not follow (including
Perst).

2.3.2 Gold rules of OO DBMS

In general no matter the modeling standard. A DBMS must follow a set of
rules that are inspired by OO languages:

3

Identity: Any object in the database is identifiable (OID). This iden-
tification is an invariant in the life of the object. And the existence of
an object is independent of its value.

Abstraction: Ability to eliminate non-essential features of an object to
create object groupings called ”"types” or ”classes”. An object is then
an instance of a type or class. Abstraction also makes it possible to
make dynamic links between objects.

Encapsulation: Describe in the DBMS. A class is defined with a set of
methods. The use of a method is done by sending a "message” to the
DB. It will be possible to access only the services of its methods and
not their implementations (access, update, manipulate).

Reusability: An important notion is the inheritance that makes it pos-
sible to factorize between objects, to have simple, multiple, partial and
selective representations of the same object

Persistence: To have flexible data, to be able to store them. The DBMS
provides tools to users. Ex: collections (SET, LIST) , Persistent Object

Complex structure: Can define his own type of data. The SGBDO
allow the extensibility of basic types. Ex: Image, Card.

Security: The DBMS must offer confidentiality, integrity rules (trigger,
constraints, etc.). And have a system of global versions.

Non-procedural interface: Large amount of data, physical grouping
techniques, indexing, query optimization, and cache management. The
language also offers the power of a programming language

Perst - object-oriented embedded database

In December 2006, GigaSpaces Technologies has integrated McObject’s Perst
open source, an object-oriented all-Java embedded database for real-time

data management in its massively scaleable distributed enterprise applica-
tion technology. GigaSpaces embeds Perst in version 5.1 of its software,
where Perst provides persistence for applications that are deployed and opti-
mized using GigaSpaces’ highly scalable, self-managing distributed solution.

Perst’s all-Java architecture was a good fit for GigaSpaces. The com-
pany’s software products are developed in Java, both for maximum porta-
bility across diverse enterprise platforms, and to take advantage of advanced
Java capabilities, including JavaSpaces, a simple unified mechanism for dy-
namic communication, coordination, and sharing of objects between Java
technology-based network resources. Perst is specifically integrated within
the GigaSpaces In-Memory Data Grid , as an embedded object-oriented
database offered as an alternative to a relational database due to its superior
performance and minimal resource (CPU cycles and memory) requirements..
“A major advantage of Perst is the efficiency provided by its ability, as an
object-oriented database, to store application data as ‘plain old Java ob-
jects’ (POJOs), rather than requiring translation of this data to a relational
format,” said Guy Nirpaz, vice president for research and development of
GigaSpaces. GigaSpaces implements a unique space-based architecture that
incorporates aspects of grid computing and service-oriented architecture and
dramatically boosts the scalability and performance of both new and ex-
isting applications. GigaSpaces’ software meets the requirements of high
performance, low latency and grid-based applications, and adds new possi-
bilities and flexibility by introducing advanced application design patterns. It
has been tested extensively in large financial applications with proven linear
scalability and extremely high performance.

3.1 About Perst

Perst is McObject’s high-performance object-oriented embedded database for
Java and C#, and is tightly integrated with these programming languages. In
contrast to object-relational databases, or tools that provide object-relational
mapping, Perst stores data directly in Java C# objects. This eliminates
the need for expensive (in performance terms) runtime conversions between
representations of the data. Unlike many other object-oriented databases,
Perst requires no dedicated compiler or pre-processor, yet provides a high
degree of application transparency. The Perst API is convenient, flexible
and easy-to-use. Perst also offers a very small footprint. The engine’s core is

just 5,000 lines of code, and the run-time requires between 30K and 300K of
RAM. Perst requires no end-user administration, and despite its simplicity,
Perst ensures integrity via transactions that adhere to the “ACID” properties
(Atomicity, Consistency, Isolation and Durability) with very fast recovery.
The Perst open source software distribution also includes Perst Lite, a micro-
footprint version of Perst targeting embedded systems and intelligent devices
developed on the Java 2 Platform, Micro Edition (J2ME).

3.2

Perst embedded database features and benefits

Here is is a list of all the features and benefits of Perst :

Object-oriented : Perst stores data directly in Java and .NET objects,
eliminating the translation required for storage in relational and object-
relational databases. This boosts run-time performance.

Compact : Perst’s core consists of only five thousand lines of code. The
small footprint imposes minimal demands on system resources.

Fast : In McObject’s benchmarks, Perst displays one of its strongest
features: its significant performance advantage over Java and .NET
embedded database alternatives.

Reliable : Perst supports transactions with the ACID (Atomic, Con-
sistent, Isolated and Durable) properties, and requires no end-user ad-
ministration.

Rich in development tools : The Perst API is flexible and easy-to-use.
The breadth of Perst’s specialized collection classes is unparalleled.
These include a classic B-Tree implementation; R-tree indexes for spa-
tial data representation; database containers optimized for memory-
only access, and much more.

Transparent persistence : Perst is distinguished by its ease in working
with Java and C+# objects, and suitability for aspect-oriented program-
ming with tools such as AspectJ and JAssist. The result is greater
efficiency in coding.

Source code available : With free, available source code, nothing in
Perst is hidden, and the developer gains complete control of the appli-
cation and its interaction with the database.

e Advanced capabilities : Perst’s extras include garbage collection, schema
evolution, a “wrapper” that provides a SQL-like database interface
(SubSQL), XML import/export, database replication, support for large
databases, and more.

3.3 Perst Design Principles

Perst’s goal is to provide developers in Java and C# with a convenient and
powerful mechanism to deal with large volumes of data. Perst’s design prin-
ciples include the following;:

e Persistent ojects should be accessed in almost the same way as transient
objects (transparent persistence)

e A database engine should be able to efficiently manage much more data
than can fit in main memory

e No specialized preprocessors, enhancers, compilers, virtual machines or
other tools should be required to use the database or develop applica-

tions with it.

3.4 Perst embedded database specifications

3.4.1 Supported Platforms

Supported Platforms

Perst.Lite Java

2ME MIDP 2.0/CLDC 1.1

Product Platform Language
J2SE 1.4 and higher Java
J2EE 1.4 and higher

Perst Java Android
J2ME/CDC
J2SE 1.1 Java

Perst.Net

NET Framework (1.0, 2.0, 3.0, 3.5, 4.0)
NET Compact Framework (1.0, 2.0)
Silverlight

Windows Phone 7 (WP7)

Mono

C#, J#, Managed C++,
VB.NET and all

other managed .NET
languages

3.4.2 Persistence

Persistence
Supported types | All primitive types
Strings
Arrays
Enums

NET structs and embedded objects in Java

GUID, decimal and DateTime types

BLOBs

Raw types (objects serialized using system or custom serializers)
Generic (parameterized) types

Transparency Controlled recursive loading of objects
Persistence by reachability

Fully transparent persistence using AOP
tools such as AspectJ and JAssist
Almost transparent persistence for .NET
classes using generator of derived class
overriding virtual properties of the class

Flexibility User-defined class loaders

User-defined memory allocators

Custom serializers

Custom full text search components (stemmer, parser, ...)
Explicit or implicit memory allocation (garbage collection)
Abstract file interface to provide specific file implementations

3.4.3 Queries

Queries

Indexing algorithms

B-Tree

T-Tree (optimized for in-memory database)
R-Tree (spatial index)

Patricia (prefix search)

KD-Tree (multidimensional index)

Time series (large number of fixed

size objects with timestamp)

Collections

List

Map

Index (range search)

Field index (extracts keys from object)

Multidimensional index

Set

Scalable set (uses array for small set and B-Tree for large set)
Spatial index

Multidimensional index

Search kinds

Object-oriented using various search and iteration
methods of Perst collection classes
Query-by-example (including range search)
implemented using multidimensional indexes
JSQL - object-oriented subset of SQL

Full text search: built-in full text search

engine or integration with Lucene

Native queries and LINQ

(search predicate specified in native code)

3.4.4 Transactions

10

Transactions

Implementation Shadow objects
Features ACID
No log file

Fast recovery

Locking granularity

hline Locking models

File-level locking

Database-level locking

Fine grain (object-level) locking

Pessimistic (resource is locked before access)
Optimistic (conflicts are detected at commit stage)

Isolation levels

Cooperative transactions
Repeatable reads
Serializable transactions

3.4.5 Performance

11

Performance

Caching

Object cache (LRU, weak, strong...)
Page pool
In-memory database

Performance benchmark

List

Map

Index (range search)

Field index (extracts keys from object)
Multidimensional index

Set

Scalable set (uses array for small set and
B-Tree for large set)

Spatial index

Multidimensional index

Large volumes of data

Maximal number of objects: 2,000,000,000

Maximal database size: 1 terabyte

Small footprint

Library size from 250KB (Perst.Lite) to 500KB
(Perst Java/.NET).

Proven on mobile phones with heap size limited
to less than 1MB

Scalability

High level of concurrency because of fine grain
locking in pessimistic mode or use of optimistic
transaction mode

Can split data between several physical devices
Possible to store BLOBs in separate storage
locations, making object-caching more efficient

Load balancing

Master-slave replication provides read-only
access to primary database by multiple replicas
Access to the same database permitted from
multiple processes (JVMs)

12

3.4.6 Reliability

Reliability

Recovery Automatic recovery in case of application, system
or hardware failure

Data replication | Asynchronous or synchronous data replication
Backup Online of offline backup

Data protection | Database encryption

3.4.7 Schema evolution

Schema evolution

Change scalar field type
Add/remove field
Move/rename fields
Custom transformations

Automatic

Automatic

By means of XML export/import
Load/store object handles,
database version information

3.4.8 Internationalization

Internationalization

Default string encoding

Custom comparator

UTF-16

Explicit specification of encoding | Available

Many Perst collections allow user
to specify a comparator class

3.4.9 Advanced features

Advanced features
XML import/export Available
Database encryption Available
Database compression Available
Portable database format Available
Multiversioning Available
Full text search Available
Fast database upload on mobile devices | Available

13

4 Perst Vs SQLite

4.1 Application description

The application is a very simple benchmark measuring performance of basic
database operation: inserting, searching and deleting records. It uses simple
records with two primary key columns: one of 8-byte integer type and another
of string type. These columns are assigned random values during database
initialization.

4.1.1 Benchmark
The benchmark consists of four steps:
e Insert data into the database.
e Perform index searches for all objects using both indexes.
e Iterate through all objects using index iterators.(sequential scans).

e Locate and remove all objects one-by-one.

4.1.2 Structure

To allow comparison of Perst’s performance with that of the built-in SQLite
database system, this application includes a port of the benchmark for SQLite.
The structure of the application is the following:

e Main Activity : makes possible to user to start Perst or SQLite bench-
mark.

e PerstTest : implementation of the benchmark for Perst.

e Progress Monitor : allow to print the test result on UI during test
execution.

e SQliteTest : implementation of the benchmark for SQlite.

e Test : base class for all tests

14

4.2 Environment

e Android Studio allows to use Sqlite because it is included in Android’s

SDK.

SDK 26 Google
API 26 Android Studio

Perst 4.39

4.3 Monitor

In order to print out the result, a monitor is emulate by android studio. After
running Perst and SQlite tests the monitor is like the following figures. All

the result are in millisecond.

o6

ADB_PERST

PERST

SQLITE

Perst test :

Elapsed time for inserting 1000 records:
165 milliseconds

Elapsed time for performing 2000 index searches:

44 milliseconds

Elapsed time for iterating through 2000 records:
13 milliseconds

[Elapsed time for deleting 1000 records:

38 milliseconds

Android Smartphone running Android 8.0 Oreo

o6

ADB_PERST

PERST

SQLITE

SqLite Test :

Elapsed time for inserting 1000 records:

5715 milliseconds

Elapsed time for performing 2000 index searches:
152 milliseconds

Elapsed time for iterating through 2000 records:
7 milliseconds

Elapsed time for deleting 1000 records:

5192 milliseconds

15

4.4 Results
4.4.1 Benchmark

In order to compare SQlite and Perst, it is need to run a few benchmark with
different values of the number of object. The number of objects will be 1000,
10 000, 100 000.

Moreover for each of these values the benchmark will be run three benchmark
in order to get different values and accurate results.

Firstly the number of object is set to 1000. The results are stock in the
following table.

Insert Search Index | Scan | Locate and remove

Perst

1st 165 (ms) 44 13 38

2nd 76 4 2 25

3rd 38 4 1 15
SQlite

1st 5715 152 7 5192

2nd 4644 69 6 4045

3rd 4585 56 2 4093

According to those result it seems that the first running for Perst and
SQlite are taking more time than the second and third one. So the conclu-
sion will be drawing using the 2nd and 3rd running of Perst and SQlite test.

Perst is much more faster in order to perform insertion, also it is locating
and removing each object of the DB one by one faster than SQlite. The in-
dex searches for all objects using both indices is a little bite faster for Perst.
However the iteration through all objects using index iterators is almost as
fast for Perst and SQlite.

Secondly the number of object is set to 10000. The results are stock in
the following table.

16

Insert Search Index | Scan | Locate and remove

Perst

1st 685 (ms) 177 50 227

2nd 304 103 37 193

3rd 174 79 32 141
SQlite

1st 68004 (ms) 383 44 53284

2nd 31965 189 24 30607

3rd 31268 186 24 30786

According to those result it seems that the first running for Perst and
SQlite are taking more time than the second and third one. So the conclu-
sion will be drawing using the 2nd and 3rd running of Perst and SQlite test.

Once again Perst is much more faster in order to perform insertion, also it
is locating and removing each object of the DB one by one faster than SQlite.
Moreover the index searches for all objects using both indices is again a little
bite faster for Perst. However the iteration through all objects using index
iterators is this time faster for SQlite, but the results are quite close.

Thirdly the number of object is set to 100000. The results are stock in
the following table.

Insert | Search Index | Scan | Locate and remove

Perst

1st 7307 3804 3454 5841

2nd 6756 4025 3520 5834

3rd 6464 3962 3538 6320
SQlite

1st 313885 2105 1132 301075

2nd | 308158 1869 1087 308982

3rd 303026 1888 1107 313516

As expected Perst is once more much faster in order to perform inser-
tion, locating and removing. This time the index searches for all objects
using both indices is faster for SQlites, it is the same thing for the interation
through all objects using index iterators.

17

4.4.2 Chart

Now that all the benchmark are ran, a column chart can be created. This will
reveals the increasing of the running time for each operations while increasing
the number of objects.

The two following figures are using logarithm scale in order to get a better
overview. Green color correspond to the test with 1000 objects, yellow to 10
000 objects, orange 100 000 objects.

S0ILite Test

1 000 000

1000

Inser Search Index Nerals thraugh — Locabe and ramave

18

FPerst Test
10 000

Insar Search ndex Nerale through Locats and ramave

As we expected more there is object in the DB more it takes times to
perform the operations over the data.

Regarding to those figures it appears that Perst is actually way better
with small DB. For SQlite the running time seems to increase proportionally
while increasing the number of objects.

5 Discussion

What accounts for the performance disparity? For SQlite insert and delete
operations, one obvious gating factor is the lack of explicit transaction sup-
port in its Android API. Each update must be performed as a separate trans-
action, in autocommit mode, resulting in significant transaction processing
overhead.

This also compromises the ability to maintain the logical consistency of the
database contents (i.e. to define a database unit of work that consists of

19

updates to two or more table rows in the database).

Search time for SQlite is slower and it is explained by overhead added by
using Android’s Java interface to access the native C language database, and
the overhead of parsing, optimizing and executing the interpreted SQL. In
contrast, Perst’s interface works directly with database objects no interpre-
tation of an intermediate language is needed.

SQlite’s advantage in scan operations probably stems from the test’s sim-
ple tabular data layout. As a relational database, SQlite organizes data in
rows, and these rows are physically close to one another in storage, like rows
of a spreadsheet. This proximity lends an edge in sequentially fetching the
rows. In contrast, in Perst, everything is an object, including index pages,
and objects are interleaved in the storage. The following factor also affect
these databases’ performance and their “fit” with mobile applications, and
is worth considering:

Object-oriented vs. relational database system. Choice of database model
is often viewed as hinging on the user’s programming philosophy or style.
But developers targeting resource-constrained devices should bear in mind
the run-time efficiency gained by pairing an object-oriented database with an
object-oriented language such as Java. In Java, developers work with Java
objects; an object-oriented database stores these as Java objects, eliminat-
ing the translation required for storage in a relational or object-relational
database.

This boosts run-time performance. It also permits the developer to stay
within the O-O paradigm, whereas use of a relational database with an
SQL interface requires shifting back and forth between O-O and a set-based,
declarative query language.

6 Conclusion

In order to conclude this project it’s needed to draw a conclusion according
to the content of the report and the test results. Perst is a specific ODBMS
as it is not following the ODMG standard.

Perst is definitely more easy to use than SQLite because it is using the O-O
paradigm. So there is no need to wrapped the object we are working with.
Perst is definitely more efficient than SQLite regarding to the results of the

20

benchmark.

Mobile devices such as smartphones manage increasingly large data sets,
to meet widely varying application needs. Enterprise and business-oriented
database systems typically outstrip such devices’ CPU and memory resources.
However, several small-footprint embedded DBMS’s have emerged, provid-
ing developers with the luxury of choosing between data models, APIs, index
types and other database features for applications that will run on Android,
BlackBerry, Windows Mobile, Symbian and other mobile devices. With this
choice comes the ability to optimize data management based on application
function and performance needs.

7 References

http://www.mcobject.com

https://developer.android.com
http://www.drdobbs.com/database/kernel-mode-databases/207401567
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/0Object_database
https://www.thoughtco.com/the-acid-model-1019731
https://en.wikipedia.org/wiki/Embedded_database
https://en.wikipedia.org/wiki/0Object_Data_Management_Group
http://www.odbms.org/introduction-to-odbms/definition/

21

http://www.mcobject.com
https://developer.android.com
http://www.drdobbs.com/database/kernel-mode-databases/207401567
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Object_database
https://www.thoughtco.com/the-acid-model-1019731
https://en.wikipedia.org/wiki/Embedded_database
https://en.wikipedia.org/wiki/Object_Data_Management_Group
http://www.odbms.org/introduction-to-odbms/definition/

	Introduction
	Object Database
	Relational DBMS issues
	Oriented-Object approach
	Oriented-Object DBMS

	Perst - object-oriented embedded database
	About Perst
	Perst embedded database features and benefits
	Perst Design Principles
	Perst embedded database specifications

	Perst Vs SQLite
	Application description
	Environment
	Monitor
	Results

	Discussion
	Conclusion
	References

