
Université libre de Bruxelles

INFO-H-415

Advanced Databases

Graph Databases and Neo4J

Authors:
Anna Turu Pi
Ozge Koroglu

Supervisor:
Esteban Zimányi

December 18, 2017

Graph Databases and Neo4J

Contents
List of Tables 3

List of Figures 3

1 Introduction 6

2 Background 7
2.1 State of the art of Databases . 7
2.2 Types of DBMS . 9

2.2.1 NoSQL DBMS . 10
2.2.2 Comparison of DBMS . 13
2.2.3 Current trends . 17

2.3 Graph Databases . 17
2.3.1 Graph Theory and Its Applications 18
2.3.2 Concepts of Graph Databases 18
2.3.3 Query performance . 19

3 Neo4j 23
3.1 Justification of Neo4j . 23
3.2 Advantages of Neo4j . 25
3.3 Properties of Neo4j . 27
3.4 Performance In Neo4j . 28

3.4.1 How To Increase Performance Of Neo4j? 29
3.5 Cypher Query Language . 30

3.5.1 Structure . 30
3.5.2 Operations In Cypher . 31
3.5.3 Loading Data With Cypher 35

3.6 Use Cases of Neo4j . 36

4 Neo4j Application 40
4.1 Use Case Selected . 40
4.2 Data . 40

4.2.1 Implementing Data . 41
4.2.2 Export data . 44

4.3 Query Examples (Neo4j-SQL) . 47
4.3.1 Shortest Path . 48
4.3.2 Betweenness centrality: . 57
4.3.3 Closeness centrality: . 59
4.3.4 PageRank: . 62

1

Graph Databases and Neo4J

4.3.5 Community Detection: . 65
4.3.6 Possible queries on SQL . 72

5 Conclusion 78

Bibliography 79

2

Graph Databases and Neo4J

List of Tables
1 Comparison of ACID and BASE Consistency Models 13
2 Graph database schema . 42

List of Figures
1 Evolution of database technology . 7
2 DBMS marketplace . 8
3 DBMS developed by database model pie chart 9
4 DBMS popularity by database model pie chart 10
5 Four main types of NoSQL databases 12
6 Positions of NoSQL databases (source: Neo4j) 16
7 DBMS popularity by database model pie chart 17
8 Model Comparison . 19
9 Query execution in graph databases 20
10 Query execution in relational databases 20
11 Graph DBMS Ranking . 21
12 Trend Graph DBMS popularity scatter plot 22
13 Neo4j As a Leading Graph Database 24
14 Level Of Complexity of Traditional Databases Comparing to Neo4j . 25
15 Ebay’s comment about Neo4j . 25
16 General Look at Neo4j . 27
17 Query times for Oracle Exadata vs Neo4j 29
18 Tomtom’s Comparison of Neo4j with MySQL 29
19 Node Representation . 31
20 Relationship Representation . 31
21 Create Person’s Node . 32
22 Create Relationship Between Two Nodes 33
23 Relationships . 33
24 Match Result . 34
25 Delete Result . 35
26 Load CSV Operator Structure . 35
27 Use Cases Of Neo4j . 36
28 Real Time Recommendations Graph Design 37
29 Master Data Management Graph Design 37
30 Network IT Operations Graph Design 38
31 OpenFlights.org . 41
32 Structure of the python code . 41
33 Initial Schema . 42

3

Graph Databases and Neo4J

34 Example of a query in Neo4j . 43
35 Relational database diagram . 44
36 Exporting Neo4j database to CSV file 45
37 CSV file containing Neo4j database 45
38 Exporting Neo4j database to cypher script 46
39 Cypher script containing Neo4j database 46
40 Algorithms for graph databases . 47
41 Add jar files in plugin folder . 47
42 Shortest path query from Madrid to Seoul 48
43 Pipeline of the shortest path query 49
44 Expanded shortest path query . 49
45 Shortest path query from Seoul to Antwerp 50
46 Neo4j DB schema after adding Connected relationships 51
47 Neo4j DB schema after adding Goingto relationships 52
48 Shortest path between Madrid and Seoul 52
49 Shortest path outbound route output 53
50 Shortest path return route output . 53
51 Other shortest path examples . 54
52 SQL Server recursive query output 55
53 Neo4j query on Antwerp-Istanbul shortest path 56
54 Pipeline of Neo4j query on Antwerp-Istanbul shortest path 57
55 Concept of betweenness centrality . 58
56 Betweenness centrality query result 58
57 Pipeline of the betweenness centrality query 59
58 Concept of closeness centrality . 60
59 Closeness centrality query result . 60
60 Location of the airports with highest closeness centrality 61
61 Pipeline of the closeness centrality query 62
62 Airports pagerank result . 63
63 Pipeline of the airports pagerank query 63
64 Airlines pagerank result . 64
65 Pipeline of the airlines pagerank query 65
66 Community detection graph . 66
67 Community detection table . 67
68 Pipeline of community detection query 68
69 Papua New Guinea partition . 69
70 Canada partitions . 69
71 Algeria partition . 70
72 Finland, Greenland, Iceland partitions 70
73 Africa partition . 71

4

Graph Databases and Neo4J

74 Europe partition . 71
75 Australasia partition . 72
76 Comparison of Queries - first query 74
77 Comparison of queries - second query 75
78 Comparison of queries - third query 77

5

Graph Databases and Neo4J

1 Introduction

The aim of this project is to compare graph databases to the main DBMSs to pin-
point the use cases it is more suitable for. In order to prove their effectiveness, a
database using the same data set has been implemented both in Neo4j, the lead-
ing software using graph database technology, and SQL Server, the top-3 DBMS
according to DB-Engines.

6

Graph Databases and Neo4J

2 Background

The aim of this project is to prove that graph databases, more specifically Neo4j,
was the most performant DBMS for some specific use cases, hence they earned their
place in the DBMS’s market. The first milestone was to investigate the state of the
art of DBMS. Its purpose was to justify the existence of graph databases, showing
that it meets some needs not covered by other DBMS.

2.1 State of the art of Databases

Database Systems evolution: Databases and database technology are vital to
modern organizations supporting both the daily operations and decision making.
Database technology has undergone remarkable evolution over 50 years. Despite
dominance to the enterprise DBMS marketplace by Oracle, the industry remains
highly competitive with a continued high level of innovation [12].

Figure 1: Evolution of database technology

Major periods of database technology evolution [12]:

• 1st Generation (1960’s): File oriented – Supported sequential and random
searching of files, but the user was required to write computer programs to
access data. The database software industry had little or no standards during
this period.

7

Graph Databases and Neo4J

• 2nd Generation (1970’s): Navigational – Could manage multiple entity
types and relationships. Computer program still has to be written. Progress
on standards.

• 3rd Generation (1980’s): Relational with non-procedural access – Founda-
tion based on mathematical relations and associated operators. Optimization
technology was developed. IBM performed pioneering research to enable com-
mercialization of relational database technology.

• 4th Generation (1990’s+): Object oriented – Are extending the bound-
aries of database technology. New kinds of distributed processing and data
warehouse processing. Can store and manipulate unconventional data types.
Convenient ways to publish static and dynamic Web data.

DBMS marketplace: Despite dominance to the enterprise DBMS marketplace
by Oracle, with more than 40% overall market share, the industry remains highly
competitive with a continued high level of innovation. In some environments, its
competition is Microsoft SQL Server, IBM DB2, Teradata, SAP Sybase. Open
source DBMS products have begun to challenge the commercial DBMS products
at the low-end of the enterprise DBMS marketplace. The category of open-source
DBMS is leaded by MySQL, followed by MongoDB, PostgreSQL and MariaDB. In
the desktop DBMS market, Microsoft Access dominates because of the dominance
of Microsoft Office. [12]

Figure 2: DBMS marketplace

Innovation in the industry: The advances in DBMS in recent years support
business intelligence processing for data integration and usage of summary data.
NoSQL technology has been developed to support the needs of Big Data, to be
modern web-scale databases. Since 2009, the most accepted definition of NoSQL is
next generation databases being non-relational, distributed, open-source and horizon-
tally scalable. Other characteristics that usually apply are schema-free, scalability,

8

Graph Databases and Neo4J

global availability, easy replication support, simple API, eventually consistent/BASE
(not ACID), and large scale data. [5] [19]

2.2 Types of DBMS

Ranking In this section we observe rankings created by DB-Engines. DB-Engines
is an initiative that provides information on the popularity of the DBMS available
in the market. They make available different rankings for every DBMS type, which
are updated monthly. [3]

Figure 3: DBMS developed by database model pie chart

Over those lines, a pie chart represents the categories of DBMS that comprise more
systems developed. The database model more elaborate is the Relational DBMS,
where 137 systems fall under this category. It is followed by Key-value stores, with
63 systems, Document stores, with 43 systems, and Graph DBMS, with 27 systems.

In the overall classification of database models, those DBMS types are distinguished.
Types of DBMS:

• Relational DBMS

• Key-value stores

• Document stores

• Graph DBMS

• Time Series DBMS

• RDF stores

9

Graph Databases and Neo4J

• Object oriented DBMS (Atkinson)

• Search engines

• Multivalue DBMS

• Wide column stores

• Native XML DBMS

• Content stores

• Event Stores

• Navigational DBMS

Above these lines, the 14 more developed database models have been listed. If
instead of counting the systems developed, the database models are ranked by pop-
ularity, the list of models to be considered shrinks. Most of the users work on
relational DBMS, the 79.5%, followed by document stores, 7.3%, search engines,
4.3%, key-value stores, 3.5%, wide column stores, 3.1%, and graph DBMS, 1.1%.
Below these lines a pie chart represents the most recent popularity rank. [3]

Figure 4: DBMS popularity by database model pie chart

In the pie chart above, it is clear to see that Relational DBMS are the ones used by
default. However, the state of the art is changing by the innovations in the database
technology. Even though the percentages of popularity of NoSQL databases are
minimal compared to Relational DBMS, the fact that they are recent technologies
in growth is enough to evaluate them more deeply.

2.2.1 NoSQL DBMS

Many different NoSQL DBMS have been developed, but they are generally classified
in four types [5]:

10

Graph Databases and Neo4J

• Key-value stores: its structure consists in pairing keys to values. When
performing a change in a value, the entire value other than the key must
be updated. It scales well because of the simplicity. However, it can limit
the complexity of the queries and other advanced features. [18] Examples:
Dynamo, Azure Table Storage, BerkeleyDB

• Document Stores: The records stored are called documents, which consist
of grouping of key-value pairs. Values can be nested to arbitrary depths. [18]
Examples: Elastic, MongoDB, Azure DocumentDB

• Wide Column Stores: While RDBMS store all the data in a particular
table’s rows together on-disk, being able to retrieve a particular row fast,
Column-family databases are able to retrieve a large amount of a specific at-
tribute fast by serializing all the values of a particular column together on-disk.
This approach is useful for aggregate queries. [18] Examples: Hadoop/HBase,
Cassandra, Amazon Simple DB

• Graph Databases: ideal at dealing with interconnected data. Their struc-
ture consist of connections, or edges, between nodes. Both nodes and their
edges can store additional properties such as key-value pairs. The strength of
a graph database is in traversing the connections between the nodes. Their
downside is that they generally require all data to fit on one machine, limiting
their scalability. [18] Examples: Neo4J, InfiniteGraph, TITAN

• Other types: Multimodel Databases, Object Databases, Grid & Cloud Database
Solutions, XML Databases, Multidimensional Databases, Multivalue Databases,
Event Sources, Time Series / Streaming Databases

11

Graph Databases and Neo4J

(a) Example of Key-Value Store (b) Example of Document Store

(c) Example of Wide Column Store
(d) Example of Graph Database

Figure 5: Four main types of NoSQL databases

Consistency Models for NoSQL databases: Before NoSQL, ACID was the
quintessential model that databases were meant to follow. Brief reminder of the
ACID properties [16]:

• Atomicity: All operations in a transaction succeed or every operation is rolled
back.

• Consistent: On the completion of a transaction, the database is structurally
sound.

• Isolated: Transactions do not contend with one another. Contentious ac-
cess to data is moderated by the database so that transactions appear to run
sequentially.

12

Graph Databases and Neo4J

• Durable: The results of applying a transaction are permanent, even in the
presence of failures.

However, NoSQL databases break with the tipicality of SQL models with ACID
properties. BASE properties seem to adecuate better to most NoSQL databases,
and they are as follows [16]:

• Basic Availability: he database appears to work most of the time.

• Soft-state: Stores don’t have to be write-consistent, nor do different replicas
have to be mutually consistent all the time.

• Eventual consistency: Stores exhibit consistency at some later point (e.g.,
lazily at read time).

ACID transactions can be considered stricter than needed for many NoSQL cases, as
they apply many constraints for safety sake. On the other hand, BASE transactions
guarantees scale and resilience. The BASE model is used by aggregate stores, such as
column family, key-value and document stores. In contrast, graph databases use the
ACID model. BASE databases promise availability of the data at the expense of data
consistency (the consistency of the data is only assured at concrete snapshots). [16]
Graph databases differentiate themselves from other NoSQL databases by focusing
more on data consistency. The comparison made in the lines above is shown in a
table below:

ACID BASE
Properties Atomicity Basic Availability

Consistent Soft-state
Isolated Eventual consistency
Durable

NoSQL DBMS Graph Databases Aggregate stores

Table 1: Comparison of ACID and BASE Consistency Models

2.2.2 Comparison of DBMS

Relational DBMS clearly are the benchmark among database systems. The mass
adoption of this DBMS type is an important factor for choosing it as the main
system in many companies. However, current trends show that the four main times
of NoSQL databases should also be taken into account before installing a DBMS.
To have a more objective point of view of the benefits of using each model, the use

13

Graph Databases and Neo4J

cases for which they perform better and the ones for which they perform the worst,
are listed below.

Use cases for relational databases [17]

• Positive use cases: transaction-oriented databases (banking applications, on-
line reservations), where the concurrency of many transactions must be sup-
ported and the integrity of the data must be protected.

• Negative use cases: data warehouses, which are analytically-oriented databases
with a large amount of data and infrequent updates. The constraints of the
relational database wouldn’t support the scalability.

Use cases for key-value stores [19]

• Positive use cases:

– For storing user session data

– Maintaining schema-less user profiles

– Storing user preferences

– Storing shopping cart data

• Negative use cases:

– To query the database by specific data value

– With relationships between data values

– To operate on multiple unique keys

– If the business needs updating a part of the value frequently

Use cases for document stores [19]

• Positive use cases:

– E-commerce platforms

– Content management systems

– Analytics platforms

– Blogging platforms

14

Graph Databases and Neo4J

• Negative use cases:

– To run complex search queries

– Application requires complex multiple operation transactions

Use cases for wide-column stores [19]

• Positive use cases:

– Content management systems

– Blogging platforms

– Systems that maintain counters

– Services that have expiring usage

– Systems that require heavy write requests (like log aggregators)

• Negative use cases:

– To use complex querying

– If the query patterns change frequently

– Without an established database requirement

Use cases for graph databases [19]

• Positive use cases:

– Fraud detection

– Graph based search

– Network and IT operations

– Social networks

• Negative use cases:

– Data Warehouses so big that require BASE model

15

Graph Databases and Neo4J

Figure 6: Positions of NoSQL databases (source: Neo4j)

On the figure above, the five types of DBMS that were being compared, are dis-
played according to the size and complexity of their databases. It can be concluded
that each one of those DBMS works for some specific use cases, depending on the
amount and complexity of the data that is going to be stored. Their use cases
are not overlapped, which justifies that the fifth of them must be considered before
implementing a DBMS in a company.

16

Graph Databases and Neo4J

2.2.3 Current trends

Figure 7: DBMS popularity by database model pie chart

In the previous pie-chart we concluded that the category of relational DBMS com-
prises most of the DBMS market. However, when looking at the chart of popularity
changes per category [3], it is noticed that from 2014, graph DBMS differenti-
ated themselves from the rest with a great popularity rise. This project aims to
understand the causes of that booming trend.

2.3 Graph Databases

Graph databases are databases whose specific purpose is the storage of graph-
oriented data structures [8], therefore an introduction to graph theory to be consis-
tent when using its terminology.

17

Graph Databases and Neo4J

2.3.1 Graph Theory and Its Applications

What is a graph A graph is a pictorial representation of a set of objects where
some pairs of objects are connected by links. The interconnected objects are rep-
resented by points termed as vertices, and the links that connect the vertices are
called edges. Formally, a graph is a pair of sets (V, E), where V is the set of vertices
and E is the set of edges, connecting the pairs of vertices. [14]

Properties [2] [7]

• multigraph: when any two vertices are joined by more than one edge.

• simple graph: a graph without loops and with at most one edge between any
two vertices.

• complete graph: when each vertex is connected by an edge to every other
vertex.

• directed graph, digraph: when a direction is assigned to each edge.

• The order of a graph is its number of vertices.

• The degree of a vertex in a graph is the number of edges which meet at that
vertex.

Graph theory applications [7]

• Road and Rail networks

• Integrated circuits

• Supply Chains

• Social networks

• Neural Connections

2.3.2 Concepts of Graph Databases

Positioning It has previously been explained that NoSQL databases address sev-
eral issues that relational databases do not: availability for the processing of large
datasets, partitioning, flexibility of the schema and modelling and processing com-
plex structures like trees, graphs, or too many relationships. Graph databases are

18

Graph Databases and Neo4J

specialized in processing highly connected data, managing complex and flexi-
ble data models and improving the performance of complex queries by traversing
the graph. [8]

Model Another quality of graph databases is the simplicity of its model. In the
figures below, it can be appreciated the difference in modeling the same use case
in a relational database or a graph database. The model of the graph database is
more similar to the business model, which makes it more accessible to not-technical
profiles. [8]

(a) Relational Database Model (b) Graph Database Model

Figure 8: Model Comparison

2.3.3 Query performance

Graph databases competitive advantage It has been said that graph databases
have a reason to be because they outperform relational databases in complex queries.
They are particularly good when the relationships between items are significant. The
use case that is better suited for graph databases is "find all entities of a kind"
(myEntity.findAll). The execution of such a query, starts with an index lookup to
find the starting node(s) for traversal. Then the relationships in the graph are tra-
versed simultaneously. Because of the concurrence of the traversal, the bigger the
volume of data, the more it outperforms relational databases. [8]

19

Graph Databases and Neo4J

Figure 9: Query execution in graph databases

Relational databases are less adequate to query through relationships. It would mean
querying through different tables, following foreign keys and other indexes, and it
would considerably increment the performance time. Graph databases traversals are
performed by following physical pointers, while foreign keys are logical pointers. [8]
The query in the figure, includes the time of each index-scan. The more tables are
included in the query, the larger the execution time will become.

Figure 10: Query execution in relational databases

Relational Databases competitive advantage On the other hand, because of
the internal structure of the tables, relational databases would outperform graph
databases when the output requires all the attributes of a table (findAll -like
queries). Its ideal use case is to aggregate over a complete dataset. [8]

20

Graph Databases and Neo4J

Graph databases ranking Below those lines, the figure shows the DB-Engines
Ranking on Graph DBMS. Neo4j leads the ranking, and its score triples the following
DBMS, Microsoft Azure Cosmos DB. Neo4j has been leading the Graph databases
sector for some years, as we can see in the trend scatter plot. It must be taken into
account that the score is displayed in logarithmic scale, therefore the difference in
popularity is really significant.

It can also be seen in the trend scatter plot that Microsoft Azure Cosmos DB ap-
peared in the graph database landscape in 2014, and since then its rise in popularity
has been quite steep. An argument for that is that Microsoft Azure is well integrated
in the software marketplace.

Success factor: It has been stated, when comparing the NoSQL DBMS, that graph
databases had a limitation in size. Therefore, it is a competitive advantage to work
on facilitate the partitioning of a graph. While OrientDB and InfiniteGraph state
that they accomplished so, Neo4j seems to be the DBMS that more successfully is
improving graph partitioning. [8]

Figure 11: Graph DBMS Ranking

21

Graph Databases and Neo4J

Figure 12: Trend Graph DBMS popularity scatter plot

22

Graph Databases and Neo4J

3 Neo4j

3.1 Justification of Neo4j

Why Neo4j? By using a graph database like Neo4j which focuses on data rela-
tionships; patterns and trends can easily be seen unlike to relational databases. Due
to today’s growing business demands and competitive atmosphere, using the right
tool is very important and when it comes to widely connected data Neo4j is the best
because it is thousands of times faster than traditional databases. Neo4j analyze
and traverse of all data in real time and gives the results very fast. Neo4j is widely
used by lots of big companies like eBay,Walmart, Cisco, UBS and many more.

What is Neo4j? Neo4j is an open-source NoSQL graph database written in Java
and Scala and According to db-engines.com, Neo4j is currently world’s lead-
ing graph database. This has many reason. First of all Neo4j provides ACID
transaction compliance, cluster support, runtime failover, high availability and high
speed querying through traversals. It scales to billions of nodes and relationship. It
has great user interface and it is easy to learn because there are lots of free online
resources on the web. Also it has great community that can help with any prob-
lems. In general terms Neo4j is designed for linking relationships and it handles
this relationships with speed, ease, and extreme flexibility. With Neo4j, models can
easily be converted to database schema. If the data is densely connected or various
conceptual model try’s is needed for the data then Neo4j is the solution.

23

Graph Databases and Neo4J

Figure 13: Neo4j As a Leading Graph Database

How Neo4j is Different Than Traditional Databases? Graph databases are
much different than traditional relational databases like SQL. Instead of using tables
with rows and columns, graph databases use a graph with nodes and relationships.
Both of these types of databases have their place. Relational database is great for
tabular data that is not really closely related. If we have a lot of nested relationships
in relational database it can get very complicated with join tables and join queries
and we need all kinds of primary and foreign keys and it can be real hard to deal with
and even worse than that is it can be really costly on the system so graph databases
are built to fix that problem and work with data that is much more closely related
and more dynamic.

24

Graph Databases and Neo4J

Figure 14: Level Of Complexity of Traditional Databases Comparing to Neo4j

Thus, because of the reasons stated above we choose Neo4j as our database.

Figure 15: Ebay’s comment about Neo4j

3.2 Advantages of Neo4j

Neo4j is very popular in lots of industries and it is a first choice of many compa-
nies. Neo4j gives advantage in many points. First of all it is based on handling
complex data connections as a result of the increased volume and strength in the
data, these companies gain lots of benefits among their competitive. Following are
the advantages of Neo4j.

• Easy to represent connected data: It makes both easy and fast to traverse
or navigate large amounts of data that has some sort of relationship

25

Graph Databases and Neo4J

• Can represent semi-structured data easily: Data that does not fall into
natural structure can be easily represented in a graph database

• Cypher Commands: Cypher commands are human readable and very easy
to learn

• Simple and Powerful Data Model: The property graph data model is
simple yet still very powerful. The basic building blocks are known to rela-
tionships and they can contain data in the form of key value pairs or properties
unlike the relational model.

• Join Aspect:There’s no need for complex and costly joins to retrieve con-
nected or related data. Instead the graph database uses a natural concept of
relationships. Relationships in a graph actually formed paths so querying or
traversing a graph involves following those pats and because of that path ori-
ented nature of the graph data model, the majority of path based operations
are extremely efficient.

• Performance: Traversing a relationship is done in constant time so query
performance does not decrease when data grows and Cypher is designed for
graphs so it is very simple to write graph traversals based on pattern matching.
. Neo4j is only graph database that combines native graph storage, scalable ar-
chitecture optimized for speed, and ACID compliance to ensure predictability
of relationship-based queries. [10]

• Real-time insights: Neo4j provides results based on real-time data.

• High availability: Neo4j is highly available for large enterprise real-time
applications with transactional guarantees.[15]

• Biggest graph community in the world: Neo4j has the largest and most
contributor graph community.

• Easy to learn: Mature UI with intuitive interaction and built-in learning.[10]

26

Graph Databases and Neo4J

3.3 Properties of Neo4j

Figure 16: General Look at Neo4j

Following are properties of Neo4j;

• Data model (flexible schema): Neo4j has property graph model. It can
be explained like graph has nodes and these nodes are connected with each
other. Nodes and their relationships store data in key-value pairs known as
properties. Neo4j has also flexible schema it means properties can be added
or removed when it is necessary.

• ACID properties: Neo4j supports full ACID (Atomicity, Consistency, Isola-
tion, and Durability) rules.

27

Graph Databases and Neo4J

• Scalability and reliability: Database can be scaled by increasing the num-
ber of reads/writes, and the volume without effecting the query processing
speed and data integrity. Neo4j also provides support for replication for data
safety and reliability.

• The traversal of the graph: The traversal is the operation of visiting a set
of nodes in the graph by moving between nodes connected with relationships.
It’s a unique operation to the graph model for data retrieval. Querying the data
using a traversal only takes into account the data that’s required, therefore it
is not needed to query the entire data set in an expensive operation, like is the
case with join operations on relational data. [1]

• Cypher Query Language: Neo4j provides a powerful declarative query lan-
guage known as Cypher. It uses ASCII-art for depicting graphs. Cypher is
easy to learn and can be used to create and retrieve relations between data
without using the complex queries like Joins.[9]

• Built-in web application: Neo4j provides a built-in Neo4j Browser web
application. Using this, creating and querying graph data can be done.

• Drivers: Neo4j can work with

1. REST API to work with programming languages such as Java, Spring,
Scala etc.

2. Java Script to work with UI MVC frameworks such as Node JS.

3. It supports two kinds of Java API: Cypher API and Native Java API to
develop Java applications.

• Indexing: Neo4j supports Indexes by using Apache Lucence.

3.4 Performance In Neo4j

Neo4j provides fast and efficient graph experience and the strongest part of it is;
Neo4j can traverse millions of nodes in milliseconds. Also even exponentially increas-
ing data size does not effect the performance of Neo4j unlike relational databases.

Volker Pacher, eBay developer and Neo4j client: "Our Neo4j solution is
literally a thousand times faster than the previous MySQL solution, with
searches that require between 10 and 100 times less code”.

28

Graph Databases and Neo4J

Figure 17: Query times for Oracle Exadata vs Neo4j

Figure 18: Tomtom’s Comparison of Neo4j with MySQL

3.4.1 How To Increase Performance Of Neo4j?

• Increasing the size of available heap memory (Between 8G-16G).

• Increasing open file limit from default 1024 to at least 40000 to be sure.

29

Graph Databases and Neo4J

• In order to avoid costly disk access, making sure of relevant graph data is
cached in memory.

• For the non-Neo4j tasks running on the computer a sufficient memory should
be reserved.(At least 16G)

• Simple algorithms leads to increased performance.

• All related nodes and edges should be kept in server memory before giving
results.

• Traversals should be independent.

• Indexes should be used.

3.5 Cypher Query Language

Cypher is a declarative language for working with graphs and graph data for both
reading and writing to the graph and it is very expressive and powerful. Also Cypher
defines patterns in the given graph data.

• Cypher is declarative language: This means that we specify the data that we
are interested in. We do not specify how to get that data from the database.

• Cypher is very human readable language and it is accessible not just for de-
velopers everyone can easily learn and use it.

• Cypher has expressions similar to SQL like WHERE, ORDER BY and simple
condition statements like <, =,>. Its difference with sql is; Cypher is designed
to represent graph data patterns for example it has MATCH property this
property is built on finding and specifying patterns in the data

3.5.1 Structure

Nodes Nodes represents data entities and they can have labels and each node
represents different single data entities. It is equivalent to records in a rela-
tional database Nodes can also have properties which are basically attributes.
Nodes are shown with parentheses like (p:Product).

30

Graph Databases and Neo4J

Figure 19: Node Representation

Relationships In Cypher; between the nodes we have lines which represent the
relationship between each node. Relationships can also have properties just like
nodes which is something that is much different than SQL. Also relationships have
directions. Relationship is shown as –> between two nodes.

Figure 20: Relationship Representation

3.5.2 Operations In Cypher

Create: It is used to create nodes and relationships between them
We created a node representing us with five properties;

• Name: ’Ozge Koroglu’

• Country: ’Turkey’

• City: ’Istanbul’

31

Graph Databases and Neo4J

• DateOfBirth: ’21.05.1994’

• School:’ULB’

With this Cypher code;

CREATE (n:Person {name :’Ozge Koroglu’, country: ’Turkey’,
city: ’Istanbul’, DateOfBirth:’21.05.1994’, School:’ULB’}) RE-
TURN n

Figure 21: Create Person’s Node

• Name: ’Anna Turu Pi’

• Country: ’Spain’

• City: ’Barcelona’

• DateOfBirth: ’30.07.1995’

• School:’ULB’

With this Cypher code;

32

Graph Databases and Neo4J

CREATE (n:Person {name :’Anna Turu Pi’, country: ’Spain’,
city: ’Barcelona’, DateOfBirth:’30.07.1995’, School:’ULB’})
RETURN n

We created a relationship called "FRIENDS_WITH" with the property "SINCE";

With this Cypher code;

MATCH (a:Person),(b:Person) WHERE a.name = ’Ozge Koroglu’
AND b.name = ’Anna Turu Pi’ CREATE (a)-[r:FRIENDS_WITH
{SINCE:"17/09/2017"}]->(b) RETURN r

(a) Result in Console (b) After Creating Relationship

Figure 22: Create Relationship Between Two Nodes

Match: Match finds specified patterns in the data.

Figure 23: Relationships

With this Cypher code we showed all people whom Esteban Zimányi teaches to;

MATCH (a:Person)<-[:TEACHES_TO]-(b:Person{ name: ’Este-
ban Zimányi’}) RETURN a.name

33

Graph Databases and Neo4J

Figure 24: Match Result

Set: This is used to update properties in the nodes and relationships.

With this Cypher Code we changed Esteban Zimányi’s date of birth to ’01.01.1966’

MATCH (n { name: ’Esteban Zimányi’ }) SET n.DateOfBirth =
’01.01.1966’ RETURN n

Delete This operator deletes nodes or relationships in the data.

With this Cypher code we deleted Ozge Koroglu

MATCH (n:Person { name: ’Ozge Koroglu’ }) DELETE n

34

Graph Databases and Neo4J

Figure 25: Delete Result

3.5.3 Loading Data With Cypher

There are lots of ways to import data in Neo4j but the most common way is upload it
as a csv file. Load CSV operator is built into Neo4j and this operator is used for small
or medium size datasets up to 10 million records. If we want to upload data that has
more than 10 million records than we should use [USING PERIODIC COMMIT[n]]
property. If we dont use this property this means that we are processing whole file
in one run and creating everything in one transaction

Load CSV: This operator is used for importing CSV files into Neo4j.

Figure 26: Load CSV Operator Structure

35

Graph Databases and Neo4J

3.6 Use Cases of Neo4j

Figure 27: Use Cases Of Neo4j

The common use cases are;

Real Time Recommendations: Recommendation algorithms finds relationships
between people, products and other services related to purpose based on user’s
previous behaviors. Neo4j is able to store interconnected data about customers and
products and since Neo4j doesn’t need indexing at every suggestion it provides very
fast and effective algorithm to deal with real time data. Walmart uses Neo4j for this
purpose

36

Graph Databases and Neo4J

Figure 28: Real Time Recommendations Graph Design

Master Data Management: In large organizations, different systems stores in-
formation about customers, employees, titles and supply chain. With the graph
model it is easy to bring data from different systems create views about customers
or can keep track of all the information about the organizational system itself. Cisco
uses Neo4j for this purpose and the company also uses Neo4j for their help desk so-
lution

Figure 29: Master Data Management Graph Design

37

Graph Databases and Neo4J

Fraud Detection: Fraud detection is very important in finance industry. Nowa-
days in order not to be detected by bank’s fraud algorithms people use different
approaches like open several bank accounts with valid information and do normal
transactions without being an outlier. So people open false bank accounts with the
same identity token and withdraw all the money in all bank accounts. It is hard to
detect that behavior but it is very easy to see that with graph because the pattern
of the people opening bank accounts using the same identity token can be easily
detected as a pattern in a graph

Graph Based Search: Metadata is available for things like products, articles etc.
And being able to model metadata as a graph allows to enhance search meaning users
are able to find more relevant things for them. For example LinkedIn; When search is
executed we don’t see random or alphabetical sorted results we first see the relevant
ones. Lufthansa uses Neo4j for this matter.

Network & IT Operations: If data center is modelled as a graph then depen-
dency analysis can easily be applied on network systems to get conclusions like if one
virtual machine goes down how many applications will be affected. Hp uses Neo4j
to model their network for some large telecommunication providers.

Figure 30: Network IT Operations Graph Design

38

Graph Databases and Neo4J

Identity & Access Management: Within large organizations there are hundreds
of users and controlling who can access to which information is crucial for security
reasons. So creating groups and roles for each user comes in handy in this situation.
This kind of data is very rich and connected and can be easily handled by Neo4j.
UPC London uses Neo4j for that and it received 2014 Graphic awards for “Best
İdentity and access management app”

39

Graph Databases and Neo4J

4 Neo4j Application

Software For the graph database, Neo4j Community Edition 3.2.5 has been used,
and for the relational database, SQL Server 2017.

4.1 Use Case Selected

As proposed in graph database benchmark guidelines [4], the best tests to benchmark
a graph database are: traversal (which includes the calculation of the shortest path),
graph analysis, connected components, communities, centrality measures, pattern
matching and graph anonymisation. It is also commented that among the domains
where graph databases prove to be more beneficial are the shortest path graph
analysis and real time analysis of traffic networks. In our implementation, we are
going to model flight routes, as they have the ideal properties to benchmark a graph
database. Airports and airlines are elements where the information lies on the their
inter communications.

4.2 Data

The data set selected to perform the benchmark was a data set of flight routes pro-
vided by OpenFlights.org [13]. It provided three flat files, airlines.dat, airports.dat,
routes.dat.
Because of the size concerns we created synthetic data in addition to our existing
data tables. Before creating new data we had 67663 different routes and now we have
1193413 different routes. The rows we created have dummy variables, they do not
have any connection with the existing data except their types. So our queries mostly
resulted in initial data results. This data creation process was applied because the
more data we have, the more accurate bench-marking results we get. Also unlike
traditional databases, adding more data to Neo4j does not effect its performance.

40

Graph Databases and Neo4J

4.2.1 Implementing Data

Figure 31: OpenFlights.org

Neo4j: To create the Neo4j database we developed a python code. This code uses
py2neo library to access Neo4j database and it reads our data (external source) to
create nodes, relationships, properties and indexes

Figure 32: Structure of the python code

The original airport data had latitude and longitude attributes. In order to present
better visualization we created a function that calculates the distance between two
connected airports. Route data has source_airport and destination_airport So we
created a route node and we assigned the distance between source_airport and

41

Graph Databases and Neo4J

destination_airport as a name attribute to route node. In the end four types of nodes
are Airlines, Airports and Routes, and they have the following communications:

Route → TO → Airport
Route → FROM → Airport
Route → OF → Airline

Table 2: Graph database schema

We implemented our data to Neo4j with this schema;

Figure 33: Initial Schema

42

Graph Databases and Neo4J

Figure 34: Example of a query in Neo4j

SQL: A relational database was created importing each flat file as a table and
then we created foreign key references between tables.

43

Graph Databases and Neo4J

Figure 35: Relational database diagram

4.2.2 Export data

To export the Neo4j, we chose to use the apoc library. It is needed to authorize
Neo4j to run the plugins. For that, this line of code has to be added in neo4j.conf :
apoc.export.file.enabled=true.

Export to CSV

apoc.export.csv.query(query,file,config): exports results from the Cypher
statement as CSV to the provided file
apoc.export.csv.all(file,config): exports whole database as CSV to the pro-
vided file
apoc.export.csv.data(nodes,rels,file,config): exports given nodes and re-
lationships as CSV to the provided file
apoc.export.csv.graph(graph,file,config): exports given graph object as CSV
to the provided file

We exported the entire database executing the following command in cypher:
CALL apoc.export.csv.all("/temp/neo4j_database_csv_file.csv",
{batchSize:10}) YIELD file, source, format, nodes, relationships,
properties, time, rows

44

Graph Databases and Neo4J

Figure 36: Exporting Neo4j database to CSV file

Figure 37: CSV file containing Neo4j database

Export to cypher script

apoc.export.cypher.all(file,config): exports whole database incl. indexes as
Cypher statements to the provided file
apoc.export.cypher.data(nodes,rels,file,config): exports given nodes and
relationships incl. indexes as Cypher statements to the provided file
apoc.export.cypher.graph(graph,file,config) exports given graph object incl.
indexes as Cypher statements to the provided file
apoc.export.cypher.query(query,file,config): exports nodes and relationships
from the Cypher statement incl. indexes as Cypher statements to the provided file
apoc.export.cypher.schema(file,config): exports all schema indexes and con-
straints to cypher

The database was also exported to cypher a cypher script:
CALL apoc.export.cypher.all("/temp/neo4j_database_cypher_file.cypher",
{batchSize:10}) YIELD file, source, format, nodes, relationships,
properties, time, rows

45

Graph Databases and Neo4J

Figure 38: Exporting Neo4j database to cypher script

Figure 39: Cypher script containing Neo4j database

46

Graph Databases and Neo4J

4.3 Query Examples (Neo4j-SQL)

Figure 40: Algorithms for graph databases

Add libraries: It has been commented that Neo4j includes graph algorithms that
allow us to perform queries that would be impossible to perform in SQL. Libraries
of algorithms can be downloaded and added in Neo4j as plugins.

Figure 41: Add jar files in plugin folder

It is needed to authorize Neo4j to run the plugins. For that, this line of code has to
be added in neo4j.conf : dbms.security.procedures.unrestricted=apoc.* (e.g.,

47

Graph Databases and Neo4J

apoc library).

After that, Neo4j needs to be restarted, and it can be verified that the plugin is
working by writing the following command in Neo4j browser:
CALL dbms.procedures() YIELD name, signature, description
WHERE name starts with "apoc"
RETURN name, signature, description

4.3.1 Shortest Path

This algorithm is the one that better justifies the existence of graph databases. Its
calculation is impossible with SQL. In SQL it is needed to specify the number of
layers the route has.

First query example: find the shortest path to go from an airport in Madrid to an
airport in Seoul.

MATCH p=shortestpath((src:Airportcity: ’Madrid’)-[r:FROM|TO*..15]-
(dest:Airportcity: ’Seoul’)) RETURN p

Figure 42: Shortest path query from Madrid to Seoul

48

Graph Databases and Neo4J

Figure 43: Pipeline of the shortest path query

The nodes can be expanded, and we see the airline to which each route belongs.

Figure 44: Expanded shortest path query

Second query example: find the shortest path between an airport in Seoul and an
airport in Antwerp.

49

Graph Databases and Neo4J

MATCH p=shortestpath((src:Airport{city: ’Seoul’})-[r:FROM|TO*..15]-
(dest:Airport{city: ’Antwerp’})) RETURN p

Figure 45: Shortest path query from Seoul to Antwerp

Paying attention to the relationships, it can be seen that the query doesn’t output a
physically possible travelling route from the origin city to the origin city. In the first
query, one of the paths ends up in Seoul, but the other has two sources, Madrid and
Seoul, and they both end up in Beijing. The second query has three origin airports,
one in Antwerp and two in Seoul, and all the routes finish in Geneve.

The purpose of the algorithm is to find the shortest path to connect two nodes,
independently of the physical meaning, but real routes can be created with the
following modification:

Persistent inferred relationships: For each route going from an airport to an-
other, a relationship connecting both airports has been added. This way, the shortest
path query can look for only one type of relationship. If the objective is to find phys-
ically possible paths between two airports (e.g., not stepping into an airline) it will
be assured looking for that inferred relationship that airports are being connected
to airports.

Relationship CONNECTED. This relationship has the property weight, and is pro-
portional to the number of routes between two airports. It is being used in the
shortest path queries and community detection queries.

Cypher code to create the relationship:
MATCH (ap1:Airport)<-[:FROM]-(r:Route)-[:TO]->(ap2:Airport)

50

Graph Databases and Neo4J

WHERE id(ap1) <> id(ap2)
WITH ap1, ap2, COUNT(*) AS weight
CREATE (ap1)-[c:CONNECTED]->(ap2)
SET c.weight = weight In the figure below the database schema after adding the
inferred relationship is displayed:

Figure 46: Neo4j DB schema after adding Connected relationships

Cypher code to delete the relationship:
MATCH (ap1:Airport)-[r:CONNECTED]->(ap2:Airport) DELETE r

Relationship GOINGTO. This relationship saves the route and airline information
in its properties. It is being used in the shortest path queries and community detec-
tion queries.

Cypher code to create the relationship:
MATCH (ap1:Airport)<-[:FROM]-(r:Route)-[:TO]->(ap2:Airport)
WHERE id(ap1) <> id(ap2)
WITH ap1, ap2, r
MATCH (r)-[:OF]->(al:Airline)
CREATE (ap1)-[g:GOINGTO]->(ap2)
SET g.distance = r.distance
SET g.route = id(r)
SET g.airline = al.name

In the figure below the database schema after adding the inferred relationship is

51

Graph Databases and Neo4J

displayed:

Figure 47: Neo4j DB schema after adding Goingto relationships

Cypher code to delete the relationship:
MATCH (Airport)-[r:GOINGTO]->(Airport) DELETE r

The first shortest path query is run again now with the inferred relationships:

MATCH p=shortestpath((src:Airport{city: ’Madrid’})-[r:GOINGTO]-
(dest:Airport{city: ’Seoul’})) RETURN p

Figure 48: Shortest path between Madrid and Seoul

Now the airports are directly connected to each other. The route node cannot
be seen, but its identifier is saved as one of the relationship properties. With the
follwoing query it can be verified if the route matches the requisites:
MATCH (r:Route) WHERE id(r)=50276 RETURN r

52

Graph Databases and Neo4J

Figure 49: Shortest path outbound route output

It is verified that the relationship GOINGTO was equivalent to a real outbound
route between Madrid and Seoul. The return rout is also verified:
MATCH (r:Route) WHERE id(r)=50205 RETURN r

Figure 50: Shortest path return route output

Other examples:

53

Graph Databases and Neo4J

(a) From Antwerp to Minneapolis (b) From Antwerp to Mallorca

(c) From Santarem to Eugene (d) From Istanbul to Eugene

(e) From Reykjavik to Eugene

Figure 51: Other shortest path examples

Shortest path in SQL Server: SQL Server has the limitation that it need to
be specified the number of layers in the path. An alternative is to use a recursive
query, but from our experience, it was not effective.

When executing the query, we obtain the following message: "The statement termi-
nated. The maximum recursion 100 exhausted before statement completion."

54

Graph Databases and Neo4J

Figure 52: SQL Server recursive query output

For the same query, in Neo4j it only needs a few lines and the result is output in
794ms.

55

Graph Databases and Neo4J

Figure 53: Neo4j query on Antwerp-Istanbul shortest path

56

Graph Databases and Neo4J

Figure 54: Pipeline of Neo4j query on Antwerp-Istanbul shortest path

4.3.2 Betweenness centrality:

The betweenness centrality of a node in a network is the number of shortest paths
between two other members in the network on which a given node appears. Between-
ness centality is an important metric because it can be used to identify “brokers of
information” in the network or nodes that connect disparate clusters. [6]
This query shows the airports that have to be crossed more often by routes to go
from one airport to another. In other worlds, the airports where more transfers
take place. As it is displayed in the figure below, the airports highlighted are like
bottlenecks that connect clusters of airports.

57

Graph Databases and Neo4J

Figure 55: Concept of betweenness centrality

MATCH (ap:Airport)
WITH collect(ap) AS airports
CALL apoc.algo.betweenness([’CONNECTED’], airports, ’OUTGOING’)
YIELD node, score
SET node.betweenness = score
RETURN node AS Airport, score ORDER BY score DESC LIMIT 25

Figure 56: Betweenness centrality query result

The query outputs five big airports, which are commonly used to transfer during

58

Graph Databases and Neo4J

intercontinental journeys. It makes sense that they have the highest betwenness
centrality.

Query performance: Writing PROFILE before the cypher query, outputs the
pipeline of the query execution.

Figure 57: Pipeline of the betweenness centrality query

4.3.3 Closeness centrality:

Closeness centrality is the inverse of the average distance to all other characters in
the network. Nodes with high closeness centality are often highly connected within
clusters in the graph, but not necessarily highly connected outside of the cluster. [6]

This query outputs the airports that have more connections to different airports.
In other words, it shows the locations that are more geographically isolated to be
reached by other means of transport (e.g. islands). It can output the airports with
more direct flights from different locations or the airlines that perform more routes.

59

Graph Databases and Neo4J

Figure 58: Concept of closeness centrality

Query example: output the five airports with a higher closeness centrality:
MATCH (ap:Airport)
WITH collect(ap) AS airports
CALL apoc.algo.closeness([’CONNECTED’], airports, ’OUTGOING’)
YIELD node, score
RETURN node AS Airport, score ORDER BY score DESC LIMIT 5

Figure 59: Closeness centrality query result

As predicted, the query outputs airports that are in highly touristic but geographi-
cally isolated locations: Lopez Island near Seattle, the river Araguaia in the middle

60

Graph Databases and Neo4J

of Brazil, the Grand Canyon of Colorado...

Figure 60: Location of the airports with highest closeness centrality

Query performance: Writing PROFILE before the cypher query, outputs the
pipeline of the query execution.

61

Graph Databases and Neo4J

Figure 61: Pipeline of the closeness centrality query

4.3.4 PageRank:

The secret of Google’s success was its search algorithm, PageRank. PageRank works
by counting the number and quality of links to a page to determine a rough estimate
of how important the website is. The underlying assumption is that more important
websites are likely to receive more links from other websites [11]. This algorithm can
output the most connected airport or the most powerful airline (the node connected
to more routes).

First query: output the most important airports
MATCH (ap:Airport) WITH collect(ap) AS airports
CALL apoc.algo.pageRank(airports) YIELD node, score
RETURN node, score ORDER BY score DESC LIMIT 10

62

Graph Databases and Neo4J

Figure 62: Airports pagerank result

Figure 63: Pipeline of the airports pagerank query

The most important airports are from London, Paris, Frankfurt, Istanbul, Dubai,
Beijing and the USA. The output is not surprising.

63

Graph Databases and Neo4J

Second query: Output the most popular airlines.
MATCH (node:Airline) WITH collect(node) AS airlines
CALL apoc.algo.pageRank(airlines) YIELD node, score
RETURN node, score ORDER BY score DESC LIMIT 10

Figure 64: Airlines pagerank result

64

Graph Databases and Neo4J

Figure 65: Pipeline of the airlines pagerank query

As a result we can see that Ryanair is the leading airline, followed by four companies
from the USA and three from China.

4.3.5 Community Detection:

There are many algorithms for community detection: triangle counting, strongly
connected components, ... This algorithms cluster together the nodes more related
with each other. We have chosen an algorithm from the library APOC, and what
the code below does, is classify the airport nodes in 40 partitions. The classification
is determined on the weight of the connected relationships (the number of routes
between each pair of airports).

Seeing as airports are geographical location, and routs are physical journeys between
them, it is expected that geographically neighbouring airports will be clustered to-
gether. That hipothesis is verified below.

CALL apoc.algo.community(40,[’Airport’],’partition’,
’CONNECTED’,’OUTGOING’,’weight’,10000)
MATCH (ap:Airport) WHERE exists(ap.partition) RETURN ap

65

Graph Databases and Neo4J

Figure 66: Community detection graph

The figure over these lines shows the shape of the graph after the nodes have been
classified in partitions. To see which nodes belong to each partition, the partition
number must be returned as output:

CALL apoc.algo.community(40,[’Airport’],’partition’,
’CONNECTED’,’OUTGOING’,’weight’,10000)
MATCH (ap:Airport) WHERE exists(ap.partition)
RETURN ap.partition, ap.country, COUNT(*) AS num
ORDER BY ap.partition, num DESC

66

Graph Databases and Neo4J

Figure 67: Community detection table

67

Graph Databases and Neo4J

Figure 68: Pipeline of community detection query

Going back to the visualization of the community detection for airports, the parti-
tions can be recognized and verified by looking at the table. The cluster of six nodes
disconnected from the rest of airports is comprised of Papua New Guinea airports
(the country can be seen by hovering over the nodes). They belong to the first
partition in the table, 6394.

68

Graph Databases and Neo4J

Figure 69: Papua New Guinea partition

The following part of the graph is a bit scattered, but it can be seen that they are all
communicated to the central nodes. Hovering over them, we see that they all belong
to Canada, and we can suppose that the more separated nodes are regional airports
connected to bigger more important airports. That part of the graph is equivalent
to seven partitions in the table.

Figure 70: Canada partitions

Next to Canada, a group of nodes are separated, and those airports are all from
Algeria. They must belong to partition 6624.

69

Graph Databases and Neo4J

Figure 71: Algeria partition

The more centralized part of this subgraph are the airports from Finland. Some of
those are connected with a Greenland’s airport, which connects with other Greenland
and Iceland airports.

Figure 72: Finland, Greenland, Iceland partitions

The next subgraph shouws airports from different african countries interconnected
with each other. On the left side, there are airports, and airports from african
countries highly connected to them, and on the right side there are mainly nigerian
airports, among other african aiports too.

70

Graph Databases and Neo4J

(a) Partition table

(b) Partition graph

Figure 73: Africa partition

Going back to the center of the graph, it is hard to recognize more than one partition,
as it shows the central european airports, which are highly interconnected.

Figure 74: Europe partition

At last, a partition was detected in the table, 8355. Checking if those airports
are geographically related, it has been determined that those are islands between

71

Graph Databases and Neo4J

Polynesia, Micronesia and Melanesia. that

(a) Partition table
(b) Geographical location

Figure 75: Australasia partition

4.3.6 Possible queries on SQL

The previous section showed operations that cannot be done with SQL. Now we will
present operations applicable to both;

72

Graph Databases and Neo4J

1. Finding flights between two airports that have no direct route be-
tween them:

MATCH
p=allShortestPaths((ap1:Airport
{city:’Antwerp’})-[*]->(ap2:Airport
{city:’Istanbul’}))
WITH extract(node in
nodes(p)|node.name) as
cities,
extract(rel in
relationships(p)|rel.airline)as
airlines
RETURN cities,airlines

select distinct A1.Name as
[1st Airport]
,airline1.name as [1st
Airline],
A2.Name as [2nd Airport],
airline2.name as [2nd
Airline],
A3.Name [3rd Airport],
airline3.name [3rd Airline],
a4.name [4th Airport]
FROM routes r INNER JOIN
airports a1
ON r.source_airport_id=a1.ID
INNER JOIN airlines airline1
ON airline1.id=r.airline_id
INNER JOIN airports a2
ON
r.destination_airport_id=a2.ID
INNER JOIN routes r2
on a2.ID=r2.source_airport_id
INNER JOIN airlines airline2
on airline2.id=r2.airline_id
INNER JOIN airports a3
ON
r2.destination_airport_id=a3.ID
INNER JOIN routes r3
on a3.id=r3.source_airport_id
INNER JOIN airlines airline3
on airline3.id=r3.airline_id
INNER JOIN airports a4
on
a4.id=r3.destination_airport_id
WHERE a1.city=’Antwerp’ and
a4.city=’Istanbul’

73

Graph Databases and Neo4J

(a) Neo4j Result

(b) SQL Result

Figure 76: Comparison of Queries - first query

As it can be seen from here finding all possible routes between two airports is easy
in Neo4j. Besides that Neo4j gives visualization.

There is one important point here; In SQL we have to specify level of depth to find
results. For example in this query we searched 3-level flights between Antwerp and
Istanbul. If we searched 1 or 2 level then the query would have returned no result.
But in Neo4j we don’t have to specify level, it finds all routes between two airports
and even calculates the shortest route. Therefore this is one of the drawbacks of
using SQL in data that has levels.

74

Graph Databases and Neo4J

2. Nearest airport to city by distance

match(airport1:Airport{city:’Bologna’}
)<-[:FROM]- (route:Route)
-[:TO]->(airport2:Airport)
RETURN airport1,
route,airport2
ORDER BY route.distance
asc limit 1

Select
top 1
A2.name,a2.city,a2.country
,dbo.DistanceKM(a.latitude,a2.latitude,
A.longitude, A2.longitude) as
distance
from routes r
INNER JOIN airports a
on a.id=r.source_airport_id
INNER JOIN airports a2
on
a2.id=r.destination_airport_id
WHERE A.city=’Bologna’
order by distance asc

(a) Neo4j Query
(b) SQL query

Figure 77: Comparison of queries - second query

While we were uploading our data into Neo4j we created a node called route and
this node has three relationships; TO, FROM, OF and as a descriptive property
we assigned calculated distance property into route node. To be in the same page
we created a function in SQL that calculates distances between airports given lat-
itude and longitude attributes of airports which already exists in our data. Both
approaches give the same result but Neo4j also provides visualization.

75

Graph Databases and Neo4J

3. Most connected airports

MATCH
(airport:Airport)<-[:FROM]-(r:Route)
WITH airport, count(r) as
departures
MATCH
(r2:Route)-[:TO]->(airport)
RETURN airport.name as
airport_name, departures
, count(r2) as arrivals
order by
departures+arrivals desc

SELECT
A.Name,A.City,A.Country,SUM(A.route_count)
AS route_count
FROM(
SELECT
a.Name,a.City,a.Country,
COUNT(*) as route_count FROM
routes R
INNER JOIN airports A ON
A.ID=source_airport_id
GROUP BY
a.Name,a.City,a.Country
)
UNION(
SELECT
a.Name,a.City,a.Country,COUNT(*)
as route_count FROM
routes R
INNER JOIN airports A ON
A.ID=destination_airport_id
GROUP BY
a.Name,a.City,a.Country))A
GROUP BY
A.Name,A.City,A.Country ORDER
BY route_count desc

76

Graph Databases and Neo4J

(a) Neo4j Query

(b) SQL query

Figure 78: Comparison of queries - third query

With these queries we found the most interconnected airport by counting number
of incoming and outcoming flights. As it seems it is very easy to write in Neo4j.

77

Graph Databases and Neo4J

5 Conclusion

In conclusion, graph databases are necessary for a very concrete data sets: huge
amounts of data of high complexity, where entities are very related to one another.
That is because, they efficiently query through the relationships among entities, in
contrast to relational databases.

Graph databases support algorithms to perform concrete queries that are out of
reach to relational databases, for their tabular structure and static schema. Also,
the bigger the volume of data, the slower the queries would be in SQL, because
they would require to lookup joined tables with a great number of tuples. Graph
databases allow to traverse through the graph and reach a high level of depth,
without having to read all the data stored.

Neo4j is, by far, the leading technology of graph databases. It analyze and traverse
of all data in real time and gives the results very fast. It has great user interface
and support. But the greatest feature of it is; even data size grow exponentially,
performance of Neo4j does not affected by it.

In our hands on research, we have stored a graph database about flight routes in
Neo4j. The same data has been stored in a SQL Server database, in order to proof
that some queries are more efficient in Neo4j, and some are even not possible to
execute in SQL. We have queried the Shortest Path, PageRank, Betweenness and
Closeness Centrality, and Partition for Community Detection.

For that, Neo4j offers algorithms easy to implement, and the results are the values
expected. To evaluate its execution, the pipeline of the execution of the queries
is shown. In contrast, the queries that SQL manages to perform, require complex
code, and some queries, like the shortest path, are impossible to replicate.

78

Graph Databases and Neo4J

Bibliography

[1] Tareq Abedrabbo Dominic Fox Jonas Partner Aleksa Vukotic, Nicki Watt.
Neo4j in Action. Manning Publications, 2015.

[2] Stephan C. Carlson. Graph theory. encyclopædia britannica. Available at
https: // www. britannica. com/ topic/ graph-theory , May 2013. Accessed:
2017-11-30.

[3] DB-Engines. Knowledge base of relational and nosql database management
systems. Available at https: // db-engines. com/ en/ , 2017. Accessed: 2017-
10-20.

[4] Martinez-Bazan N. Muntes-Mulero V. Baleta P. Larriba-Pay J.L. Dominguez-
Sal, D. A discussion on the design of graph database benchmarks. September
2010.

[5] Stefan Edlich. Nosql archive. Available at http: // nosql-database. org/ .
Accessed: 2017-11-20.

[6] William Lyon. Analyzing the graph of thrones.
Available at http: // www. lyonwj. com/ 2016/ 06/ 26/
graph-of-thrones-neo4j-social-network-analysis/ / , June 2016.
Accessed: 2017-12-3.

[7] Mathigon. Graphs and networks. Accessed: 2017-11-30.

[8] Thomas Vial Michel Domenjoud. Graph databases: an overview. OctoTalks,
July 2012. Accessed: 2017-11-30.

[9] Neo4j. Intro to cypher.

[10] Neo4j. Top ten reasons for choosing neo4j. Available at https: // neo4j. com/
top-ten-reasons/ .

[11] Neo4j. Neo4j graph algorithms. Github, October 2017. Accessed: 2017-12-8.

[12] University of Colorado. Database management essentials.
Available at https: // www. youtube. com/ playlist? list=
PL73oFZbnYuixa9w-dL-EsM7Vy5BQGBIeO . Accessed: 2017-10-21.

[13] OpenFlights.org. Airport, airline and route data. Available at https: //
openflights. org/ data. html . Accessed: 2017-11-3.

79

Graph Databases and Neo4J

[14] Tutorials Point. Graph theory: Introduction. Available at https: // www.
tutorialspoint. com/ graph_ theory/ graph_ theory_ introduction. htm .
Accessed: 2017-11-30.

[15] Tutorials Point. Neo4j - overview. Available at https: // www.
tutorialspoint. com/ neo4j/ neo4j_ overview. htm . Accessed: 2017-11-30.

[16] Bryce Merkl Sasaki. Graph databases for beginners: Acid
vs. base explained. Available at https: // neo4j. com/ blog/
acid-vs-base-consistency-models-explained/ , September 2015. Ac-
cessed: 2017-11-20.

[17] James Serra. Relational databases vs non-relational databases. Big Data and
Data Warehousing. James Serra’s Blog, August 2015. Accessed: 2017-11-29.

[18] James Serra. Types of nosql databases. Big Data and Data Warehousing. James
Serra’s Blog, April 2015. Accessed: 2017-11-29.

[19] Roopendra Vishwakarma. The different types of nosql databases. Open Source
For U, May 2017. Accessed: 2017-11-29.

80

