UNIVERSITE LIBRE DE BRUXELLES

INFO-H-415

ADVANCED DATABASES

Graph Databases and Neo4J

Authors:
Anna TURU PI1
Ozge KOROGLU

Supervisor:
Esteban ZIMANYT

December 18, 2017

Graph Databases and Neo4lJ

Contents
List of Tables
List of Figures
1 Introduction

2 Background

2.1 State of the art of Databases,
22 Typesof DBMS
2.2.1 NoSQLDBMS
2.2.2 Comparison of DBMS
223 Current trendso o
2.3 Graph Databases
2.3.1 Graph Theory and Its Applications
2.3.2 Concepts of Graph Databases
2.3.3 Query performance
Neo4j
3.1 Justification of Neodj
3.2 Advantages of Neodj
3.3 Propertiesof Neodj
3.4 Performance In Neodj
3.4.1 How To Increase Performance Of Neo4j?
3.5 Cypher Query Language
3.5.1 Structure
3.5.2 Operations In Cypher
3.5.3 Loading Data With Cypher
3.6 UseCasesof Neodj
Neo4j Application
4.1 Use Case Selected
4.2 Data
4.2.1 Implementing Data
422 Exportdata
4.3 Query Examples (Neo4j-SQL) L.
4.3.1 Shortest Path
4.3.2 Betweenness centrality:o
4.3.3 Closeness centrality:
434 PageRank:o

Graph Databases and Neo4lJ

4.3.5 Community Detection: 65
4.3.6 Possible queries on SQLo 72
5 Conclusion 78
Bibliography 79

Graph Databases and Neo4lJ

List of Tables

1
2

Comparison of ACID and BASE Consistency Models 13
Graph database schema 42

List of Figures

OO Ul = W N+

O W W WRNDNDNDNDDDDNDNDDN DN DN = e e = = ©
W OO0 ITDUTUERE WNEFHE OO0 Uk WwWwNnR—wOo

Evolution of database technology 7
DBMS marketplace 8
DBMS developed by database model pie chart 9
DBMS popularity by database model pie chart 10
Four main types of NoSQL databases 12
Positions of NoSQL databases (source: Neo4j) 16
DBMS popularity by database model pie chart 17
Model Comparison 19
Query execution in graph databases L. 20
Query execution in relational databases 20
Graph DBMS Ranking 21
Trend Graph DBMS popularity scatter plot 22
Neo4j As a Leading Graph Database 24
Level Of Complexity of Traditional Databases Comparing to Neo4j . 25
Ebay’s comment about Neo4j 25
General Look at Neodj 27
Query times for Oracle Exadata vs Neo4j 29
Tomtom’s Comparison of Neo4j with MySQL 29
Node Representation, 31
Relationship Representation 31
Create Person’s Node 32
Create Relationship Between Two Nodes 33
Relationships 33
Match Result 34
Delete Result 35
Load CSV Operator Structure 35
Use Cases Of Neodj 36
Real Time Recommendations Graph Design 37
Master Data Management Graph Design 37
Network IT Operations Graph Design 38
OpenFlightsorg 41
Structure of the pythoncode 41
Initial Schema oo 42

Graph Databases and Neo4lJ

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
51
52
23
o4
25
56
57
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Example of a query in Neodj 43
Relational database diagram 44
Exporting Neo4j database to CSV file 45
CSV file containing Neo4j database 45
Exporting Neo4j database to cypher script 46
Cypher script containing Neo4j database 46
Algorithms for graph databases 47
Add jar files in plugin folder L. 47
Shortest path query from Madrid to Seoul 48
Pipeline of the shortest path query 49
Expanded shortest path query 49
Shortest path query from Seoul to Antwerp 50
Neo4j DB schema after adding Connected relationships o1
Neo4j DB schema after adding Goingto relationships 52
Shortest path between Madrid and Seoul 52
Shortest path outbound route output 53
Shortest path return route output 53
Other shortest path examples 54
SQL Server recursive query output 55
Neodj query on Antwerp-Istanbul shortest path 56
Pipeline of Neo4j query on Antwerp-Istanbul shortest path 57
Concept of betweenness centrality 58
Betweenness centrality query result 58
Pipeline of the betweenness centrality query 59
Concept of closeness centrality 60
Closeness centrality query result 60
Location of the airports with highest closeness centrality 61
Pipeline of the closeness centrality query 62
Airports pagerank result 63
Pipeline of the airports pagerank query 63
Airlines pagerank resulto 64
Pipeline of the airlines pagerank query 65
Community detection graph 66
Community detection table 67
Pipeline of community detection query 68
Papua New Guinea partition 69
Canada partitions 69
Algeria partitiono 70
Finland, Greenland, Iceland partitions 70
Africa partition 71

Graph Databases and Neo4lJ

74
I0)
76
7
78

Europe partitiono oo 71
Australasia partition 72
Comparison of Queries - first query 74
Comparison of queries - second query 75
Comparison of queries - third query 7

Graph Databases and Neo4lJ

1 Introduction

The aim of this project is to compare graph databases to the main DBMSs to pin-
point the use cases it is more suitable for. In order to prove their effectiveness, a
database using the same data set has been implemented both in Neo4j, the lead-
ing software using graph database technology, and SQL Server, the top-3 DBMS
according to DB-Engines.

Graph Databases and Neo4lJ

2 Background

The aim of this project is to prove that graph databases, more specifically Neo4j,
was the most performant DBMS for some specific use cases, hence they earned their
place in the DBMS’s market. The first milestone was to investigate the state of the
art of DBMS. Its purpose was to justify the existence of graph databases, showing
that it meets some needs not covered by other DBMS.

2.1 State of the art of Databases

Database Systems evolution: Databases and database technology are vital to
modern organizations supporting both the daily operations and decision making.
Database technology has undergone remarkable evolution over 50 years. Despite
dominance to the enterprise DBMS marketplace by Oracle, the industry remains
highly competitive with a continued high level of innovation [12].

Generation ‘8rd Generation
(1960’s) ~ (1980’s)
File oriented Relational with
non-procedural access
@ ™
Generation 4th Generation
(1970’s) (1990’s+)
Navigational Object oriented

Figure 1: Evolution of database technology

Major periods of database technology evolution [12]:

e 1st Generation (1960’s): File oriented — Supported sequential and random
searching of files, but the user was required to write computer programs to
access data. The database software industry had little or no standards during
this period.

Graph Databases and Neo4lJ

e 2nd Generation (1970’s): Navigational — Could manage multiple entity
types and relationships. Computer program still has to be written. Progress
on standards.

e 3rd Generation (1980’s): Relational with non-procedural access — Founda-
tion based on mathematical relations and associated operators. Optimization
technology was developed. IBM performed pioneering research to enable com-
mercialization of relational database technology.

e 4th Generation (1990’s+): Object oriented — Are extending the bound-
aries of database technology. New kinds of distributed processing and data
warehouse processing. Can store and manipulate unconventional data types.
Convenient ways to publish static and dynamic Web data.

DBMS marketplace: Despite dominance to the enterprise DBMS marketplace
by Oracle, with more than 40% overall market share, the industry remains highly
competitive with a continued high level of innovation. In some environments, its
competition is Microsoft SQL Server, IBM DB2, Teradata, SAP Sybase. Open
source DBMS products have begun to challenge the commercial DBMS products
at the low-end of the enterprise DBMS marketplace. The category of open-source
DBMS is leaded by MySQL, followed by MongoDB, PostgreSQL and MariaDB. In
the desktop DBMS market, Microsoft Access dominates because of the dominance

of Microsoft Office. [12]

ﬁa_ eemenons | 2=5E MySQL

=
e Desktop DBMS
-

=) .
= Bm Microsoft
oOoOrRACLE S TERADATA @ MS Access
Figure 2: DBMS marketplace
Innovation in the industry: The advances in DBMS in recent years support

business intelligence processing for data integration and usage of summary data.
NoSQL technology has been developed to support the needs of Big Data, to be
modern web-scale databases. Since 2009, the most accepted definition of NoSQL is
next generation databases being non-relational, distributed, open-source and horizon-
tally scalable. Other characteristics that usually apply are schema-free, scalability,

Graph Databases and Neo4lJ

global availability, easy replication support, simple API, eventually consistent/BASE
(not ACID), and large scale data. [5] [19]

2.2 Types of DBMS

Ranking In this section we observe rankings created by DB-Engines. DB-Engines
is an initiative that provides information on the popularity of the DBMS available
in the market. They make available different rankings for every DBMS type, which
are updated monthly. [3]

DBMS popularity broken down by database model

Number of systems per category, October 2017

Wide column stores: 10 Content stores: 2

Time Series DBMS: 21 /Q)cument stores” 43 DB-Engines lists 334 different
Search engines: 16 Event Stores: 2 dat_abase mana_g_ement sYs_tems’
\ which are classified according to

Graph DBMS. 27 their database model (e.g. relational

Key-value stores: 63 DBMS, key-value stores etc.).

Multivalue DBMS: 10 This pie-chart shows the number of
systems in each category. Some of
Native XML DBMS: 8
the systems belong to more than

/ Object oriented DBMS: 17 one category.
N

RDF stores: 18

Relational DBMS: 137

© 2017, DB-Engines.com

Figure 3: DBMS developed by database model pie chart

Over those lines, a pie chart represents the categories of DBMS that comprise more
systems developed. The database model more elaborate is the Relational DBMS,
where 137 systems fall under this category. It is followed by Key-value stores, with
63 systems, Document stores, with 43 systems, and Graph DBMS, with 27 system:s.

In the overall classification of database models, those DBMS types are distinguished.
Types of DBMS:

e Relational DBMS e Graph DBMS
e Key-value stores e Time Series DBMS
e Document stores e RDF stores

Graph Databases and Neo4lJ

e Object oriented DBMS (Atkinson) e Native XML DBMS

e Search engines e Content stores
e Multivalue DBMS e Event Stores
e Wide column stores e Navigational DBMS

Above these lines, the 14 more developed database models have been listed. If
instead of counting the systems developed, the database models are ranked by pop-
ularity, the list of models to be considered shrinks. Most of the users work on
relational DBMS, the 79.5%, followed by document stores, 7.3%, search engines,
4.3%, key-value stores, 3.5%, wide column stores, 3.1%, and graph DBMS, 1.1%.
Below these lines a pie chart represents the most recent popularity rank. [3]

Ranking scores per category in percent, October 2017

Document stores 7.3%
I~

Wide column stores 3.1%

Time Series DBMS 0.3% Graph DBMS 1.1%

Search engines 4.3% Key-value stores 3.5% This chart shows the popularity of

Native XML DBMS 0.3% each category. It is calculated with
the popularity (i.e. the ranking
scores) of all individual systems per
category. The sum of all ranking
scores is 100%.

RDF stores 0.3%

Relational DBMS 79.5%

© 2017, DB-Engines.com

Figure 4: DBMS popularity by database model pie chart

In the pie chart above, it is clear to see that Relational DBMS are the ones used by
default. However, the state of the art is changing by the innovations in the database
technology. Even though the percentages of popularity of NoSQL databases are
minimal compared to Relational DBMS, the fact that they are recent technologies
in growth is enough to evaluate them more deeply.

2.2.1 NoSQL DBMS

Many different NoSQL DBMS have been developed, but they are generally classified
in four types [5]:

10

Graph Databases and Neo4lJ

e Key-value stores: its structure consists in pairing keys to values. When
performing a change in a value, the entire value other than the key must
be updated. It scales well because of the simplicity. However, it can limit
the complexity of the queries and other advanced features. [18] Examples:
Dynamo, Azure Table Storage, BerkeleyDB

e Document Stores: The records stored are called documents, which consist
of grouping of key-value pairs. Values can be nested to arbitrary depths. [18]
Examples: FElastic, MongoDB, Azure DocumentDB

e Wide Column Stores: While RDBMS store all the data in a particular
table’s rows together on-disk, being able to retrieve a particular row fast,
Column-family databases are able to retrieve a large amount of a specific at-
tribute fast by serializing all the values of a particular column together on-disk.
This approach is useful for aggregate queries. [18] Examples: Hadoop/HBase,
Cassandra, Amazon Simple DB

e Graph Databases: ideal at dealing with interconnected data. Their struc-
ture consist of connections, or edges, between nodes. Both nodes and their
edges can store additional properties such as key-value pairs. The strength of
a graph database is in traversing the connections between the nodes. Their
downside is that they generally require all data to fit on one machine, limiting
their scalability. [18] Examples: Neo4J, InfiniteGraph, TITAN

e Other types: Multimodel Databases, Object Databases, Grid & Cloud Database
Solutions, XML Databases, Multidimensional Databases, Multivalue Databases,
Event Sources, Time Series / Streaming Databases

11

Graph Databases and Neo4lJ

| Key-Value Store |

| Database
Table: Customers

ID: 1

First_Name: Andrew
Last_Name: Brust
Street_Addr: 123 Main St.
City: New York

State: NY

Zip: 10014
Most_recent_order: 252

ID: 2

First_Name: Nepoleon
Last_Name: Bonaparte
Street_Addr: 29, Rue de Rivoli
City: Paris

Postal Code: 75007

Country: France
Most_recent_order: 265

Table: Orders

ID: 252

Total Price: 300 USD
g Item 1: 56432
& Item 2: 98726

ID: 265

Total Price: 2,500 EUR
£ Item 1:86413
= Jtem 2: 77904

(a) Example of Key-Value Store

Wide Column Store

Database
T/SCF: Customers

CF/SC: Name
C: First_Name: Andrew
C: Last_Name: Brust
CF/SC: Address
C: Street: 123 Main St.
C: City: New York
C: State: NY
C: Zip: 10014
CF/SC: Orders
C: Most_recent: 252

ID: 2
CF/SC: Name
C: First_Name: Napoleon
C: Last_Name: Bonaparte
CF/SC: Address
C: Street: 23, Rue de Rivoli
C: City: Paris
C: Postal Code: 75007
C: Country: France
CF/SC: Orders
C: Most_recent: 265

(c¢) Example of Wide Column Store

Figure 5: Four main types of NoSQL databases

Consistency Models for NoSQL databases:

T/SCF: Orders

1D: 252

CF/SC: Price
C: Total: 300 USD

CF/SC: Items
C:Item 1: 56432
C:Item 2: 98726

1D: 265
CF/SC: Price
C: Total: 2,500 EUR
CF/SC: Items
C:Item 1: 86413
C:Item 2: 77904

Document Store |}

Customer Database

First_ Name: Andrew
Last_Name: Brust
Address:
Street_addr: 123 Main St.
City: New York
State: NY
Zip: 10014

-
-]
@
E
3
2
-]

a

ent_order: 252

First_ Name: Napoleon
Last Name: Bonaparte
Address:

Street_addr: 29, Rue de Rivoli |

City: Paris
Postal Code: 75007
Country: France
Orders:
Most_recent_order: 265

Document

'Orders Database -

(

ID: 252

Total Price: 300 USD
Item 1: 56432

Item 2: 98726

% | Document &

ID: 265

Total Price: 2,500 EUR
Item 1: 86413

Item 2: 77904

Document =

(b) Example of Document Store

Graph Database

Posted Review
Read By

Name: Andrew Brust

Follower of. Az

Street: 123 Main
City: New York
State: NY

Zip: 10014

Name: Napoleon Bonaparte

Answered
Product Query

Most Recent Order

1D: 252
Total Price: 300 USD

Item 1 Iten 2

1ID: 56432
Type: Dress
Color: Blue

1D: 98726

Type: Belt
Color: Brown

(d) Example of Graph Database

Before NoSQL, ACID was the

quintessential model that databases were meant to follow. Brief reminder of the

ACID properties [16]:

e Atomicity: All operations in a transaction succeed or every operation is rolled

back.

e Consistent: On the completion of a transaction, the database is structurally

sound.

e Isolated: Transactions do not contend with one another.

Contentious ac-

cess to data is moderated by the database so that transactions appear to run

sequentially.

12

Graph Databases and Neo4lJ

e Durable: The results of applying a transaction are permanent, even in the
presence of failures.

However, NoSQL databases break with the tipicality of SQL models with ACID
properties. BASE properties seem to adecuate better to most NoSQL databases,
and they are as follows [16]:

e Basic Availability: he database appears to work most of the time.

e Soft-state: Stores don’t have to be write-consistent, nor do different replicas
have to be mutually consistent all the time.

e Eventual consistency: Stores exhibit consistency at some later point (e.g.,
lazily at read time).

ACID transactions can be considered stricter than needed for many NoSQL cases, as
they apply many constraints for safety sake. On the other hand, BASE transactions
guarantees scale and resilience. The BASE model is used by aggregate stores, such as
column family, key-value and document stores. In contrast, graph databases use the
ACID model. BASE databases promise availability of the data at the expense of data
consistency (the consistency of the data is only assured at concrete snapshots). [16]
Graph databases differentiate themselves from other NoSQL databases by focusing
more on data consistency. The comparison made in the lines above is shown in a
table below:

ACID BASE
Properties Atomicity Basic Availability
Consistent Soft-state
Isolated Eventual consistency
Durable
NoSQL DBMS | Graph Databases Aggregate stores

Table 1: Comparison of ACID and BASE Consistency Models

2.2.2 Comparison of DBMS

Relational DBMS clearly are the benchmark among database systems. The mass
adoption of this DBMS type is an important factor for choosing it as the main
system in many companies. However, current trends show that the four main times
of NoSQL databases should also be taken into account before installing a DBMS.
To have a more objective point of view of the benefits of using each model, the use

13

Graph Databases and Neo4lJ

cases for which they perform better and the ones for which they perform the worst,
are listed below.

Use cases for relational databases [17]

e Positive use cases: transaction-oriented databases (banking applications, on-
line reservations), where the concurrency of many transactions must be sup-
ported and the integrity of the data must be protected.

e Negative use cases: data warehouses, which are analytically-oriented databases
with a large amount of data and infrequent updates. The constraints of the
relational database wouldn’t support the scalability.

Use cases for key-value stores [19]
e Positive use cases:
— For storing user session data
— Maintaining schema-less user profiles
— Storing user preferences
— Storing shopping cart data
e Negative use cases:

— To query the database by specific data value

With relationships between data values

To operate on multiple unique keys

If the business needs updating a part of the value frequently

Use cases for document stores |19
e Positive use cases:
— E-commerce platforms
— Content management systems
— Analytics platforms
— Blogging platforms

14

Graph Databases and Neo4lJ

e Negative use cases:
— To run complex search queries

— Application requires complex multiple operation transactions

Use cases for wide-column stores [19]
e Positive use cases:

— Content management systems

Blogging platforms

— Systems that maintain counters

Services that have expiring usage

— Systems that require heavy write requests (like log aggregators)
e Negative use cases:

— To use complex querying

— If the query patterns change frequently

— Without an established database requirement

Use cases for graph databases [19]
e Positive use cases:
— Fraud detection

— Graph based search

Network and IT operations
— Social networks
e Negative use cases:

— Data Warehouses so big that require BASE model

15

Graph Databases and Neo4lJ

A

Size

Key-Value
Stores

Column
Stores

Document
databases

Graph
databases

Relational databases

Comp!exity’

Figure 6: Positions of NoSQL databases (source: Neo4j)

On the figure above, the five types of DBMS that were being compared, are dis-
played according to the size and complexity of their databases. It can be concluded
that each one of those DBMS works for some specific use cases, depending on the
amount and complexity of the data that is going to be stored. Their use cases
are not overlapped, which justifies that the fifth of them must be considered before
implementing a DBMS in a company.

16

Graph Databases and Neo4lJ

2.2.3 Current trends

Popularity changes per category, October 2017

The following charts show the historical trend of the categories' popularity. In the ranking of each month the
best three systems per category are chosen and the average of their ranking scores is calculated. In order to
allow comparisons, the initial value is normalized to 100.

Complete trend, starting with January 2013

800

700

600

500

400

Popularity Changes

300

200

Jan 2013

Graph DBMS
-~ Wide column stores
=¥ Search engines
- Document stores
-4 Key-value stores
RDF stores

apSTs T L =¥ Time Series DBMS
&7 - m.l.r' & -+ Native XML DBMS
; Ah e e
y ~ » - s e Object oriented DBMS
i =& Multivalue DBMS
F = e =

-@- Relational DBMS

Jul2013 Jan2014 Jul2014 Jan2015 Jul2015 Jan2016 Jul2016 Jan2017 Jul2017
© 2017. DR—Fnaines.com

Figure 7: DBMS popularity by database model pie chart

In the previous pie-chart we concluded that the category of relational DBMS com-
prises most of the DBMS market. However, when looking at the chart of popularity
changes per category [3], it is noticed that from 2014, graph DBMS differenti-
ated themselves from the rest with a great popularity rise. This project aims to
understand the causes of that booming trend.

2.3 Graph Databases

Graph databases are databases whose specific purpose is the storage of graph-
oriented data structures [8], therefore an introduction to graph theory to be consis-
tent when using its terminology.

17

Graph Databases and Neo4lJ

2.3.1 Graph Theory and Its Applications

What is a graph A graph is a pictorial representation of a set of objects where
some pairs of objects are connected by links. The interconnected objects are rep-
resented by points termed as vertices, and the links that connect the vertices are
called edges. Formally, a graph is a pair of sets (V, E), where V is the set of vertices
and E is the set of edges, connecting the pairs of vertices. [14]

Properties [2] [7]
e multigraph: when any two vertices are joined by more than one edge.

e simple graph: a graph without loops and with at most one edge between any
two vertices.

e complete graph: when each vertex is connected by an edge to every other
vertex.

e directed graph, digraph: when a direction is assigned to each edge.
e The order of a graph is its number of vertices.

e The degree of a vertex in a graph is the number of edges which meet at that
vertex.

Graph theory applications |[7]
Road and Rail networks

Integrated circuits

Supply Chains

Social networks

Neural Connections

2.3.2 Concepts of Graph Databases

Positioning It has previously been explained that NoSQL databases address sev-
eral issues that relational databases do not: availability for the processing of large
datasets, partitioning, flexibility of the schema and modelling and processing com-
plex structures like trees, graphs, or too many relationships. Graph databases are

18

Graph Databases and Neo4lJ

specialized in processing highly connected data, managing complex and flexi-
ble data models and improving the performance of complex queries by traversing
the graph. [§]

Model Another quality of graph databases is the simplicity of its model. In the
figures below, it can be appreciated the difference in modeling the same use case
in a relational database or a graph database. The model of the graph database is
more similar to the business model, which makes it more accessible to not-technical
profiles. [8]

] Person v :I WorksIn] company v

idParson INT _idPerson INT idCompany INT
name VARCHAR (45) Company_idCompany INT name VARCHAR (45)
age VARCHAR(45) begin DATE ector VARCHAR(45)
job VARO—IARHS) end DATE Iocation V,BRCHARHS)

m Com pany_ClientOf ¥
Company_idCompany INT
idGompanyClient INT

(a) Relational Database Model (b) Graph Database Model

Figure 8: Model Comparison

2.3.3 Query performance

Graph databases competitive advantage It has been said that graph databases
have a reason to be because they outperform relational databases in complex queries.
They are particularly good when the relationships between items are significant. The
use case that is better suited for graph databases is "find all entities of a kind"
(myFEntity.findAll). The execution of such a query, starts with an index lookup to
find the starting node(s) for traversal. Then the relationships in the graph are tra-
versed simultaneously. Because of the concurrence of the traversal, the bigger the
volume of data, the more it outperforms relational databases. [8|

19

Graph Databases and Neo4lJ

Index lookup to find root Node

Person 1 < Traverse relation Company 1 i

WORKS

Name : Lamy
Page

Person 2

Bloch

"L siee2001)
I Name : Joshua

Person 3

I Narm

Goelz

Figure 9: Query execution in graph databases

Relational databases are less adequate to query through relationships. It would mean
querying through different tables, following foreign keys and other indexes, and it
would considerably increment the performance time. Graph databases traversals are
performed by following physical pointers, while foreign keys are logical pointers. 8]
The query in the figure, includes the time of each index-scan. The more tables are

included in the query, the larger the execution time will become.

Indlex lookup on Person.id

Index lookup on Companyld

: Person X leclr o
: Id | Name WOI’kS In :

: 1+ LaLry_F'Ege Personld nglgv@ﬂ)ﬂg Since
: 2+ doshuaBloch |~ = 1 1 1) <€-14998
i 3 | Brian G‘netz 1=+ 2 1 : < - 1 2001
\'y N| 3 2 ‘L 2010

pany, Worksin

and Worksin.Personld = Person.Id

e - Brian

Figure 10: Query execution in relational databases

Relational Databases competitive advantage On the other hand, because of
the internal structure of the tables, relational databases would outperform graph
databases when the output requires all the attributes of a table (findAll-like

queries). Its ideal use case is to aggregate over a complete dataset. [8]

20

Graph Databases and Neo4lJ

Graph databases ranking Below those lines, the figure shows the DB-Engines
Ranking on Graph DBMS. Neo4j leads the ranking, and its score triples the following
DBMS, Microsoft Azure Cosmos DB. Neojj has been leading the Graph databases
sector for some years, as we can see in the trend scatter plot. It must be taken into
account that the score is displayed in logarithmic scale, therefore the difference in
popularity is really significant.

It can also be seen in the trend scatter plot that Microsoft Azure Cosmos DB ap-
peared in the graph database landscape in 2014, and since then its rise in popularity
has been quite steep. An argument for that is that Microsoft Azure is well integrated
in the software marketplace.

Success factor: It has been stated, when comparing the NoSQL DBMS, that graph
databases had a limitation in size. Therefore, it is a competitive advantage to work
on facilitate the partitioning of a graph. While OrientDB and InfiniteGraph state
that they accomplished so, Neo4j seems to be the DBMS that more successfully is
improving graph partitioning. 8|

27 systems in ranking, October 2017

Rank Score
Ooct Sep oct DBMS Database Model Oct Sep Oct
2017 2017 2016 2017 2017 2016
1. 1. 1. Neo4j ¥ Graph DBMS 37.95 -0.48 +1.50
2. 2. A4 Microsoft Azure Cosmos DB (3 Multi-model [12.63 +1.40 +9.74
3. 3. 2. OrientDB Multi-model & 6.13 +0.24 -0.12
4. 4. 3. Titan Graph DBMS 5.47 -0.02 +0.35
5. 5. #6. ArangoDB Multi-model (@ 3.15 +0.15 +1.00
6. 6. %5 Virtuoso Multi-model [1.86 -0.03 -0.83
7. 7. 7. Giraph Graph DBMS 1.03 -0.03 +0.08
8. A9 A11. GraphDB [} Multi-mode! @ 0.64 +0.03 +0.43
9. ¥8. ¥8. AllegroGraph (3 Multi-model @ 0.61 -0.02 +0.15
10. 10. 9. Stardog Multi-mode! @ 0.54 -0.04 +0.11

Figure 11: Graph DBMS Ranking

21

Graph Databases and Neo4lJ

DB-Engines Ranking - Trend of Graph DBMS Popularity

The DB-Engines Ranking ranks database management systems according to their
popularity.

This is a partial trend diagram of the complete ranking showing only graph DBMS.

Read more about the method of calculating the scores.

DB-Engines Ranking of Graph DBMS

0.1

Score (logarithmic scale)

0.01

0.001 © October 2017, DB-Engines.com
2013 2014 2015 2016 2017

-

ol

%

d
FELE

1 wsi 174 A»
5 MS Access | 161 -
[082 158 -4
ranking table
October 2017

-0 Neo4j

-+~ Microsoft Azure Cosmos DB
OrientDB
Titan

% ArangoDB

-®- Virtuoso
Giraph

<& GraphDB

=& AllegroGraph
Stardog

-0~ Sqrrl

== InfiniteGraph
Blazegraph
Graph Engine

=% JanusGraph

12V

Click at a system in the legend

to hide or show its trend line

Figure 12: Trend Graph DBMS popularity scatter plot

22

Graph Databases and Neo4lJ

3 Neodj

3.1 Justification of Neo4j

Why Neo4j? By using a graph database like Neo4j which focuses on data rela-
tionships; patterns and trends can easily be seen unlike to relational databases. Due
to today’s growing business demands and competitive atmosphere, using the right
tool is very important and when it comes to widely connected data Neo4j is the best
because it is thousands of times faster than traditional databases. Neo4j analyze
and traverse of all data in real time and gives the results very fast. Neod4j is widely
used by lots of big companies like eBay, Walmart, Cisco, UBS and many more.

What is Neo4j? Neo4j is an open-source NoSQL graph database written in Java
and Scala and According to db-engines.com, Neo4j is currently world’s lead-
ing graph database. This has many reason. First of all Neo4j provides ACID
transaction compliance, cluster support, runtime failover, high availability and high
speed querying through traversals. It scales to billions of nodes and relationship. It
has great user interface and it is easy to learn because there are lots of free online
resources on the web. Also it has great community that can help with any prob-
lems. In general terms Neo4j is designed for linking relationships and it handles
this relationships with speed, ease, and extreme flexibility. With Neo4j, models can
easily be converted to database schema. If the data is densely connected or various
conceptual model try’s is needed for the data then Neo4j is the solution.

23

Graph Databases and Neo4lJ

DB-Engines Ranking of Graph DBMS

The DB-Engines Ranking ranks database management systems according to their /

popularity. The ranking is updated monthly. %

This is a partial list of the complete ranking showing only graph DBMS.
trend chart

Read more about the method of calculating the scores.

27 systems in ranking, October 2017

Rank Score
Ooct Sep oct DBMS Database Model Oct Sep Oct
2017 2017 2016 2017 2017 2016
1. 1. 1. Neo4jEd Graph DBMS 37.95 -0.48 +1.50
2. 2. #44. Microsoft Azure Cosmos DB 3 Multi-model @ 12.63 +1.40 +9.74
3. 3. 2. OrientDB Multi-model I 6.13 +0.24 -0.12
4, 4. 3. Titan Graph DBMS 5.47 -0.02 +0.35
5. 5. #46. ArangoDB Multi-model @ 3.15 +0.15 +1.00
6. 6. 5. Virtuoso Multi-model @ 1.86 -0.03 -0.83
7. 7. 7. Giraph Graph DBMS 1.03 -0.03 +0.08
8. 49 #411. GraphDBEJ Multi-model @ 0.64 +0.03 +0.43
9. 8. 8. AllegroGraph 3 Multi-model I 0.61 -0.02 +0.15
10. 10. 9. Stardog Multi-model @ 0.54 -0.04 +0.11
11, 11i. g 10. Sqrrl Multi-model @ 0.50 -0.01 +0.24
12. 12, 12, InfiniteGraph Graph DBMS 0.30 +0.01 +0.11
13. 4o 15. o 18. Blazegraph Multi-model @ 0.25 +0.02 +0.16

Figure 13: Neo4j As a Leading Graph Database

How Neo4j is Different Than Traditional Databases? Graph databases are
much different than traditional relational databases like SQL. Instead of using tables
with rows and columns, graph databases use a graph with nodes and relationships.
Both of these types of databases have their place. Relational database is great for
tabular data that is not really closely related. If we have a lot of nested relationships
in relational database it can get very complicated with join tables and join queries
and we need all kinds of primary and foreign keys and it can be real hard to deal with
and even worse than that is it can be really costly on the system so graph databases
are built to fix that problem and work with data that is much more closely related
and more dynamic.

24

Graph Databases and Neo4lJ

Relational Model Graph Model

Person Person-Friend Friend

ANDREAS

Figure 14: Level Of Complexity of Traditional Databases Comparing to Neo4]j

Thus, because of the reasons stated above we choose Neo4j as our database.

“We found Neo4j to be literally thousands of times faster
than our prior MySQL solution, with queries that require
10-100 times less code. Today, Neo4j provides eBay with
functionality that was previously impossible.”

- Volker Pacher, Senior Developer

Figure 15: Ebay’s comment about Neo4]

3.2 Advantages of Neo4j

Neodj is very popular in lots of industries and it is a first choice of many compa-
nies. Neo4j gives advantage in many points. First of all it is based on handling
complex data connections as a result of the increased volume and strength in the
data, these companies gain lots of benefits among their competitive. Following are
the advantages of Neo4j.

e Easy to represent connected data: It makes both easy and fast to traverse
or navigate large amounts of data that has some sort of relationship

25

Graph Databases and Neo4lJ

e Can represent semi-structured data easily: Data that does not fall into
natural structure can be easily represented in a graph database

e Cypher Commands: Cypher commands are human readable and very easy
to learn

e Simple and Powerful Data Model: The property graph data model is
simple yet still very powerful. The basic building blocks are known to rela-
tionships and they can contain data in the form of key value pairs or properties
unlike the relational model.

e Join Aspect:There’s no need for complex and costly joins to retrieve con-
nected or related data. Instead the graph database uses a natural concept of
relationships. Relationships in a graph actually formed paths so querying or
traversing a graph involves following those pats and because of that path ori-
ented nature of the graph data model, the majority of path based operations
are extremely efficient.

e Performance: Traversing a relationship is done in constant time so query
performance does not decrease when data grows and Cypher is designed for
graphs so it is very simple to write graph traversals based on pattern matching.
. Neodj is only graph database that combines native graph storage, scalable ar-
chitecture optimized for speed, and ACID compliance to ensure predictability
of relationship-based queries. [10]

e Real-time insights: Neo4j provides results based on real-time data.

e High availability: Neod4j is highly available for large enterprise real-time
applications with transactional guarantees.|15]

e Biggest graph community in the world: Neo4j has the largest and most
contributor graph community.

e Easy to learn: Mature UI with intuitive interaction and built-in learning.[10]

26

Graph Databases and Neo4lJ

3.3 Properties of Neo4j

Neo4j is a NoSQL
Graph Database

Embedded
and Server

Open source
-Welcoming Ul

Easy data modeling
Billions of Readable queries
e -Active community
High performance
optional schema

Figure 16: General Look at Neo4j

Following are properties of Neo4j;

e Data model (flexible schema): Neo4j has property graph model. It can
be explained like graph has nodes and these nodes are connected with each
other. Nodes and their relationships store data in key-value pairs known as
properties. Neo4j has also flexible schema it means properties can be added
or removed when it is necessary.

e ACID properties: Neodj supports full ACID (Atomicity, Consistency, Isola-
tion, and Durability) rules.

27

Graph Databases and Neo4lJ

e Scalability and reliability: Database can be scaled by increasing the num-
ber of reads/writes, and the volume without effecting the query processing
speed and data integrity. Neo4j also provides support for replication for data
safety and reliability.

e The traversal of the graph: The traversal is the operation of visiting a set
of nodes in the graph by moving between nodes connected with relationships.
It’s a unique operation to the graph model for data retrieval. Querying the data
using a traversal only takes into account the data that’s required, therefore it
is not needed to query the entire data set in an expensive operation, like is the
case with join operations on relational data. [1]

e Cypher Query Language: Neo4j provides a powerful declarative query lan-
guage known as Cypher. It uses ASCII-art for depicting graphs. Cypher is
easy to learn and can be used to create and retrieve relations between data
without using the complex queries like Joins.|9]

e Built-in web application: Neo4j provides a built-in Neo4j Browser web
application. Using this, creating and querying graph data can be done.

e Drivers: Neo4j can work with

1. REST API to work with programming languages such as Java, Spring,
Scala etc.

2. Java Script to work with Ul MVC frameworks such as Node JS.

3. It supports two kinds of Java API: Cypher API and Native Java API to
develop Java applications.

e Indexing: Neo4j supports Indexes by using Apache Lucence.

3.4 Performance In Neo4j

Neodj provides fast and efficient graph experience and the strongest part of it is;
Neodj can traverse millions of nodes in milliseconds. Also even exponentially increas-
ing data size does not effect the performance of Neo4j unlike relational databases.

Volker Pacher, eBay developer and Neojj client: "Our Neojj solution is
literally a thousand times faster than the previous MySQL solution, with
searches that require between 10 and 100 times less code”.

28

Graph Databases and Neo4J

O sQL on Oracle Exadata O Traversal Framework on Neo4j

se Time in Seconds

Respon:
o

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Depth

Figure 17: Query times for Oracle Exadata vs Neo4j

Graph Db (Neo4j) Performance

@ a sample social graph
® with ~1,000 persons
@ average 50 friends per person
@ pathExists(a,b) limited to depth 4

@ caches warmed up to eliminate disk I/O

1,000 2,000 ms
1,000 2 ms
1,000,000 2 ms

13 £ 2013 TomTom. AN rights reserved. Confidential information . TomTom#

Figure 18: Tomtom’s Comparison of Neo4j with MySQL

3.4.1 How To Increase Performance Of Neo4j?

e Increasing the size of available heap memory (Between 8G-16G).

e Increasing open file limit from default 1024 to at least 40000 to be sure.

29

Graph Databases and Neo4lJ

e In order to avoid costly disk access, making sure of relevant graph data is
cached in memory.

e For the non-Neo4j tasks running on the computer a sufficient memory should
be reserved.(At least 16G)

e Simple algorithms leads to increased performance.

e All related nodes and edges should be kept in server memory before giving
results.

e Traversals should be independent.

e Indexes should be used.

3.5 Cypher Query Language

Cypher is a declarative language for working with graphs and graph data for both
reading and writing to the graph and it is very expressive and powerful. Also Cypher
defines patterns in the given graph data.

e Cypher is declarative language: This means that we specify the data that we
are interested in. We do not specify how to get that data from the database.

e Cypher is very human readable language and it is accessible not just for de-
velopers everyone can easily learn and use it.

e Cypher has expressions similar to SQL like WHERE, ORDER BY and simple
condition statements like <, =,>. Its difference with sql is; Cypher is designed
to represent graph data patterns for example it has MATCH property this
property is built on finding and specifying patterns in the data

3.5.1 Structure

Nodes Nodes represents data entities and they can have labels and each node
represents different single data entities. It is equivalent to records in a rela-
tional database Nodes can also have properties which are basically attributes.
Nodes are shown with parentheses like (p:Product).

30

Graph Databases and Neo4lJ

Properties

Figure 19: Node Representation

Relationships In Cypher; between the nodes we have lines which represent the
relationship between each node. Relationships can also have properties just like
nodes which is something that is much different than SQL. Also relationships have
directions. Relationship is shown as —> between two nodes.

A Relationship

has a can have

Relationship type) (Pmperties)

niquely identified by

l Name '

Figure 20: Relationship Representation

hasa fhasa

(Slarl node) [End node)

3.5.2 Operations In Cypher
Create: It is used to create nodes and relationships between them
We created a node representing us with five properties;

e Name: 'Ozge Koroglu’

e Country: "Turkey’

e City: ’Istanbul’

31

Graph Databases and Neo4lJ

e DateOfBirth: ’21.05.1994’
e School:"ULB’
With this Cypher code;

CREATE (n:Person {name :’Ozge Koroglu’, country: Turkey’,
city: ’Istanbul’, DateOfBirth:’21.05.1994°, School:"ULB’}) RE-
TURN n

$ CREATE (n:Person {name :'Ozge Koroglu', country: 'Turkey', city: 'Istanbul', DateOfBirth:'21.05.1994',. & = !

bee

Table

A

Text

<>

Code Q

<id=>: 87178 DateOfBirth: 21 051994 School: ULB city: Istanbul country: Turkey name: Ozge Koroglu

Figure 21: Create Person’s Node

Name: ’Anna Turu Pi’

Country: 'Spain’

City: 'Barcelona’
DateOfBirth: ’30.07.1995
School:’ULB’

With this Cypher code;

32

Graph Databases and Neo4lJ

CREATE (n:Person {name :>’Anna Turu Pi’, country: ’Spain’,
city: ’Barcelona’, DateOfBirth:’30.07.1995’, School:’ULB’})
RETURN n

We created a relationship called "FRIENDS WITH" with the property "SINCE";
With this Cypher code;

MATCH (a:Person),(b:Person) WHERE a.name = ’Ozge Koroglu’
AND b.name = ’Anna Turu Pi’ CREATE (a)-[r:FRIENDS WITH
{SINCE:"17/09/2017"}]->(b) RETURN r

@) FRIENDS_WITH

(a) Result in Console (b) After Creating Relationship

Figure 22: Create Relationship Between Two Nodes

Match: Match finds specified patterns in the data.

FRIENDS_WITH

Figure 23: Relationships

With this Cypher code we showed all people whom Esteban Ziményi teaches to;

MATCH (a:Person)<-[:TEACHES TO|-(b:Person{ name: ’Este-
ban Zimanyi’}) RETURN a.name

33

Graph Databases and Neo4lJ

%

$ MATCH (a:Person)<-[:TEACHES_TO1-(b:Person{ name: 'Esteban Zimanyi'}) RETURN a.name

=2 a.name
Table
"Ozge Koroglu"

A "Anna Turu Pi"

Started streaming 2 records after 2 ms and completed after 2 ms

Figure 24: Match Result

Set: This is used to update properties in the nodes and relationships.

With this Cypher Code we changed Esteban Ziméanyi’s date of birth to ’01.01.1966’

MATCH (n { name: ’Esteban Zimanyi’ }) SET n.DateOfBirth =
’01.01.1966° RETURN n

Delete This operator deletes nodes or relationships in the data.

With this Cypher code we deleted Ozge Koroglu

MATCH (n:Person { name: ’Ozge Koroglu’ }) DELETE n

34

Graph Databases and Neo4lJ

$ MATCH (n:Person { name: 'PersonA’' }) DELETE n

Deleted 1 node, completed after 2 ms.

<>

Code

Deleted 1 node, completed after 2 ms

Figure 25: Delete Result

3.5.3 Loading Data With Cypher

There are lots of ways to import data in Neo4j but the most common way is upload it
as a csv file. Load CSV operator is built into Neo4j and this operator is used for small
or medium size datasets up to 10 million records. If we want to upload data that has
more than 10 million records than we should use [USING PERIODIC COMMIT|n]]|
property. If we dont use this property this means that we are processing whole file
in one run and creating everything in one transaction

Load CSV: This operator is used for importing CSV files into Neo4;.
[USING PERIODIC COMMIT [1000]]
LOAD CSV WITH HEADERS FROM "(file|http)://" AS row
MATCH (:Label {property: row.header})
CREATE (:Label {property: row.header})

MERGE (:Label {property: row.header})

Figure 26: Load CSV Operator Structure

35

Graph Databases and Neo4lJ

3.6 Use Cases of Neo4j

Finance

N
®_0

Energy

Manufacturing
& Logistics

11
eee |
Web :
& Social Retail
s i -
Telcos

Health Care
& Science ‘.

HR &
Recruiting lﬂl

=

Figure 27: Use Cases Of Neodj

The common use cases are;

Real Time Recommendations: Recommendation algorithms finds relationships
between people, products and other services related to purpose based on user’s
previous behaviors. Neo4j is able to store interconnected data about customers and
products and since Neo4j doesn’t need indexing at every suggestion it provides very
fast and effective algorithm to deal with real time data. Walmart uses Neo4]j for this
purpose

36

Graph Databases and Neo4lJ

BOUGHT

Figure 28: Real Time Recommendations Graph Design

Master Data Management: In large organizations, different systems stores in-
formation about customers, employees, titles and supply chain. With the graph
model it is easy to bring data from different systems create views about customers
or can keep track of all the information about the organizational system itself. Cisco
uses Neodj for this purpose and the company also uses Neo4j for their help desk so-

lution
@— MANAGES
Qf’ N \
&

2

‘(\
- %
A

Figure 29: Master Data Management Graph Design

37

Graph Databases and Neo4lJ

Fraud Detection: Fraud detection is very important in finance industry. Nowa-
days in order not to be detected by bank’s fraud algorithms people use different
approaches like open several bank accounts with valid information and do normal
transactions without being an outlier. So people open false bank accounts with the
same identity token and withdraw all the money in all bank accounts. It is hard to
detect that behavior but it is very easy to see that with graph because the pattern
of the people opening bank accounts using the same identity token can be easily
detected as a pattern in a graph

Graph Based Search: Metadata is available for things like products, articles etc.
And being able to model metadata as a graph allows to enhance search meaning users
are able to find more relevant things for them. For example LinkedIn; When search is
executed we don’t see random or alphabetical sorted results we first see the relevant
ones. Lufthansa uses Neo4j for this matter.

Network & IT Operations: If data center is modelled as a graph then depen-
dency analysis can easily be applied on network systems to get conclusions like if one
virtual machine goes down how many applications will be affected. Hp uses Neo4j
to model their network for some large telecommunication providers.

Figure 30: Network IT Operations Graph Design

38

Graph Databases and Neo4lJ

Identity & Access Management: Within large organizations there are hundreds
of users and controlling who can access to which information is crucial for security
reasons. So creating groups and roles for each user comes in handy in this situation.
This kind of data is very rich and connected and can be easily handled by Neo4j.
UPC London uses Neo4j for that and it received 2014 Graphic awards for “Best
Identity and access management app”

39

Graph Databases and Neo4lJ

4 Neo4j Application

Software For the graph database, Neojj Community Edition 3.2.5 has been used,
and for the relational database, SQL Server 2017.

4.1 Use Case Selected

As proposed in graph database benchmark guidelines [4], the best tests to benchmark
a graph database are: traversal (which includes the calculation of the shortest path),
graph analysis, connected components, communities, centrality measures, pattern
matching and graph anonymisation. It is also commented that among the domains
where graph databases prove to be more beneficial are the shortest path graph
analysis and real time analysis of traffic networks. In our implementation, we are
going to model flight routes, as they have the ideal properties to benchmark a graph
database. Airports and airlines are elements where the information lies on the their
inter communications.

4.2 Data

The data set selected to perform the benchmark was a data set of flight routes pro-
vided by OpenFlights.org [13]. It provided three flat files, airlines.dat, airports.dat,
routes.dat.

Because of the size concerns we created synthetic data in addition to our existing
data tables. Before creating new data we had 67663 different routes and now we have
1193413 different routes. The rows we created have dummy variables, they do not
have any connection with the existing data except their types. So our queries mostly
resulted in initial data results. This data creation process was applied because the
more data we have, the more accurate bench-marking results we get. Also unlike
traditional databases, adding more data to Neo4j does not effect its performance.

40

Graph Databases and Neo4lJ

4.2.1 Implementing Data

Qo QQED

Recently added flights 2 o Q, Q.
ot
gfiﬁ; % Am e

am Qs mm Qw e & qm

& % P I gw Pe
Qi A Quq G(a'« :‘3‘) :: Q‘Aﬁ@

e Shce qﬁg} Qe %m Qu
Qy Q.
Q. %
Qe Q\/DHQVB o
Q@) - I B) Qo

Figure 31: OpenFlights.org

Neo4j: To create the Neo4j database we developed a python code. This code uses
py2neo library to access Neodj database and it reads our data (external source) to
create nodes, relationships, properties and indexes

[B1 *make_graph &

“from _ future__ import print_function
import csv
import sys

= from math import radians, cos, sin, asin, sqrt
from py2neo import Graph, Node, Relationship, authenticate
authenticate(”localhost:7474", "user”, "pass")

RPN

#def create_nodes(graph, label, sourcefile, fieldnames):[]

j’ def create_airline_nodes(graph, sourcefile):[]

;i’ def create_airport_nodes(graph, sourcefile):[]

29

;é known_distances = {}

;’ def haversine(latl, lonl, lat2, lon2): []

ji’ def get_distance(source_airport_node, destination_airport_node):[]
5

53¢ def create_route_nodes(graph, sourcefile, airline_nodes, airport_nodes):[]
79

éé’ def create_schema(graph):[]

_83

84% def main():[]

105

106 if __name_ == '_ main_':
107 sys.exit(main())

Figure 32: Structure of the python code

The original airport data had latitude and longitude attributes. In order to present
better visualization we created a function that calculates the distance between two
connected airports. Route data has source airport and destination airport So we
created a route node and we assigned the distance between source airport and

41

Graph Databases and Neo4lJ

destination__ airport as a name attribute to route node. In the end four types of nodes
are Airlines, Airports and Routes, and they have the following communications:

Route — TO — Airport
Route — FROM — Airport
Route — OF — Airline

Table 2: Graph database schema

We implemented our data to Neo4j with this schema;

$ CALL db.schema()

& Routa(h
m

-9 @

Figure 33: Initial Schema

Graph

Graph Databases and Neo4lJ

$ MATCH (athens:Airport {name:'Eleftherios Venizelos Intl'}), (tokyo:Airport {name:'Narita Intl'}), (athens)<-[:FROM]-(leg

Route(30)

Table

A

Text

<>

Code

Austrian
L Aiines

Qatar
L Airways
of
,

Displaying 61 nodes, 90 relationships.

Figure 34: Example of a query in Neo4]

SQL: A relational database was created importing each flat file as a table and
then we created foreign key references between tables.

43

Graph Databases and Neo4lJ

airports
airlines id: INTEGER
routes
id: INTEGER name: VARCHAR(200)
name: VARGHAR(200) airline: VARCHAR(200) city: VARCHAR(200)
i airline_id: INTEGER
alias: VARCHAR(50) - country: VARCHAR(200)
iata source_airport: VARCHAR(200;
iata: VARCHAR (50) -2 (209 iata_faa: VARCHAR(50)
P source_airport_id: INTEGER
icao: VARCHAR (50) ~aper icao: VARCHAR(50)
callsign: VARCHAR(200) destination_airport: VARCHAR(200) Jatitude: VARCHAR(50)
- destination_airport_id: INTEGER
country: VARCHAR(200) atrpert longitude: VARCHAR(50)
- codeshare: VARCHAR(50
active: VARCHAR(2) (50 alttude: VARCHAR(50)
stops: INTEGER
timezone: INTEGER
equipment: VARCHAR(50)
dst: INTEGER
tz_timezone: VARCHAR(200)

Figure 35: Relational database diagram

4.2.2 Export data

To export the Neodj, we chose to use the apoc library. It is needed to authorize
Neo4j to run the plugins. For that, this line of code has to be added in neo4j.conf:
apoc.export.file.enabled=true.

Export to CSV

apoc.export.csv.query(query,file,config): exports results from the Cypher
statement as CSV to the provided file

apoc.export.csv.all(file,config): exports whole database as CSV to the pro-
vided file

apoc.export.csv.data(nodes,rels,file,config): exports given nodes and re-
lationships as CSV to the provided file
apoc.export.csv.graph(graph,file,config): exports given graph object as CSV
to the provided file

We exported the entire database executing the following command in cypher:
CALL apoc.export.csv.all("/temp/neodj_database_csv_file.csv",
{batchSize:10}) YIELD file, source, format, nodes, relationships,
properties, time, rows

44

Graph Databases and Neo4lJ

$ CALL apoc.export.csv.all("/temp/neo4j_database_csv_file2.csv", {batchSize:10}) YIELD file, source, fo.. & < .7 N O X

E file source format nodes relationships properties time rows
Table

"temp "database: nodes(305914), "csv" 305914 926225 1604692 7882 0
A Ineodj_database_csv_file2.csv" rels(926225)"

Started streaming 1 records after 7897 ms and completed after 7897 ms.

Figure 36: Exporting Neo4j database to CSV file

A 8 C D E F G H 1 J K L M N o P Q R s T u %
1 id _labels active alias id iata icao name callsign country betweennepartition communityaltitude longitude tz_timezoniata_faa latitude city dst timezone _ stops
8498 8838 :Airport 2517 SAZY Aviador C Campos Argentina o 8885 8885 2569 ####H#H#H## America/C(CPC HiHHE# San MartinN -3
8499 8839 :Airport 2518 SBAA Conceicao Do AraguaicBratil 3232 12334 13201 653 st America/B(CD) #EA#E Conceicao S -4
8500 8840 :Airport 2519 SBAF Campo Delio Jardim DBrazil o 110 ######## America/Sao_Paulo i Rio De JaneS -3
8501 8841 :Airport 2520 SBAM Amapa Brazil 0 45 HusEEE America/Fortaleza 2.077.511 Amapa S 3
8502 8842 :Airport 2521 SBAQ Araraquara Brazil o 8885 9867 2334 #hH#HA#E America/S:AQA -21.812 AraracuaraS -3
8503 8843 :Airport 2522 SBAR Santa Maria Brazil P 8885 9867 23 HusE America/FCAIU -10.984 Aracaju S 3
8504 8844 :Airport 2523 SBAS Assis Brazil o 1850 ######AH# America/Sao_Paulo AR Assis S -3
8505 8845 :Airport 2524 SBAT At Floresta Brazil 0 8885 9867 947 sk America/CiAFL #iHH Alta Flores's -4
8506 8846 :Airport 2525 SBAU Aracatuba Brazil HHHEHHE 8885 9867 1361 #####HAH## America/Sz ARU #HHiHH#E Aracatuba S -3
8507 8847 :Airport 2526 SBBE Val De Cans Intl Brazil P 8885 10373 54 4 America/B(BEL -137.925 Belem S -4
8508 8848 :Airport 2527 SBBG Comandante Gustavo 'Brazil o 600 #####HAH# America/SzBGX HitHiH#HHH Bage S -3
8509 8849 :Airport 2528 SBBH Pampulha Carlos Drun Brazil P 8885 9867 2589 ks America/SePLU it Belo HorizcS 3
8510 8850 :Airport 2529 SBBI Bacacheri Brazil o 3057 ##H##H##E America/S: BFH #HHHH#E Curitiba S -3
8511 8851 :Airport 2530 SBBQ Major Brigadeiro Door Brazil 0 3657 HusHE America/Sao_Paulo HAH#HHH# Barbacena S 3
8512 8852 :Airport 2531 SBBR Presidente Juscelino KiBrazil HHHBHEHE 8885 9867 3479 #h###HHE America/S: BSB -158.711 Brasilia S -3
8513 8853 :Airport 2532 SBBU Bauru Brazil 0 2025 -490.538 America/S: BAU sasESEE Bauru S 3
8514 8854 :Airport 2533 BBV Boa Vista Brazil 0 8885 10373 276 ik America/B(BVB 2846311 Boa Vista S -4
8515 8855 :Airport 2534 SBBW Barra Do Garcas Brazil 0 1147 ##H#EH America/Campo_Gran ##Hii### Barra Do GS -4
8516 8856 :Airport 2535 SBCA Cascavel Brazil s 8885 9867 2473wt America/S: CAC i Cascavel S 3
8517 8857 :Airport 2536 SBCC Cachimbo Brazil 0 1762 #isHHEY America/Boa_Vista #HHHHHHH Itaituba S -4
8518 8858 :Airport 2537 SBCF Tancredo Neves Intl Brazil s 8885 9867 2715wk America/S: CNF it Belo HorizcS 3
8519 8859 :Airport 2538 SBCG Campo Grande Brazil prr 8885 9867 1833 -546.725 America/Ci CGR #HHHEH Campo Gra S -4

Figure 37: CSV file containing Neo4j database

Export to cypher script

apoc.export.cypher.all(file,config): exports whole database incl. indexes as
Cypher statements to the provided file
apoc.export.cypher.data(nodes,rels,file,config): exports given nodes and
relationships incl. indexes as Cypher statements to the provided file
apoc.export.cypher.graph(graph,file,config) exports given graph object incl.
indexes as Cypher statements to the provided file
apoc.export.cypher.query(query,file,config): exports nodes and relationships
from the Cypher statement incl. indexes as Cypher statements to the provided file
apoc.export.cypher.schema(file,config): exports all schema indexes and con-
straints to cypher

The database was also exported to cypher a cypher script:

CALL apoc.export.cypher.all("/temp/neo4j_database_cypher_file.cypher",
{batchSize:10}) YIELD file, source, format, nodes, relationships,
properties, time, rows

45

Graph Databases and Neo4lJ

$ CALL apoc.export.cypher.all("/temp/neo4j_database_cypher_file2.cypher", {batchSize:10}) YIELD file, s & <
E file source format nodes relationships properties
Table

"ltemp "database: nodes(305914), "cypher" 305914 926225 1604692
A /neodj_database_cypher _file2.cypher" rels(926225)"

Started streaming 1 records after 8370 ms and completed after 8370 ms.

Figure 38: Exporting Neo4j database to cypher script

CREATE

CREATE (
224th
CREATE (

CREATE

JARTET",
CREATE ONUT™ ,
All
CREATE

Figure 39: Cypher script containing Neo4j database

46

v

time

8370

Graph Databases and Neo4lJ

4.3 Query Examples (Neo4j-SQL)

Community
Detection

Figure 40: Algorithms for graph databases

Add libraries: It has been commented that Neo4j includes graph algorithms that
allow us to perform queries that would be impossible to perform in SQL. Libraries
of algorithms can be downloaded and added in Neo4j as plugins.

. Neo4j Community Edition - Options X
Database Configuration

neo4j.conf contains configuration such as cache settings and port bindings.
You will need to stop and re-start the database for changes to take effect.

C:\Users\annat\AppData\Roaming\Neo4j Community Edition\neo4j.conf Edit...
® Neosj Cof Iava VM Tuning
neodj-community.vmoptions is for adjusting Java VM settings, such as memory usage.
You will need to dose and re-start this application for changes to take effect.
Q =rs\annat\AppData\Roaming\Neo4j Community Edition\neo4j-community.vmoptions | | Edit...
Plugins and Extensions
Database Lof Neodj looks for Server Plugins and Unmanaged Extensions in this folder.
C:\Users\an| | [c:\Users\annat\Documents\Neo4j\default. graphdb \plugins
Status
Close

— - — _

Figure 41: Add jar files in plugin folder

It is needed to authorize Neo4j to run the plugins. For that, this line of code has to
be added in neo4j.conf: dbms.security.procedures.unrestricted=apoc.* (e.g.,

47

Graph Databases and Neo4lJ

apoc library).

After that, Neo4j needs to be restarted, and it can be verified that the plugin is
working by writing the following command in Neo4j browser:

CALL dbms.procedures() YIELD name, signature, description

WHERE name starts with "apoc"

RETURN name, signature, description

4.3.1 Shortest Path

This algorithm is the one that better justifies the existence of graph databases. Its
calculation is impossible with SQL. In SQL it is needed to specify the number of
layers the route has.

First query example: find the shortest path to go from an airport in Madrid to an
airport in Seoul.

MATCH p=shortestpath((src:Airportcity: ’Madrid’)-[r:FROM|TO*..15]-
(dest:Airportcity: ’Seoul’)) RETURN p

MATCH p=shortestpath((src:Airport{city: 'Madrid'})-[r:FROM|TO*..15]-
(dest:Airport{city: 'Seoul'})) RETURN p

$ MATCH p=shortestpath((src:Airport{city: 'Madrid'})-[r:FROM|TO*..15]-(.. = b

@ Route(3)
Graph

Table FRop
926.37....

o>

Figure 42: Shortest path query from Madrid to Seoul

48

Graph Databases and Neo4lJ

$ PROFILE MATCH p=shortestpath((src:Airport{city: 'Madrid'})-[r:GOINGTO]-(dest:Airport{city: ..

@ » NodeByLabelScan
- 9,609 db hits
Graph
8,608 estimated rows
=B 9,608 rowes 57,654 db his
Table

‘w NodeBylLabelScan ‘

dest

57,648 rows
Text
P Filter P Filter
} 9,608 db hils 57,648 db hits
en T 18 rows
<>
GCode » CartesianProduct
18 rows
P ShortestPath
1row
P ProduceResults
1row

Cypher version: CYPHER 3.2, planner: COST, runtime: INTERPRETED. 134537 total db hits in 865 ms.

Figure 43: Pipeline of the shortest path query

The nodes can be expanded, and we see the airline to which each route belongs.

$ MATCH p=shortestpath((src:Airport{city: 'Madrid'})-[r:FROM|TO*..15]-(dest:Airport{city: 'Seoul'})) RETURN p &

® Route(3)
2]
Table

A

Text

e R o
,o\ /@d‘ %%\ /@ ’o\ /&o*

9957.2... 926.37...

Q

9197.9...

z.“) \
2 5
5

Figure 44: Expanded shortest path query

Second query example: find the shortest path between an airport in Seoul and an
airport in Antwerp.

49

Graph Databases and Neo4lJ

MATCH p=shortestpath((src:Airport{city: ’Seoul’})-[r:FROM|TO*..15]-
(dest:Airport{city: ’Antwerp’})) RETURN p

$ MATCH p=shortestpath((src:Airport{city: 'Seoul'})-[r:FROM|TO*..15]-(dest:Airport{city: 'Antwerp'})) RETURN p

@ Route(6)
Graph
BB

Table

307.70.

g

<>
Code
81951

5555555555

Figure 45: Shortest path query from Seoul to Antwerp

Paying attention to the relationships, it can be seen that the query doesn’t output a
physically possible travelling route from the origin city to the origin city. In the first
query, one of the paths ends up in Seoul, but the other has two sources, Madrid and
Seoul, and they both end up in Beijing. The second query has three origin airports,
one in Antwerp and two in Seoul, and all the routes finish in Geneve.

The purpose of the algorithm is to find the shortest path to connect two nodes,
independently of the physical meaning, but real routes can be created with the
following modification:

Persistent inferred relationships: For each route going from an airport to an-
other, a relationship connecting both airports has been added. This way, the shortest
path query can look for only one type of relationship. If the objective is to find phys-
ically possible paths between two airports (e.g., not stepping into an airline) it will
be assured looking for that inferred relationship that airports are being connected
to airports.

Relationship CONNECTED. This relationship has the property weight, and is pro-
portional to the number of routes between two airports. It is being used in the
shortest path queries and community detection queries.

Cypher code to create the relationship:
MATCH (apl:Airport)<-[:FROM]-(r:Route)-[:T0]->(ap2:Airport)

50

Graph Databases and Neo4lJ

WHERE id(apl) <> id(ap2)

WITH apl, ap2, COUNT(*) AS weight

CREATE (ap1) - [c:CONNECTED] ->(ap2)

SET c.weight = weight In the figure below the database schema after adding the
inferred relationship is displayed:

$ CALL db.schema()

@ Route(1)
Graph

=

Table

A TO

Text OF

93aNNOD

FROM

<>

Code

Figure 46: Neo4j DB schema after adding Connected relationships

Cypher code to delete the relationship:
MATCH (apl:Airport)-[r:CONNECTED]->(ap2:Airport) DELETE r

Relationship GOINGTO. This relationship saves the route and airline information
in its properties. It is being used in the shortest path queries and community detec-
tion queries.

Cypher code to create the relationship:

MATCH (apl:Airport)<-[:FROM]-(r:Route)-[:T0]->(ap2:Airport)
WHERE id(apl) <> id(ap2)

WITH apl, ap2, r

MATCH (r)-[:0F]->(al:Airline)

CREATE (ap1l)-[g:GOINGTO]->(ap2)

SET g.distance = r.distance

SET g.route = id(r)

SET g.airline = al.name

In the figure below the database schema after adding the inferred relationship is

o1

Graph Databases and Neo4lJ

displayed:

$ CALL db.schema()

@ Route(1)

Graph

=

bl

5
®

T0
oF
e FROM

GOINGTO

zIN

Figure 47: Neo4j DB schema after adding Goingto relationships

Cypher code to delete the relationship:
MATCH (Airport)-[r:GOINGTO]->(Airport) DELETE r

The first shortest path query is run again now with the inferred relationships:

MATCH p=shortestpath((src:Airport{city: ’Madrid’})-[r:GOINGTO]-
(dest:Airport{city: ’Seoul’})) RETURN p

GOINGTO

GOINGTO

<id>: 275126 airline: Korean Air distance: 9957.221745254134 route: 50276
Figure 48: Shortest path between Madrid and Seoul
Now the airports are directly connected to each other. The route node cannot
be seen, but its identifier is saved as one of the relationship properties. With the

follwoing query it can be verified if the route matches the requisites:
MATCH (r:Route) WHERE id(r)=50276 RETURN r

52

Graph Databases and Neo4lJ

<0

onon®
OL‘J“\OO

9957.2...
oF FRoy

Route <id>:50276 codeshare: distance: 9957.221745254134 equipment: 332 744 stops: 0

Figure 49: Shortest path outbound route output

It is verified that the relationship GOINGTO was equivalent to a real outbound
route between Madrid and Seoul. The return rout is also verified:
MATCH (r:Route) WHERE id(r)=50205 RETURN r

9957.2.. T

of

Route <id>:50205 codeshare: distance: 9957.221745254134 equipment: 332 744 stops: 0

Figure 50: Shortest path return route output

Other examples:

93

Graph Databases and Neo4lJ

GOINGTO

GOINGTO GOINGTO GONGTO
SORCHS GOINGTO
GOINGTO ST
COINGTC) GOINGTO GOINGTO GTO GOINGTO
GOINGTO
GOINGTO GOINGTO GOINGTO
GOINGTO GOINGTO
GOINGTO cONGTO GOINGTO
GOINGTO GOINGTO
GOINGTO
(a) From Antwerp to Minneapolis (b) From Antwerp to Mallorca
GOINGTO cometo .
GOINGTO
GOINGTO GOINGTO
GOINGTO GOINGTO comeTo
GOINGTO GOINGTO GOINGTO GOINGTO comero
GOINGTO
NGTO GOINGTO GOINGTO GOINGTO
co! GOINGTO GOINGTO GOINGTO
comeTo GOINGTO GOINGTO GOINGTO

GOINGTO

GOINGTO
GOINGTO GOINGTO

(c¢) From Santarem to Eugene (d) From Istanbul to Eugene

GOINGTO GOINGTO GOINGTO GOINGTO

GOINGTO GOINGTO GOINGTO GOINGTO

(e) From Reykjavik to Eugene

Figure 51: Other shortest path examples

Shortest path in SQL Server: SQL Server has the limitation that it need to
be specified the number of layers in the path. An alternative is to use a recursive
query, but from our experience, it was not effective.

When executing the query, we obtain the following message: "The statement termi-
nated. The maximum recursion 100 exhausted before statement completion."

54

Graph Databases and Neo4lJ

with CTE_route as
select CAST(source_airport + '->' + destination_airport as nvarchar(max)) as [Route]
,@ 8s TransfersCount
,source_airport
,destination_airport
from Routes

union all

select r.[Route] + '->' + ri.destination_airport
,TransfersCount + 1
,r.source_airport
,rl.destination_airport
from CTE_route r
join Routes ri
on r.destination_airport= ri.source_airport
and ri.destination_airport <> r.source_sirport
and PATINDEX('%'+ri.destination_airport+'%', r.[Route]) = @
)]
select [Route]
from CTE_route |
where source_airport = 'ANR'
and destination_airport = 'IST'
and TransfersCount <= 1@

81% -
ER Resuks EF Messages
Msg 530, Level 16, State 1, Line 1

The statement terminated. The maximem recursion 100 has been exhausted before statement complesiom.

Figure 52: SQL Server recursive query output

For the same query, in Neo4j it only needs a few lines and the result is output in
794ms.

95

Graph Databases and Neo4lJ

MATCH p=shortestpath((src:Airport{city: 'Antwerp'})-
[r:GOINGTO*..30]-(dest:Airport{city: 'Istanbul'})) RETURN p

TCH p=shortestpath((src:Airport{city: 'Antwerp'})-[r:GOINGT.. & <

Airport(12)

GOINGTO

GOINGTO
GOINGTO

GOINGTO

Gokcen

Figure 53: Neo4j query on Antwerp-Istanbul shortest path

o6

Graph Databases and Neo4lJ

P NodeByLabelScan » NodeByLabelScan
17,716 db hits 70,864 db hits

17,715 rows 70,860 rows

» Filter » Filter
17,715 db hits 70,860 db hits

4 rows 40 rows

p CartesianProduct
40 rows
» ShortestPath
4 rows
[} ProduceResults]
4 rows
[Result]

Cypher version: CYPHER 3.2, planner: COST, runtime: INTERPRETED. 177195 total db hits in 794 ms.

Figure 54: Pipeline of Neo4j query on Antwerp-Istanbul shortest path

4.3.2 Betweenness centrality:

The betweenness centrality of a node in a network is the number of shortest paths
between two other members in the network on which a given node appears. Between-
ness centality is an important metric because it can be used to identify “brokers of
information” in the network or nodes that connect disparate clusters. [6]

This query shows the airports that have to be crossed more often by routes to go
from one airport to another. In other worlds, the airports where more transfers
take place. As it is displayed in the figure below, the airports highlighted are like
bottlenecks that connect clusters of airports.

Graph Databases and Neo4lJ

Figure 55: Concept of betweenness centrality

MATCH (ap:Airport)

WITH collect(ap) AS airports
CALL apoc.algo.betweenness([’>CONNECTED’], airports, ’0UTGOING’)

YIELD node, score
SET node.betweenness = score
RETURN node AS Airport, score ORDER BY score DESC LIMIT 25

MATCH (ap:Airport)
WITH collect(ap) AS airports
CALL apoc.algo.betweenness(['CONNECTED'], airports, 'OUTGOING')

YIELD node, score

SET node.betweenness = score
RETURN node AS Airport, score ORDER BY score DESC LIMIT 5

L2y

=

$ MATCH (ap:Airport) WITH collect(ap) AS airports CALL apoc.algo.b..

B
Graph

z2z] OWecrey
Table
Con,
ECTg, C
o D ONNECTE,
A &
Q Coy
Text & g e NNECTED
s 9 7
& £ o %
5 9 3 g g
<> ® -
O g &
Code & s £
§ &
OMNECre,
O’VNECTED

Figure 56: Betweenness centrality query result

The query outputs five big airports, which are commonly used to transfer during

o8

Graph Databases and Neo4lJ

intercontinental journeys. It makes sense that they have the highest betwenness
centrality.

Query performance: Writing PROFILE before the cypher query, outputs the
pipeline of the query execution.

% PROFILE MATCH (ap:Airport) WITH collect{ap) AS airports CALL apoc.algo.betweenness(["CONNEC_

P NodeBylLabelScan
Grach 9,600 db hits

@ 8,606 rows

I

» EagerAggregation

A 1liow

| Result

Figure 57: Pipeline of the betweenness centrality query

4.3.3 Closeness centrality:

Closeness centrality is the inverse of the average distance to all other characters in
the network. Nodes with high closeness centality are often highly connected within
clusters in the graph, but not necessarily highly connected outside of the cluster. [6]

This query outputs the airports that have more connections to different airports.
In other words, it shows the locations that are more geographically isolated to be
reached by other means of transport (e.g. islands). It can output the airports with
more direct flights from different locations or the airlines that perform more routes.

99

Graph Databases and Neo4lJ

'S,

Figure 58: Concept of closeness centrality

Query example: output the five airports with a higher closeness centrality:
MATCH (ap:Airport)

WITH collect(ap) AS airports

CALL apoc.algo.closeness([’CONNECTED’], airports, ’OUTGOING’)
YIELD node, score

RETURN node AS Airport, score ORDER BY score DESC LIMIT 5

PROFILE MATCH (ap:Airport)

WITH collect(ap) AS airports

CALL apoc.algo.closeness(['CONNECTED'], airports, 'OUTGOING')
YIELD node, score

RETURN node AS Airport, score ORDER BY score DESC LIMIT 5

$ PROFILE MATCH (ap:Airport) WITH collect(ap) AS airports CALL apo.. & <

(%) “©)

Coy, Neg
Cop, g,

Figure 59: Closeness centrality query result

As predicted, the query outputs airports that are in highly touristic but geographi-
cally isolated locations: Lopez Island near Seattle, the river Araguaia in the middle

60

Graph Databases and Neo4lJ

of Brazil, the Grand Canyon of Colorado...

Bellingham Woodland
o \
E & |
idney. 4 Columbia City
o ® L
'Lopez Island Airport § %a
y " = oSedro-Wool A Yankton <
lictoria Burlingtono < %
0 o | St Helens = >
Mt Vernon ()
0Oak Harbor e Juarina :
3 v i McNulty
ngsles | C’bncei(;éo do :
oSequim \ Maryeswlle Araguala Airport Warren Ridgefield |
V\Ifhlldb;y Eveoren :
slan: &
i
9 Sustinho
Novo Plar Scappoose
irk Industrial Airpark
& P
Seattle &
o) © :
3 () L Scappoose : J
R S ; |
pic hi054 & ! S
| Forest Kent) 43 4 s
W o 135} Araguacema -4
e — o
3 Moapa Valley Mozpa
e °
w _“Moapa Valley
C Grsnd | ») Grand
anyon-raras Tu
National Canyar;-g:;:fham
Monument N g s
Las Y)egas ; Las \éegas Lake Mead
e N | " National ¢
Boulder City v 2 Ao OParaodlse © Recreation yiudview 'Grand Canyon West
Municipal Airport-¢2gV'® Henderson Area o
J : Isprings
dsoprlngs S aad
Primm \
K S © 5
Primm L ™ Peach Springs
P J pei @ Searchlight { <
o Searchlight | B Vg'eg“me
h \ » Valentine i Hackberry .
faat a \ {201

Figure 60: Location of the airports with highest closeness centrality

Query performance: Writing PROFILE before the cypher query, outputs the
pipeline of the query execution.

61

Graph Databases and Neo4lJ

% PROFILE MATCH (ap:Airport) WITH collect{ap) AS airports CALL apoc.algo.betweenness(["CONNEC_

®
T 9,608 db hits

z2:] 2606 rows

A ftow

Text

5 » ProcedureCall

- 2606 rows

<[> » SetProperty

e 9,608 dib hits

2,606 rows

8,606 rows

» Top

>

;.
o
i
g)
3 3

5 rows

| Result

Figure 61: Pipeline of the closeness centrality query

4.3.4 PageRank:

The secret of Google’s success was its search algorithm, PageRank. PageRank works
by counting the number and quality of links to a page to determine a rough estimate
of how important the website is. The underlying assumption is that more important
websites are likely to receive more links from other websites [11]. This algorithm can
output the most connected airport or the most powerful airline (the node connected
to more routes).

First query: output the most important airports

MATCH (ap:Airport) WITH collect(ap) AS airports
CALL apoc.algo.pageRank(airports) YIELD node, score
RETURN node, score ORDER BY score DESC LIMIT 10

62

Graph Databases and Neo4lJ

$ MATCH (ap:Airport) WITH collect(ap) AS airports CALL apoc.algo.pageRank(airports) YIELD node, score RETURN node, score ORDER BY.. = < al N O

Graph

]

Table

A

Text

<>

Code

Di ing 10 nodes, 80

Figure 62: Airports pagerank result

$ PROFILE MATCH (ap:Airport) WITH collect(ap) AS airports CALL apoc.algo. & 2

Graph 9,809 db hits

@ 8,608 rows.

Table

» EagerAggregation

A 1row

Text

n
Plan

b

Code.

Cypher version: CYPHER 3.2, planner: COST, runtime: INTERPRETED. 9610 total db hits in 1640 ms.

Figure 63: Pipeline of the airports pagerank query

The most important airports are from London, Paris, Frankfurt, Istanbul, Dubai,
Beijing and the USA. The output is not surprising.

63

Graph Databases and Neo4lJ

Second query: Output the most popular airlines.

MATCH (node:Airline) WITH collect(node) AS airlines
CALL apoc.algo.pageRank(airlines) YIELD node, score
RETURN node, score ORDER BY score DESC LIMIT 10

$ PROFILE MATCH (node:Airline) WITH collect(node) AS airlines CALL apoc.algo.pageRank(airlines) YIELD node, score RETURN node, sc..
1

f T
@ | "node" | "score"|
Graph 1 : |

|

F
| {"country":"Ireland","iata":"FR", "name":"Ryanair","callsign":"RYANAIR", "icao":"RYR","active":"Y", "alias":"\\N", |105.72
BB [ria:mazoen) |
|
Table } |
| {"country":"United States","iata":"AA","callsign":"AMERICAN", "name":"American Airlines","icao":"AAL","active":"|100.195
A [, "alias™: "\\N", "id":n2am}
I

Text f }
| {"country":"United States","iata":"UA","callsign":"UNITED","name":"United Airlines","icao":"UAL","active":"y",6" | 92.8

= [alias™:"\\N","id":"5209"}
I

Plan I
| {"country"

</> |lias":"\\N","ld":"2009"}
1

|
T
nited States","iata":"DL","name":"Delta Air Lines","callsign":"DELTA","icao":"DAL","active":"Y","a|84.3425
|
T

Code

[s":"\\N", "id":"5265m) |
|

{"country" hina","iata Cz","callsign":"CHINA SOUTHERN", "name":"China Southern Airlines","icao":"CSN", "activ| 60.925

e":"Y", "alias

SUNANT, Mid 17671} |
|

|

I

|

I

|("counlry":"China","iata":"CA","name":"Alr China","callsign":"ATR CHTNA","icao":"CCA","aCLive":"Y","a\laS":"\\Nlbﬁ.b3
|","id"2"751") |

! |

I

| hina","iata":"MU","callsign":"CHINA EASTERN", "name":"China Eastern Airlines","icao":"CES","active"|52.9775
| $"\\N", "id":"1758") |

I Il

I

{"country":

:"Y","alias

1
{"country":"United States","iata":"WN","callsign":"SOUTHWEST", "name":"Southwest Airlines","icao":"SWA","active" | 48.85
SOV WL aal e WAANT W AN AR AT |

&

1
I
|
|
1
|
|
|
1
|
I
|
1
|
I

f {

| {"country":"United States","iata":"US", "name":"US Airways","callsign":"U S AIR","icao":"USA","active":"Y", "alia | 83.45 |
|
|
1
|
|
|
1
|
|
|
1
|
I
|
1
I
|

Figure 64: Airlines pagerank result

64

Graph Databases and Neo4lJ

PROFILE MATCH (node:Airline) WITH collect(node) AS airlines CALL apoc...

® » NodeByLabelScan
7.550 db hits

7548 rows

b EagerAggregation
A 1row
=
7,540 rows.
Pian
s E—
7,540 rows.
10 rows
ows

Cypher version: CYPHER 3.2, planner: COST, runtime: INTERPRETED. 7551 total db hits in 1841 ms.

Figure 65: Pipeline of the airlines pagerank query

As a result we can see that Ryanair is the leading airline, followed by four companies
from the USA and three from China.

4.3.5 Community Detection:

There are many algorithms for community detection: triangle counting, strongly
connected components, ... This algorithms cluster together the nodes more related
with each other. We have chosen an algorithm from the library APOC, and what
the code below does, is classify the airport nodes in 40 partitions. The classification
is determined on the weight of the connected relationships (the number of routes
between each pair of airports).

Seeing as airports are geographical location, and routs are physical journeys between
them, it is expected that geographically neighbouring airports will be clustered to-
gether. That hipothesis is verified below.

CALL apoc.algo.community(40, [’Airport’],’partition’,
>CONNECTED” , >OUTGOING’, ’weight’,10000)
MATCH (ap:Airport) WHERE exists(ap.partition) RETURN ap

65

Graph Databases and Neo4lJ

$ CALL apoc.algo.community(40,['Airport'], 'partition', 'CONNECTED', 'OUTGOING', 'weight',10000) MATCH (ap:Airport) WHERE exists(ap.p.. & Fd Pl AN O X

V]

h
&
Table
A
Text
>

</
coce

Figure 66: Community detection graph

The figure over these lines shows the shape of the graph after the nodes have been
classified in partitions. To see which nodes belong to each partition, the partition
number must be returned as output:

CALL apoc.algo.community (40, [’Airport’],’partition’,
> CONNECTED” , >OUTGOING’, ’weight’,10000)

MATCH (ap:Airport) WHERE exists(ap.partition)
RETURN ap.partition, ap.country, COUNT(*) AS num
ORDER BY ap.partition, num DESC

66

Graph Databases and Neo4lJ

$ CALL apoc.algo.community(.. N 5 v AN O X

@ ap.partition ap.country num
Table
6394 "Papua New Guinea" 23
A 6407 "lceland” 4
o 6464 "Canada" 2
</> 6520 "Canada" 5
Code 6531 "Canada" 5
6544 "Canada” 2
6577 "Canada” 6
6584 "Canada" 17
6590 "Canada" 1
6624 "Algeria" 4
6640 "Nigeria" 14
6640 "Congo (Kinshasa)" 13
6640 "Ethiopia” 6
6640 "Cameroon” 5
6640 "Ghana" 5
6640 "Equatorial Guinea" 2

Figure 67: Community detection table

67

Graph Databases and Neo4lJ

» ProcedureCall » NodeByLabelScan

1 row 8,108 db hits
8,107 rows

» Apply

8,107 rows
» Filter
8,107 db hits
3,266 rows
» Projection
9,798 db hits
3,266 rows

» EagerAggregation

3,266 rows

3,266 rows

» Projection

3,266 rows

{) ProduceResults J
3,266 rows

[Result]

Figure 68: Pipeline of community detection query

Going back to the visualization of the community detection for airports, the parti-
tions can be recognized and verified by looking at the table. The cluster of six nodes
disconnected from the rest of airports is comprised of Papua New Guinea airports
(the country can be seen by hovering over the nodes). They belong to the first
partition in the table, 6394.

68

Graph Databases and Neo4lJ

&, ONeTo
Sofy
o)) N
5, 0 aged
G O\ ~ \ &
Yy, 0,
(=) & 8] /LO
(%) Y & o S
Q 0, % O
A %
E! GOB%GT¢
@ o° 24 26,8
i SBS
[oRaet 9
X
O’?o; NETO [

Figure 69: Papua New Guinea partition

The following part of the graph is a bit scattered, but it can be seen that they are all
communicated to the central nodes. Hovering over them, we see that they all belong
to Canada, and we can suppose that the more separated nodes are regional airports
connected to bigger more important airports. That part of the graph is equivalent
to seven partitions in the table.

Figure 70: Canada partitions

Next to Canada, a group of nodes are separated, and those airports are all from
Algeria. They must belong to partition 6624.

69

Graph Databases and Neo4lJ

Figure 71: Algeria partition

The more centralized part of this subgraph are the airports from Finland. Some of
those are connected with a Greenland’s airport, which connects with other Greenland
and Iceland airports.

Po
1,9

Figure 72: Finland, Greenland, Iceland partitions

The next subgraph shouws airports from different african countries interconnected
with each other. On the left side, there are airports, and airports from african
countries highly connected to them, and on the right side there are mainly nigerian
airports, among other african aiports too.

70

Graph Databases and Neo4lJ

6640 "Nigeria" 14
6640 "Congo (Kinshasa)" 13
6640 "Ethiopia” 6
6640 "Cameroon" 5
6640 "Ghana" 5
6640 "Equatorial Guinea" 2
6640 "Gabon" 2
6640 "Congo (Brazzaville)" 2
6640 "Burkina Faso" 2
6640 "Liberia" 2
6640 "Sierra Leone" 1
6640 "Togo" 1
6640 "Niger" 1
6640 "Chad" 1
6640 "Cote d'lvoire” 1 (b) Partition graph
6640 "Central African Republic" 1
6640 "Benin" 1

(a) Partition table

Figure 73: Africa partition

Going back to the center of the graph, it is hard to recognize more than one partition,
as it shows the central european airports, which are highly interconnected.

Figure 74: Europe partition

At last, a partition was detected in the table, 8355. Checking if those airports
are geographically related, it has been determined that those are islands between

71

Graph Databases and Neo4J

Polynesia, Micronesia and Melanesia. that

8353 "New Caledonia" 10
8355 "Vanuatu" 23
8355 "Solomon Islands" 17
8355 "Australia” 9
8355 "Fiji" 8
8355 "Marshall Islands” 1
8355 "Tuvalu" 1
8355 "Nauru" 1
8355 "Kiribati" 1

(b) Geographical location

(a) Partition table

Figure 75: Australasia partition

4.3.6 Possible queries on SQL

The previous section showed operations that cannot be done with SQL. Now we will
present operations applicable to both;

72

Graph Databases and Neo4lJ

1. Finding flights between two airports that have no direct route be-

tween them:

neoy]

MATCH
p=allShortestPaths((apl:Airport

{city:’Antwerp’})-[*]->(ap2:Airport

{city:’Istanbul’}))

WITH extract(node in

nodes(p) Inode.name) as

cities,

extract(rel in

relationships(p) |rel.airline)as
airlines

RETURN cities,airlines

73

SQ L Server

select distinct Al.Name as
[1st Airport]

,airlinel.name as [1st
Airline],

A2 .Name as [2nd Airport],
airline2.name as [2nd
Airline],

A3.Name [3rd Airport],
airline3.name [3rd Airline],
a4.name [4th Airport]

FROM routes r INNER JOIN
airports al

ON r.source_airport_id=al.ID
INNER JOIN airlines airlinel
ON airlinel.id=r.airline_id
INNER JOIN airports a2

ON
r.destination_airport_id=a2.ID
INNER JOIN routes r2

on a2.ID=r2.source_airport_id
INNER JOIN airlines airline2
on airline2.id=r2.airline_id
INNER JOIN airports a3

ON
r2.destination_airport_id=a3.ID
INNER JOIN routes r3

on a3.id=r3.source_airport_id
INNER JOIN airlines airline3
on airline3.id=r3.airline_id
INNER JOIN airports a4

on
a4.id=r3.destination_airport_id
WHERE al.city=’Antwerp’ and
a4d.city=’Istanbul’

Graph Databases and Neo4lJ

= relationshipl.

/>

1 [Deume
2 Deume
3 Deume
4 Deume
5 Deume
6 Deume
7 Deume
8

ompleted after 56 s 3 Deume

(a) Neo4j Result =

SELECT DISTINCT
e st Aty

I Resuts @l Messages
s Aot

1st Adine:
Arfrance
A france
ArFrance
ArFrance
Ctylet
Cydet
Ciylet
Ctydet
Caylet
Ctylet
Ctydet
Caylet
ArFrance

Y

d Aiport

Gty
Gty
Gty
Gty
Cty
Gty
Gty
Gty
ay
Gty
Gty
Cty
Gty

H
i
®

2 Query executed successfully.

2nd Adine
A B
Ar Befin
Ar France
Caylet

Ar Bedin
A France
A France
Bitish A
Bitish AL
Caylet
Luthansa
Swissin
A Bedin
Bitish A

3d Arpot. d Arine 4h Aot
Zuich Asiana Arines Aaturk
Zuich Swss Intemational Ar Lines Ataturk
Schihol Transavia Holand Sabha Gokcen
Rotterdam Turkish Arines Aaturk
Zich Turkish Arines Raturk
Furicno Tukish Arines Aaturk
Rofterdam Turkish Arines Aatuk
CoteD\.. Turkish Arines Aatuk
Maaga Tukish Aines Aatuk
Rotterdam Transavia Holland Sabha Gokcen
Frankdur... Pegasus Arines Sabha Gokcen
Zuich Pegasus Arines Sabha Gokcen
Frankur.. Pegasus Arines Sabha Gokcen
Dusseldorf _Turkish rines Sabiha Gokcen

DESKTOP-RTQUIR (13.0SPT) | DESKTOP-RTQIUIR\Ozge (53) flightdb2 00:00:04 | 184 rows

Figure 76: Comparison of Queries - first query

As it can be seen from here finding all possible routes between two airports is easy

in Neo4j. Besides that Neo4j gives visualization.

There is one important point here; In SQL we have to specify level of depth to find
results. For example in this query we searched 3-level flights between Antwerp and
Istanbul. If we searched 1 or 2 level then the query would have returned no result.
But in Neo4j we don’t have to specify level, it finds all routes between two airports
and even calculates the shortest route. Therefore this is one of the drawbacks of

using SQL in data that has levels.

74

(b) SQL Result

Graph Databases and Neo4lJ

2. Nearest airport to city by distance

® .
@ neOAJ %QL Server

Select
match(airportl:Airport{city:’Bologna’} top 1
)<-[:FROM]- (route:Route) A2 .name,a2.city,a2.country
-[:TO]->(airport2:Airport) ,dbo.DistanceKM(a.latitude,a2.latitude,
RETURN airportl, A.longitude, A2.longitude) as
route,airport2 distance
ORDER BY route.distance from routes r
asc limit 1 INNER JOIN airports a

on a.id=r.source_airport_id
INNER JOIN airports a2

on
a2.id=r.destination_airport_id
WHERE A.city=’Bologna’

order by distance asc

ch(airportl:Airport{city: 'Bologna'})<-[:FROMI- (route:Route)-[:T01->(airport2:Airport) RETURN
airportl, route,airport2 ORDER BY route.distance asc limit

*Nearest airport to city by distance®

country , dbo.Distanceki(a.latitude,a2.latitude, A.longitude, A2.longitude) as distance

o[l ;

city country distance
1 | Fumicino | Rome haly 313352

(b) SQL query

(a) Neodj Query

Figure 77: Comparison of queries - second query

While we were uploading our data into Neo4j we created a node called route and
this node has three relationships; TO, FROM, OF and as a descriptive property
we assigned calculated distance property into route node. To be in the same page
we created a function in SQL that calculates distances between airports given lat-
itude and longitude attributes of airports which already exists in our data. Both
approaches give the same result but Neo4j also provides visualization.

75

Graph Databases and Neo4lJ

3. Most connected airports

MATCH
(airport:Airport)<-[:FROM]-(r:Route)
WITH airport, count(r) as
departures

MATCH
(r2:Route)-[:T0]->(airport)
RETURN airport.name as
airport_name, departures

, count(r2) as arrivals
order by
departures+arrivals desc

76

SQL Server

SELECT

A .Name,A.City,A.Country,SUM(A.route_count)
AS route_count

FROM(

SELECT
a.Name,a.City,a.Country,
COUNT(*) as route_count FROM
routes R

INNER JOIN airports A ON
A.ID=source_airport_id

GROUP BY
a.Name,a.City,a.Country

)

UNION(

SELECT
a.Name,a.City,a.Country,COUNT (*)
as route_count FROM

routes R

INNER JOIN airports A ON
A.ID=destination_airport_id
GROUP BY
a.Name,a.City,a.Country))A
GROUP BY

A .Name,A.City,A.Country ORDER
BY route_count desc

Graph Databases and Neo4lJ

$ MATCH (airport:Airport)<-[:FROM]-(r:Route) WITH airport, count(r) as departures MATCH (r2:Route)-[:T0]->(airport) RETURN..

airport_name
"Hartsfield Jackson Atlanta Inti*
“Chicago Ohare Inti"
*Capital Inti"
"Heathrow"
“Charles De Gaulle"
"Los Angeles Intl”
“Frankfurt Main"
‘Dalias Fort Worth Inl"
"John F Kennedy Intr
"Schiphol”
"Pudong”
*Changi Intl"
"Barcelona”
"Incheon It
"Denver Intl"
“Miami Intr

"Franz Josef Strauss”

Started streaming 4652 records after 988 ms and completed after 999 ms, displaying first 1000 rows.

(a) Neodj Query

departures

915
558

368

arrivals

/*the most interconnected airports*/
= SELECT A.Name,A.City,A.Country,SUM(A.route_count) AS route_count

FROM

(SELECT a.Name,a.City,a.Country, COUNT

routes R

INMER JOIN airports A ON A.ID=source_airport_id
GROUP BY a.Name,a.City,a.Country

UNION

(SELECT a.Name,a.City,a.Country,COUNT(*) as route_count FROM

routes R

INMER JOIN airports A ON A.ID-destination_zirport_id
GROUP BY a.Name,a.City,a.Country

))A

GROUP BY A.Name,A.City,A.Country

order by route_count desc

82 % - 4

B Resuts ¥ Messages
Name
Hartsfield Jackson Atlanta Intl
Chicago Ohare Intl
Capital Intl
Heathrow
Charles De Gaulle
Frankfurt Main
Los Angeles Intl

el B W R =

City

Atlanta
Chicago
Beijing
London
Paris
Frankfurt
Los Angeles

Country

United States
United States
China

United Kingdom
France
Gemany
United States

(b) SQL query

Figure 78: Comparison of queries - third query

With these queries we found the most interconnected airport by counting number
of incoming and outcoming flights. As it seems it is very easy to write in Neo4j.

7

*) as route_count FROM

route_count
1826
1108
1069
1051
1041

950

Graph Databases and Neo4lJ

5 Conclusion

In conclusion, graph databases are necessary for a very concrete data sets: huge
amounts of data of high complexity, where entities are very related to one another.
That is because, they efficiently query through the relationships among entities, in
contrast to relational databases.

Graph databases support algorithms to perform concrete queries that are out of
reach to relational databases, for their tabular structure and static schema. Also,
the bigger the volume of data, the slower the queries would be in SQL, because
they would require to lookup joined tables with a great number of tuples. Graph
databases allow to traverse through the graph and reach a high level of depth,
without having to read all the data stored.

Neodj is, by far, the leading technology of graph databases. It analyze and traverse
of all data in real time and gives the results very fast. It has great user interface
and support. But the greatest feature of it is; even data size grow exponentially,
performance of Neo4j does not affected by it.

In our hands on research, we have stored a graph database about flight routes in
Neo4j. The same data has been stored in a SQL Server database, in order to proof
that some queries are more efficient in Neo4j, and some are even not possible to
execute in SQL. We have queried the Shortest Path, PageRank, Betweenness and
Closeness Centrality, and Partition for Community Detection.

For that, Neo4j offers algorithms easy to implement, and the results are the values
expected. To evaluate its execution, the pipeline of the execution of the queries
is shown. In contrast, the queries that SQL manages to perform, require complex
code, and some queries, like the shortest path, are impossible to replicate.

78

Graph Databases and Neo4lJ

Bibliography

1]

2l

3]

4]

5]

6]

17l
8]

9]
[10]

[11]

[12]

[13]

Tareq Abedrabbo Dominic Fox Jonas Partner Aleksa Vukotic, Nicki Watt.
Neo/j in Action. Manning Publications, 2015.

Stephan C. Carlson. Graph theory. encyclopsedia britannica. Awvailable at
https: //www. britannica. com/ topic/ graph-theory, May 2013. Accessed:
2017-11-30.

DB-Engines. Knowledge base of relational and nosql database management
systems. Available at https: //db-engines. com/en/, 2017. Accessed: 2017-
10-20.

Martinez-Bazan N. Muntes-Mulero V. Baleta P. Larriba-Pay J.L. Dominguez-
Sal, D. A discussion on the design of graph database benchmarks. September
2010.

Stefan Edlich. Nosql archive. Awailable at http: //nosql-database. org/.
Accessed: 2017-11-20.

William Lyon. Analyzing the graph of thrones.
Available at http: //www. lyonwy. com/ 2016/ 06/ 26/
graph-of-thrones-neo4j-social-network-analysis//, June 2016.
Accessed: 2017-12-3.

Mathigon. Graphs and networks. Accessed: 2017-11-30.

Thomas Vial Michel Domenjoud. Graph databases: an overview. OctoTalks,
July 2012. Accessed: 2017-11-30.

Neo4j. Intro to cypher.

Neo4j. Top ten reasons for choosing neo4dj. Available at https: //neodj. com/
top-ten-reasons/.

Neodj. Neodj graph algorithms. Github, October 2017. Accessed: 2017-12-8.

University of Colorado. Database = management essentials.
Available at https: //www. youtube. com/playlist? list=
PL730FZbnYuiza9w-dL-EsM7Vy5B{GBIel. Accessed: 2017-10-21.

OpenFlights.org. Airport, airline and route data. Awailable at https: //
openflights. org/data. html. Accessed: 2017-11-3.

79

Graph Databases and Neo4lJ

[14] Tutorials Point. Graph theory: Introduction. Available at https: //www.

[15]

[16]

[17]

[18]

[19]

tutortalspoint. com/ graph_ theory/ graph_ theory_ introduction. htm.
Accessed: 2017-11-30.

Tutorials Point. Neodj - overview. Available at https: //www.
tutorialspoint. com/neodj/ neodj_ overview. htm. Accessed: 2017-11-30.

Bryce Merkl Sasaki. Graph databases for beginners: Acid
vs. base explained. Available at https://meolj. com/blog/
actid-vs-base-consistency-models-explained/, September 2015. Ac-

cessed: 2017-11-20.

James Serra. Relational databases vs non-relational databases. Big Data and
Data Warehousing. James Serra’s Blog, August 2015. Accessed: 2017-11-29.

James Serra. Types of nosql databases. Big Data and Data Warehousing. James
Serra’s Blog, April 2015. Accessed: 2017-11-29.

Roopendra Vishwakarma. The different types of nosql databases. Open Source
For U, May 2017. Accessed: 2017-11-29.

80

