
info-h-509 xml and web technologies
Lecture 1: Introduction and Web Architecture
.

Stijn Vansummeren
February 9, 2016

lecture outline.

General course information

Definition of the Web

Constitutent 1: Resources and URIs

Constitutent 2: HTTP

Constitutent 3: HTML and CSS as representation format

1

..general course information

course responsibles.

Stijn Vansummeren Michael Waumans
Campus Solbosch, UB4.125 Campus Solbosch, UB4.131
svsummer@ulb.ac.be mwaumans@ulb.ac.be

Personal meeting before or after class upon request

3

svsummer@ulb.ac.be
mwaumans@ulb.ac.be

prerequisites.

Required
• Basic programming skills

Recommended
• Basic knowledge about computer networks
• Introductory course on (relational) databases.

4

course objectives.

Objective:
• Get acquainted with the principles, architectures, and systems for
producing, exchanging, consuming, and reasoning with data on the
World Wide Web.

Content divided into 4 parts:
1. Introduction and basic web architecture.
2. The syntactic web (XML and related standards, JSON)
3. The Semantic Web and Linked Open Data (RDF + ontologies)
4. Web Services (REST, BIG-WS*)

5

competences to develop.

After successful completion of this course you should be able to
1. construct simple HTML pages and simple CSS stylesheets.
2. construct well-formed XML documents; describe families of XML

documents using DTDs and XML Schema’s; access, transform and query
XML documents with XPath, XSLT and XQuery.

3. interpret and construct RDF data; query RDF with SPARQL.
4. construct RDF ontologies (in both RDF Schema and OWL); as well as

predict the inferences that can be made from them.
5. use RDF in practice: linked data.
6. interact with (consume) RESTfull web services and to design new

RESTfull web services.
7. interact with (consume) BIG-WS* web services.
8. understand and explain the differences between RESTfull and BIG-WS*

web services. Motivate which of the two is applicable in a given
application scenario.

6

organization.

The course is organized as a mixture of:
• Ex-cathedra lectures
• Self-study reading assignments
• Technical exercises
• Project work
Course material, exercises, reading assignments, project assignments are
all published on the course website:

http://cs.ulb.ac.be/public/teaching/infoh509

Check regularly for updates!

7

http://cs.ulb.ac.be/public/teaching/infoh509

syllabus.

A. Moller and M. Schwartzbach
Addison-Wesley, 2006

ISBN-13: 978-0-321-26966-9
Required.

P. Hitzler, M. Krötzsch, and S. Rudolph
CRC Press, 2009

ISBN-13: 978-1-420-09050-5
Optional.

NOTE: The course slides are supportive material only and do not cover everything
that will be examinated! Check webpage for required reading assignments.

8

evaluation/exam.

Written exam:
• contributes 14/20 (70%) to final score;
• questions in English;
• you are free to respond in Dutch, English, or French;

Project work:
• contributes 6/20 (30%) to final score;
• consists of 3 seperate mini-projects (2/20 each);
• to be done individually
• project assignments and deadlines become available on the course
website once corresponding material has been studied.

9

..definition of the web

what is the world wide web?.

• 1989: At the CERN physics laboratory, Tim
Berners-Lee designs a simple global hypermedia
system, know known as the World Wide web

Three constituents (with their original meaning):
• URIs as a means for locating files on servers
• HTTP as a protocol for transmitting HTML files over networks
• HTML as a markup language for describing information in hypertext form

11

what is the world wide web?.

• 1989: At the CERN physics laboratory, Tim
Berners-Lee designs a simple global hypermedia
system, know known as the World Wide web

Three constituents (with their current meaning):
• URIs as a means for identifying & locating resources
• HTTP as a protocol for transmitting information over networks

• A myriad of data formats for describing information (resource representations):

◦ HTML for display in a browser
◦ XML as a data exchange format
◦ JSON as a data exchange format, alternative to XML
◦ RDF as a machine-interpretable data model

12

so: the web ̸= the internet.

• The internet is a global system of interconnected computer networks.

• The Web is a subset of the Internet. It is a collection of resources,
linked by hyperlinks and URIs, transmitted in various formats by web
clients (e.g., browsers) and web servers talking HTTP.

13

..constitutent 1: resources and uris

The W3C’s view on the Web

The World Wide Web (WWW, or simply Web) is an information
space in which the items of interest, referred to as resources, are
identified by global identifiers called Uniform Resource Identifiers
(URI).
…
In order to communicate internally, a community agrees (to a
reasonable extent) on a set of terms and their meanings. One goal
of the Web, since its inception, has been to build a global
community in which any party can share information with any
other party. To achieve this goal, the Web makes use of a single
global identification system: the URI.

“

--Architecture of the World Wide Web, Volume One
(http://www.w3.org/TR/2004/REC-webarch-20041215/)

URI = Uniform Resource Identifier

• The purpose & syntax of URIs has been defined in a number
of standards, evolving over the years.

– 1994: “Universal Resource Identifiers in WWW” - RFC 1630

– 1998: “Uniform Resource Identifiers (URI): Generic Syntax” – RFC 2396

– 2005: “Uniform Resource Identifier (URI): Generic Syntax” – RFC 3986

A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

“

Current version, see http://tools.ietf.org/html/rfc3986

--RFC 3986

URI = Uniform Resource Identifier

A statically addressable document or file on the network

A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

“

• Examples:
– Example: the logo.jpg file on the google.com server

Originally:

URI = Uniform Resource Identifier

Any entity, both physical or abstract, both network-accessible or not

A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

“

• Examples from RFC 3986:
– Electronic documents and images, as before

– Sources of information (e.g., "today's weather report for Los Angeles")

– Services (e.g., an HTTP-to-SMS gateway)

– Human beings, animals, corporations, and bound books in a library

– Abstract concepts, such as mathematical operators, the types of a
relationship (e.g., "parent" or "employee"), or numeric values (e.g., zero,
one, and infinity).

Currently:

URI = Uniform Resource Identifier

Any entity, both physical or abstract, both network-accessible or not

A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

“

• Examples from RFC 3986:
– An HTML document, PDF document, JPEG image (as before)

– Sources of information (e.g., "today's weather report for Los Angeles")

– Services (e.g., an HTTP-to-SMS gateway)

– Human beings, animals, corporations, and bound books in a library

– Abstract concepts, such as mathematical operators, the types of a
relationship (e.g., "parent" or "employee"), or numeric values (e.g., zero,
one, and infinity).

Currently:

Examples of Digital Resources

URI = Uniform Resource Identifier

Any entity, both physical or abstract, both network-accessible or not

A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

“

• Examples from RFC 3986:
– An HTML document, PDF document, JPEG image (as before)

– Sources of information (e.g., "today's weather report for Los Angeles")

– Services (e.g., an HTTP-to-SMS gateway)

– Human beings, animals, corporations, and bound books in a library

– Abstract concepts, such as mathematical operators, the types of a
relationship (e.g., "parent" or "employee"), or numeric values (e.g., zero,
one, and infinity).

Currently:

Examples of Non-digital Resources

URI = Uniform Resource Identifier

Identifier

Our use of the terms "identify" and "identifying" refer to the purpose of
distinguishing one resource from all other resources, regardless of how
that purpose is accomplished (e.g., by name, address, or context).

…

It should not be assumed that a system using URIs will access the resource
identified: in many cases, URIs are used to denote resources without any
intention that they be accessed.

A Uniform Resource Identifier (URI) provides a simple and
extensible means for identifying a resource.

“

“

The W3C’s view on the Web

URIs

• A URI takes the form

• Examples:
– ftp://ftp.is.co.za/rfc/rfc1808.txt ftp

– http://www.ietf.org/rfc/rfc2396.txt http

– ldap://[2001:db8::7]/c=GB?objectClass?one ldap

– mailto:John.Doe@example.com mailto

– news:comp.infosystems.www.servers.unix news

– tel:+1-816-555-1212 tel

– telnet://192.0.2.16:80/ telnet

– urn:oasis:names:specification:docbook:dtd:xml:4.1.2 urn

– doi:10.1000/182 doi

scheme:scheme-specific-part

Scheme:

URIs

• A URI takes the form

• Each scheme is free to define the syntax of the scheme-
specific part. This makes URIs extensible

• There are conventions about the use of /, #, and ?

scheme:scheme-specific-part

A note on URIs

• A Uniform Resource Identifier (URI) is either:
– a Uniform Resource Locator (URL)

– a Uniform Resource Name (URN),

– Or both

A note on URIs

• A Uniform Resource Name functions like a person’s name

urn:isbn:0-486-27557-4

That is: it gives a globally unique and persistent identifier, but
not the item’s location.
(Historically speaking, URNs used to begin with the urn
scheme, but that is no longer required.)

A note on URIs

• A Uniform Resource Locator functions like a street address:

http://www.google.com

That is: in addition to identifying an item, it provides a means
of locating the resource (e.g., its network “location”),
although it need not be persistent

The anatomy of a URL

http://tools.ietf.org/html/rfc3986

http://www.google.be/search?q=ULB&start=10#1

URI Scheme Authority/
Host

Path

Query Fragment

URIs are identifiers

• By design a URI identifies one (and only one)
resource.

– Ex. mailto:stijn.vansummeren@ulb.ac.be
identifies my mailbox (it does not identify me!)

• Yet, the same resource may be identified by
multiple URIs (these are called URI aliases)

– Ex. mailto:svsummer@ulb.ac.be also identifies my
mailbox.

URIs: scope

• URIs have global scope

– When I write

http://www.google.com

or

urn:isbn:0-486-27557-4

it means the same thing as when someone else (any
where in the world) does this.

URIs: ownership & allocation

• CONSEQUENCE: You should only allocate (“mint”) URIs that you own.

URI ownership is a relation between a URI and a social entity, such
as a person, organization, or specification. URI ownership gives the
relevant social entity certain rights, including:
1. to pass on ownership of some or all owned URIs to another

owner—delegation; and
2. to associate a resource with an owned URI—URI allocation.

“

--Architecture of the World Wide Web, Volume One
(http://www.w3.org/TR/2004/REC-webarch-20041215/)

URI ownership is hierarchical
• The root of all URI ownership lies

with the IANA scheme registry,
itself a social entity
(http://www.iana.org/assignments/uri-

schemes),

• It delegates, for each registered
scheme, ownership to some
scheme-specific owner.

• Each scheme-specific owner is free
to delegate further in a way that it
sees fit. (Or not delegate at all)

• For example, HTTP delegates to
DNS: only if you own the host
should you allocate HTTP URIs
starting with that host

• Hosts can delegate further

IANA
scheme registry

urn: dict:

http:

http://www.google.com

….

http://www.uhasselt.be

http://www.uhasselt.be/onderwijs

http://www.uhasselt.be/onderzoek

….

URIs: ownership & allocation

• SO:
– You are free to use & re-use (i.e., link to) existing URIs

– But only create URIs that you own!

URI ownership is a relation between a URI and a social entity, such
as a person, organization, or specification. URI ownership gives the
relevant social entity certain rights, including:
1. to pass on ownership of some or all owned URIs to another

owner—delegation; and
2. to associate a resource with an owned URI—URI allocation.

“

--Architecture of the World Wide Web, Volume One
(http://www.w3.org/TR/2004/REC-webarch-20041215/)

IRIs: internationalized URIs

• URIs, by design are only allowed to contain US ASCII
characters (A-Z), not international characters like é,
à, ç, ã etc.

• IRIs (or international resource identifiers) are
identifiers in which such characters can occur.

• RFC 3987 defines how IRIs can be transformed
“behind the scenes” to normal URIs.

The W3C’s view on the Web (cont.)

A representation is data that
encodes information about
resource state. Representations
do not necessarily describe the
resource, or portray a likeness of
the resource, or represent the
resource in other senses of the
word "represent".

“

--Architecture of the World Wide Web,
Volume One
(http://www.w3.org/TR/2004/REC-
webarch-20041215/)

• Representations may be transmitted through various protocols.
• Most schemes (except URNs) come with default protocol.
• On the web, the predominant protocol is HTTP.

..constitutent 2: http

HTTP: Hypertext Transfer Protocol

• A protocol that runs on top of the Internet’s lower-lying
protocols to provide end-to-end communication.

• Let’s see what this means …

The Internet: some history

• ARPANET (1969):
Advanced Research Project Agency NETwork

– Created by the US Department of Defense

– First operational packet switching network

– Early ARPANET applications
• Email, SMTP (1971), Ray Tomlinson

• File Transfer Protocol, FTP (1973)

• Standardized Internet Protocol Suite (TCP/IP, 1983)

First ARPANET Logical Map

The Internet: simplified operation

• The Internet is a global system of interconnected computer
networks.

• Computers that have a “physical link” (ethernet wire, WIFI,
satelite, …) can talk directly to each other.

• Messages between non-adjacent computers are routed
through adjacent computers to the destination.

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol

• IP allows unreliable communication of limited size data
packets (called datagrams) between machines identified by
IP addresses (e.g., 164.15.59.215)

• Each datagram is sent and routed independently (and may
arrive out of order). Routing is done transparently by the
protocol.

TO: 192.1.1.5

192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

TO: 192.1.1.5

IP: Internet Protocol [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TO: 192.1.1.5

TCP: Transmission Control Protocol

• Transmission of arbitrary-length data in streams

• Transparently cuts up streams into fixed-size IP datagrams,
and uses IP to send them to destination.

• Builds a reliable bi-directional communication channel on
top of IP by retransmitting lost datagrams, reordering, etc.

TCP: Transmission Control Protocol

• Transmission of arbitrary-length data in streams

• Transparently cuts up streams into fixed-size IP datagrams,
and uses IP to send them to destination.

• Builds a reliable bi-directional communication channel on
top of IP by retransmitting lost datagrams, reordering, etc.

TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP: Transmission Control Protocol

• Transmission of arbitrary-length data in streams

• Transparently cuts up streams into fixed-size IP datagrams,
and uses IP to send them to destination.

• Builds a reliable bi-directional communication channel on
top of IP by retransmitting lost datagrams, reordering, etc.

TO: 192.1.1.5 PORT 21

192.1.1.5
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP: Transmission Control Protocol

• Transmission of arbitrary-length data in streams

• Transparently cuts up streams into fixed-size IP datagrams,
and uses IP to send them to destination.

• Builds a reliable bi-directional communication channel on
top of IP by retransmitting lost datagrams, reordering, etc.

TO: 192.1.1.5 PORT 21

192.1.1.5
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP: Transmission Control Protocol

• TCP is Connection-oriented

– Establish connection between client and server process

– Transmit data in both directions

– Close connection

• End point of connection given by a pair

• A port numbers identifies the server/client process for
which the data is intended

• Standard services (email, web browsing, ftp) have a fixed
port number (see http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xml)

IP address : port number

TCP [Dataflow]

TCP [Dataflow]
TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP [Dataflow]
TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TRANSPORT
LAYER

TRANSPORT
LAYER

TCP allows transparent host-to-host communication

TO: 192.1.1.5 PORT 21

ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC
ABC ABC ABC ABC ABC ABC ABC

TCP allows transparent host-to-host communication

THE INTERNET

HTTP: Hypertext Transfer Protocol

• Layer on top of TCP

• Essentially an envelope format

• Request and response communication protocol for
exchanging representations of web resources (e.g., HTML,
XML, TEXT, …)

• Communication is always initiated by the client

• Server typically runs on port 80

• Stateless, light-weight

HTTP = Request/Response protocol

HTTP REQUEST

HTTP RESPONSE

THE INTERNET

Effect of typing http://www.ulb.ac.be/index.html in web browser :
1. Use a domain name service (DNS) to get the IP address for

www.ulb.ac.be
2. Create a TCP connection to address 164.15.59.215 on port 80
3. Send a HTTP request message over the TCP connection
4. Receive the HTTP response (and visualize in a browser)

Example HTTP Request message

GET /index.html HTTP/1.1
Host: www.ulb.ac.be
User-Agent:
Accept: text/html,application/xhtml+xml,application/xml
Accept-language: us,en;q=0.5
Accept-encoding: gzip,deflate
Accept-charset: ISO-8895-15,utf-8;q=0.7,*;q=0.7
Connection: keep-alive

HTTP REQUEST

Example HTTP Response message

HTTP/1.1 200 OK
Date: Mon, 19 Dec 2011 16:39:16 GMT
Server: Apache/2.2.11 (Unix) mod_ssl/2.2.11 OpenSSL/0.9.7d
Last-Modified: Mon, 19 Dec 2011 15:48:25 GMT
ETag: "2725d3-11441-4b473e18e0130"
Accept-Ranges: bytes
Content-Length: 70721
Content-Type: text/html

<html xmlns=http://www.w3.org/1999/xhtml> … </html>

HTTP RESPONSE

HTTP [Dataflow]

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

INTERNET
LAYER

LINK
LAYER

…

TRANSPORT
LAYER

TRANSPORT
LAYER

TO: 192.1.1.5 PORT 80

HTTP allows client/response communication between
processes

APPLICATION
LAYER

APPLICATION
LAYER

General structure of a HTTP request

• HTTP is a document-based protocol: the client puts a
document in an envelope and sends it to the server

• The server replies with a response document in an envelope

• HTTP defines what the envelope should look like, but doesn’t
care what goes inside

Host: www.ulb.ac.be
User-Agent: Mozilla/5.0 …
Accept: text/html, …
Accept-language: us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-15,…
Connection: keep-alive

GET /index.html HTTP/1.1 Start Line

Request Headers
(= a list of key/value pairs)
“the stickers on the envelope”
Many standard headers
User-defined headers possible

Empty line (CRLF)

The optional entity-body
(document, resource representation)

HTTP Method Path Version

General structure of a HTTP response

• HTTP is a document-based protocol: the client puts a
document in an envelope and sends it to the server

• Server replies with a response document in an envelope

• HTTP defines what the envelope should look like, but doesn’t
care what goes inside

Date: Mon, 19 Dec 2011 …
Server: Apache/2.2.11 …
Last-Modified: Mon, 19 Dec …
ETag: …
Accept-Ranges: bytes
Content-Length: 70721
Content-Type: text/html

HTTP/1.1 200 OK

<html …> … </html>

Status Line

Response Headers
(= a list of key/value pairs)
“the stickers on the envelope”
Many standard headers
User-defined headers possible

Empty line (CRLF)

The optional entity-body
(document, resource representation)

Version Response code

HTTP Methods [request only]

• The HTTP methods that can be used in a request are:

• Most websites use only GET

GET request a resource representation

POST send data to server and receives result

PUT create or update a resource

DELETE delete a resource

OPTIONS Discover what HTTP methods are supported at target URI

HEAD requests headers only (similar to GET but omits entity
body)

The message body [request + response]

• The body is a sequence of bytes

• If a HTTP message includes a body, there is usually a header
line that describes the MIME format of the body

• The MIME type identifies how the entity body should be
interpreted.

• Full list of MIME types:
http://www.iana.org/assignments/media-types/index.html

Content-Length: 70721
Content-Type: text/html

Length in bytes

MIME type
(others include image/gif, application/xml,
application/json, …)

HTTP response codes [response only]

• The response code is a three-digit integer, where the first
digit identifies the general category of response:

– 1xx indicates an informational message only

– 2xx indicates success of some kind

– 3xx redirects the client to another URL

– 4xx indicates an error on the client's part

– 5xx indicates an error on the server's part

• The most common status codes are:

• The code is followed by a human-readable phrase, which
may vary from server to server

200 OK 404 Not Found

Content negotiation

• Used to select “best” response for a request

– Server-driven negotiation

– Agent-driven negotiation

– Transparent negotiation (not discussed here)

• Server-driven negotiation is normally used

Server-driven content negotiation

• User agent provides a list of preferences

• Server decides “best” resource representation from those
available

• Vary header may be returned to tell caches what request
headers are/can be used to make the decision, e.g.,

Accept: text/html, …

Accept-language: us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15,…

List of MIME media types

List of languages

List of content encodings

List of character sets

Vary: Accept-language,Accept-Charset

Agent-driven content negotiation

• User agent provides a list of preferences, as before

• Server returns status code 300 and a list of choices (with
their URIs) in either header fields or entity-body

• User-agent decides which one is “best” and issues new
request for it (using the provided URIs)

• Requires multiple trips to the server

• Less widely used

Conditional requests

• Certain request headers can be included to make a request
conditional

• Based on date and time of last modification:

• Based on entity tags (returned by server in ETAG: header)

• When specified condition is true, server returns requested
resource, otherwise a status code is returned with no
message-body (304 Not Modified or 412 Precondition Failed)

If-Modified-Since: Sat, 28 Jan 2012 19:43:31 GMT

If-Unmodified-Since: Sat, 28 Jan 2012 19:43:31 GMT

If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

Design advantages of HTTP

• Lightweight

• No client state on server, hence scalable (load
balancing through multiple servers)

• HTTP brings a uniform interface to sharing
data on the web (more on this later)

Web Servers

• A Web Server is a server that talks HTTP

• Responsibilities:
1. Setup connection

2. Receive & process HTTP requests

3. Create & send HTTP response

4. [Logging]

• Well-known web servers:
– Apache HTTP Server [www.apache.org]

Freely available

– Microsoft Internet Information Services

Conclusion: The Web ≠ the Internet

LINK LAYER

INTERNET LAYER

TRANSPORT LAYER

APPLICATION LAYER

OUR APPS/WEB SERVICES

DNS, HTTP, SMTP, FTP

TCP, UDP

IP

Ethernet, satelite links, ATM, …

th
e

In
te

rn
et

the Web = HTTP + URIs + Resource Representations

..constitutent 3: html and css as representation format

17

html = a markup language for hypertext.

HTML = ..HyperText ..Markup Language

..

Hypertext is text displayed on a
computer or other electronic de-
vice with references (hyperlinks)
to other text that the reader can
immediately access, usually by
a mouse click or keypress se-
quence.

.

Definition

..

A Markup Language is a system
for annotating a text with struc-
ture in a way which is syntacti-
cally distinguishable from that
text.

.

Definition

.

18

the history of hypertext.

19

• 1934: Paul Otlet hints at hypertext in his philosophical treatise Traité
de documentation

the history of hypertext.

19

• 1945: Vannevar Bush describes a hypothetical system called Memex
in As we May Think

..

“ ... The memex affords an immediate step,
however, to associative indexing, the basic
idea of which is a provision whereby any
item may be caused at will to select im-
mediately and automatically another. This
is the essential feature of the memex. The
process of tying two items together is the
important thing...”

the history of hypertext.

19

• 1968: Ted Nelson coins the term Hypertext

the history of markup languages.

Charles Goldfarb:
• 1969: Generalized Markup Language (GML)
→ InTIME

• 1974: Standard Generalized Markup
Language (SGML), ISO standard in 1986

..

“ ... Markup should describe a document’s structure and other at-
tributes, rather than specify the processing to be performed on it, as
descriptive markup need be done only once, and will suffice for future
processing. Markup should be rigorous so that the techniques avail-
able for processing rigorously-defined objects like programs and data
bases, can be used for processing documents as well. ... ”

20

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>

..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>

..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>

..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>

..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>

..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

the approach taken by sgml (and html, xml).

Markup is delimited by angle brackets
• Consisting of elements formed by open tags and close tags ...
• which can have attributes

Example

..<greeting>. Hi. </greeting>. said. <person. ssn=”123”. >. Joe. </person>

..

open tag

..

close tag

..

element

..

open tag

..

close tag

..

element

..

attribute + value

21

html.

..

<html>
<head>
<title>Hello HTML</title>

</head>
<body>
<h1>Hello World</h1>

</body>
</html>

.

• At its core, HTML, is a simple markup
language to describe the logical
structure of a document

• Browsers are free to interpret this
structure

• Lots of different HTML versions

22

html.

..

<html>
<head>
<title>Hello HTML</title>

</head>
<body>
<h1>Hello World</h1>

</body>
</html>

.

• At its core, HTML, is a simple markup
language to describe the logical
structure of a document

• Browsers are free to interpret this
structure

• Lots of different HTML versions

22

a crash course on html.

By means of
Online

demonstration

23

logical versus physical.

..

<html>
<head>
<title>Hello HTML</title>

</head>
<body>
<h1>Hello World</h1>

</body>
</html>

• At its core, HTML, is a simple
markup language to describe the
logical structure of a document

• Often one also want to specify the
physical layout (bold, italic, font,
size, ...)

• Doing this consistently within HTML
itself gets messy ...

..Cascading StyleSheets (CSS) separate structure from layout.
Definition

24

logical versus physical.

..

<html>
<head>
<title>Hello HTML</title>

</head>
<body>
<h1>Hello World</h1>

</body>
</html>

• At its core, HTML, is a simple
markup language to describe the
logical structure of a document

• Often one also want to specify the
physical layout (bold, italic, font,
size, ...)

• Doing this consistently within HTML
itself gets messy ...

..Cascading StyleSheets (CSS) separate structure from layout.
Definition

24

a crash course on css.
• Cascading Stylesheets separate structure from layout
• A CSS consists of a sequence of rules
• Each rule two parts: a selector and one or more declarations
• A declaration assigns a value to a property

Example rule:

The selector is normally the name of the element you want to style:
• h1 → apply style to all <h1> elements and their descendants
• p → apply style to all <p> elements and their descendants
• table p → apply style to all <p> elements and their descendants that occur within a

<table> element

25

a crash course on css.
• Cascading Stylesheets separate structure from layout
• A CSS consists of a sequence of rules
• Each rule two parts: a selector and one or more declarations
• A declaration assigns a value to a property

Example rule:

The selector is normally the name of the element you want to style:
• h1 → apply style to all <h1> elements and their descendants
• p → apply style to all <p> elements and their descendants
• table p → apply style to all <p> elements and their descendants that occur within a

<table> element

25

a crash course on css (2).

By means of
Online

demonstration

26

from html to xml.

HTML is limited:
• It is a presentation format that describes document structure only for
purpose of presentation on a browser.

• As such, it has a fixed, limited, set of tag names (<h1>,<p>,<a>, …)
• In many applications, we want to describe more structure

Consider that we want to describe recipes. Then we need:
1. Name of the recipe
2. Date created
3. Ingredients
4. Description of how to prepare

27

from html to xml(2).

..

<h1>Rhubarb Cobbler</h1>
<h2>Wed, 4 Jun 95</h2>
This rec ipe i s suggested by Jane Dow. Rhubarb Cobbler made with bananas
as the main sweetener. I t was de l i c i ous.

< table>
< t r><td> 2 1/2 cups <td> diced rhubarb
< t r><td> 2 tablespoons <td> sugar
< t r><td> 2 <td> f a i r l y r ipe bananas
< t r><td> 1/4 teaspoon <td> cinnamon
< t r><td> dash of <td> nutmeg
</ table>

< i>Combine a l l and use as cobbler, pie, or c r i sp.</ i>
<p>This rec ipe has 170 ca lo r ies , 28% from fat ,
58% from carbohydrates , and 14% from prote in.
<p>Related rec ipes: Garden Quiche

Problems:
1. Not every HTML document is a valid recipe
2. Recipe programs need to infer recipe data from HTML presentation. What if we change the order of

certain elements later? 28

from html to xml(2).

..

<h1>Rhubarb Cobbler</h1>
<h2>Wed, 4 Jun 95</h2>
This rec ipe i s suggested by Jane Dow. Rhubarb Cobbler made with bananas
as the main sweetener. I t was de l i c i ous.

< table>
< t r><td> 2 1/2 cups <td> diced rhubarb
< t r><td> 2 tablespoons <td> sugar
< t r><td> 2 <td> f a i r l y r ipe bananas
< t r><td> 1/4 teaspoon <td> cinnamon
< t r><td> dash of <td> nutmeg
</ table>

< i>Combine a l l and use as cobbler, pie, or c r i sp.</ i>
<p>This rec ipe has 170 ca lo r ies , 28% from fat ,
58% from carbohydrates , and 14% from prote in.
<p>Related rec ipes: Garden Quiche

..
We need a special recipe markup language

28

from html to xml (3).

HTML:
1. Is a presentation format, that

describes structure only for
purpose of presentation on a
browser.

2. Fixed,limited set of tag names
3. Instance of SGML

XML:
1. Is a data exchange format,

capable of describing arbitrary
structure

2. Unlimited set of tag names
3. Simplification of SGML, which

was difficult to parse

29

what is the world wide web?.

• 1989: At the CERN physics laboratory, Tim
Berners-Lee designs a simple global hypermedia
system, know known as the World Wide web

Three constituents (with their current meaning):
• URIs as a means for identifying & locating resources
• HTTP as a protocol for transmitting information over networks

• A myriad of data formats for describing information (resource representations):

◦ HTML for display in a browser
◦ XML as a data exchange format
◦ JSON as a data exchange format, alternative to XML
◦ RDF as a machine-interpretable data model

30

essential online resources.

• Uniform Resource Identifier (URI): Generic Syntax – RFC 3986
(http://tools.ietf.org/html/rfc3986)

• Architecture of the World Wide Web, Volume One
(http://www.w3.org/TR/2004/REC-webarch-20041215/)

• HTTP made really easy (http://www.jmarshall.com/easy/http/)
Note that this document uses an outdated interpretation of “resources”

31

http://tools.ietf.org/html/rfc3986
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.jmarshall.com/easy/http/

Questions?

32

	General course information
	Definition of the Web
	Constitutent 1: Resources and URIs
	Constitutent 2: HTTP
	Constitutent 3: HTML and CSS as representation format

