Data Warehousing
Introduction

Esteban Zimanyi
ezimanyi@ulb.ac.be
Slides from Toon Calders
Course Organization

• Lectures on Tuesday 14:00 and Thursday 16:00
 – Check http://gehol.ulb.ac.be/ for room

• Most exercises in computer class
 – Tutorial MS SQL Server tools
 • MS Sequel Server, SSIS, SSAS, SSRS

• Contributions from associated partners
 – IBM (TBC)
 – Teradata (TBC)
Course Organization

• Grading:
 – Written exam (14/20)
 – Project (6/20)
 • 2 practical assignments in groups of 3-4
 – TPC-DS benchmark
 – TPC-DI benchmark
Motivation for the Course

• Database = a piece of software to handle data:
 – Store, maintain, and query
• Most ideal system situation-dependent
 – data type: simple / semi-structured / complex / ...
 – types of queries: simple lookup / analytical / ...
 – type of usage: multi-user / single-user / distributed / ...
Online Transaction Processing (OLTP)

• Relational database management systems are mainly to support transaction processing
 – Concurrent access
 – Data consistency, non-redundancy
 – Ad-hoc Querying
 – Efficiency
Atomicity

• Consider a Bank transaction; John transfers 100 euro to Mary
 1. Check if Balance John > 100 euro?
 2. Balance John -100 euro
 3. Balance Mary +100 euro

• What can go wrong when the banking system crashes?
Atomicity

• Consider a Bank transaction; John transfers 100 euro to Mary
 1. Check if Balance John > 100 euro?
 2. Balance John -100 euro
 3. Balance Mary +100 euro

• What can go wrong when the banking system crashes?
 – When the system is restarted, John has 100 euro less, but Mary did not receive it!
Consistency

• Consider a Bank transaction; John transfers 100 euro to Mary
 1. Balance John -100 euro
 2. Balance Mary +100 euro

• Suppose consistency rule:
 Balance should always \(\geq 0 \)
 – After the transaction, the database should still be consistent
 – Otherwise: roll-back
Durability

• Consider a Bank transaction; John transfers 100 euro to Mary
 1. Check if Balance John > 100 euro?
 2. Balance John -100 euro
 3. Balance Mary +100 euro

COMMIT

CRASH

• After commit, transaction result should persist
Isolation

• Consider a Bank transaction; John withdraws 100 euro from an ATM; his wife Mary pays 50 Euro in a shop at the same time, from the same account.

 John
 Get balance
 Subtract 100 euro
 Store new balance

 Mary
 Get balance
 Subtract 50 euro
 Store new balance

• Possible problems?
Isolation

• Consider a Bank transaction; John withdraws 100 euro from an ATM; his wife Mary pays 50 Euro in a shop at the same time, from the same account.

 John
 1a. Get balance
 2a. Subtract 100 euro
 3a. Store new balance

 Mary
 1b. Get balance
 2b. Subtract 50 euro
 3b. Store new balance
Isolation

• Consider a Bank transaction; John withdraws 100 euro from an ATM; his wife Mary pays 50 Euro in a shop at the same time, from the same account.

John
1a. Get balance
2a. Subtract 100 euro
3a. Store new balance

Mary
1b. Get balance
2b. Subtract 50 euro
3b. Store new balance

\[-150\]
\[-100\]
\[-50\]
Concurrent Access

• Multiple users
 – Concurrent access
 – Frequent inserts, deletes, updates

→ need for ACID

• Extremely important to have most recent information

• Enforced by “protocols” based on locking
Online Transaction Processing (OLTP)

• Relational database management systems are mainly to support transaction processing
 – Concurrent access
 – Data consistency, non-redundancy
 – Ad-hoc Querying
 – Efficiency
Design Theory

• Which instance do you prefer? Why?

<table>
<thead>
<tr>
<th>Student</th>
<th>Code</th>
<th>Name</th>
<th>Semester</th>
<th>Lecturer</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phil</td>
<td>2ID45</td>
<td>Advanced Databases</td>
<td>Spring 2011</td>
<td>Calders</td>
<td>A+</td>
</tr>
<tr>
<td>Mary</td>
<td>2ID45</td>
<td>Advanced Databases</td>
<td>Spring 2011</td>
<td>Calders</td>
<td>C</td>
</tr>
<tr>
<td>John</td>
<td>2ID45</td>
<td>Advanced Databases</td>
<td>Spring 2011</td>
<td>Calders</td>
<td>B-</td>
</tr>
<tr>
<td>Paul</td>
<td>2ID05</td>
<td>Databases I</td>
<td>Spring 2011</td>
<td>Fletcher</td>
<td>C</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ID45</td>
<td>Advanced Databases</td>
</tr>
<tr>
<td>2ID05</td>
<td>Databases I</td>
</tr>
</tbody>
</table>

Offerings

<table>
<thead>
<tr>
<th>Code</th>
<th>Semester</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ID45</td>
<td>Spring 2011</td>
<td>Calders</td>
</tr>
<tr>
<td>2ID05</td>
<td>Spring 2011</td>
<td>Fletcher</td>
</tr>
</tbody>
</table>
Revisiting Relational Database

Conceptual Model → Relational Model → Database

SQL querying
• Models entities and relations between them
 – “language” to write down constraints
 – documentation of the database design
Relational Model

• Relational Databases store the data in tables
 patient(SSN, fname, sname, city, street, age)
 doctor(ID, name, speciality, experience)
 treatment(SSN, Nr, ID, cost, start, end)
 drug(code, name, type, price)
 includes(SSN, Nr, code, quantity)
 room(rnr, capacity, price)
 stay(SSN, rnr, from, to)

• Good design =
 – No redundancy ➔ limit danger of inconsistencies
 – Constraints as much as possible covered by the design
 of the tables
Online Transaction Processing (OLTP)

• Relational database management systems are mainly to support transaction processing
 – Concurrent access
 – Data consistency, non-redundancy
 – Ad-hoc Querying
 – Efficiency
Powerful Language SQL

- Ad-hoc querying

```sql
SELECT fname, sname FROM Customer WHERE SSN=“778944”;

SELECT S.name FROM supplier S, transaction T, customer C
WHERE C.city=“Brussels”
and S.SID=T.SID and C.SSN=T.SSN;

SELECT S.City, sum(T.price), avg(T.price)
FROM supplier S, transaction T, customer C
WHERE C.city=“Brussels”
and S.SID=T.SID and C.SSN=T.SSN
GROUP BY S.City;
```
General-Purpose Language SQL

• Database engine optimizes queries
 – Makes a query plan
 – Using database statistics

• General rule of thumb:
 The more powerful the query language, the more difficult it is to automatically optimize it
Online Transaction Processing (OLTP)

• Relational database management systems are mainly to support transaction processing
 – Concurrent access
 – Data consistency, non-redundancy
 – Ad-hoc Querying
 – Efficiency
Indexing Principle

No index
Indexing Principle

- Database Equivalent

No index $\xrightarrow{\text{Expensive}}$ Full table scan

$\xrightarrow{\text{Inexpensive}}$ index lookup $+$ Retrieve data page
Summary: Relational DBMS

• Strong in supporting OLTP
• Mainly aimed towards many, frequent, concurrent, small, ad-hoc queries
<table>
<thead>
<tr>
<th>Decision support</th>
<th>Flight company</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Off-line setting</td>
<td>• Evaluate ROI flights</td>
</tr>
<tr>
<td>• « Historical » data</td>
<td>• Flights of last year</td>
</tr>
<tr>
<td>• Summarized data</td>
<td>• # passengers per carrier for destination X</td>
</tr>
<tr>
<td>• Integrate different databases</td>
<td>• Passengers, fuel costs, maintenance info</td>
</tr>
<tr>
<td>• Statistical queries</td>
<td>• Average % of seats sold/month/destination</td>
</tr>
</tbody>
</table>
Create Reports

Sales Summary

<table>
<thead>
<tr>
<th>Sales Manager</th>
<th>Sales Person</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2004 Sales Over Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jien, Stephen</td>
<td>Pak, Jae</td>
<td>20,330,657</td>
<td>22,930,001</td>
<td>10,931,024</td>
<td></td>
</tr>
<tr>
<td>Alberts, Amy</td>
<td>Varkey, Ranjit</td>
<td>2,522,836</td>
<td>4,172,459</td>
<td>1,808,043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valdez, Rachel</td>
<td>848,333</td>
<td>2,286,700</td>
<td>1,374,856</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3,371,169</td>
<td>7,437,594</td>
<td>4,031,531</td>
<td></td>
</tr>
<tr>
<td>Abbas, Syed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>23,701,627</td>
<td>31,069,082</td>
<td>15,682,879</td>
<td></td>
</tr>
</tbody>
</table>
Browse Data

<table>
<thead>
<tr>
<th></th>
<th>All Times</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Stores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>509,987</td>
<td>137,078</td>
<td>135,745</td>
<td>139,412</td>
<td>97,752</td>
</tr>
<tr>
<td>Store Sales</td>
<td>1,079,147.47</td>
<td>290,873.18</td>
<td>287,009.99</td>
<td>295,040.55</td>
<td>206,223.75</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>46,157</td>
<td>11,160</td>
<td>12,885</td>
<td>12,966</td>
<td>9,146</td>
</tr>
<tr>
<td>Store Sales</td>
<td>98,045.46</td>
<td>23,881.13</td>
<td>27,685.00</td>
<td>27,176.30</td>
<td>19,303.03</td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>46,157</td>
<td>11,160</td>
<td>12,885</td>
<td>12,966</td>
<td>9,146</td>
</tr>
<tr>
<td>Store Sales</td>
<td>98,045.46</td>
<td>23,881.13</td>
<td>27,685.00</td>
<td>27,176.30</td>
<td>19,303.03</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>203,914</td>
<td>56,133</td>
<td>54,005</td>
<td>57,872</td>
<td>35,904</td>
</tr>
<tr>
<td>Store Sales</td>
<td>430,293.59</td>
<td>118,589.41</td>
<td>113,830.59</td>
<td>122,706.05</td>
<td>75,167.54</td>
</tr>
<tr>
<td>DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>45,223</td>
<td>12,058</td>
<td>12,818</td>
<td>12,962</td>
<td>7,385</td>
</tr>
<tr>
<td>Store Sales</td>
<td>95,526.40</td>
<td>25,590.39</td>
<td>27,096.37</td>
<td>27,350.86</td>
<td>15,488.78</td>
</tr>
<tr>
<td>Guerrero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>23,226</td>
<td>7,042</td>
<td>5,885</td>
<td>6,008</td>
<td>4,291</td>
</tr>
<tr>
<td>Store Sales</td>
<td>49,090.03</td>
<td>15,063.14</td>
<td>12,301.53</td>
<td>12,755.76</td>
<td>8,969.60</td>
</tr>
<tr>
<td>Jalisco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>2,124</td>
<td>666</td>
<td>637</td>
<td>492</td>
<td>329</td>
</tr>
<tr>
<td>Store Sales</td>
<td>4,328.87</td>
<td>1,356.81</td>
<td>1,246.77</td>
<td>1,035.42</td>
<td>689.87</td>
</tr>
<tr>
<td>Veracruz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>24,696</td>
<td>6,711</td>
<td>6,119</td>
<td>6,947</td>
<td>4,919</td>
</tr>
<tr>
<td>Store Sales</td>
<td>52,142.07</td>
<td>13,970.82</td>
<td>13,114.47</td>
<td>14,727.55</td>
<td>10,329.23</td>
</tr>
<tr>
<td>Yucatan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>37,143</td>
<td>9,766</td>
<td>9,372</td>
<td>11,205</td>
<td>6,800</td>
</tr>
<tr>
<td>Store Sales</td>
<td>79,063.13</td>
<td>20,592.65</td>
<td>19,909.69</td>
<td>24,247.97</td>
<td>14,312.82</td>
</tr>
<tr>
<td>Zacatecas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>71,502</td>
<td>19,890</td>
<td>19,174</td>
<td>20,258</td>
<td>12,180</td>
</tr>
<tr>
<td>Store Sales</td>
<td>150,143.09</td>
<td>42,015.60</td>
<td>40,161.76</td>
<td>42,588.49</td>
<td>25,377.24</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Sales</td>
<td>259,916</td>
<td>69,785</td>
<td>68,855</td>
<td>68,574</td>
<td>52,702</td>
</tr>
<tr>
<td>Store Sales</td>
<td>550,808.42</td>
<td>148,402.64</td>
<td>145,494.40</td>
<td>145,158.20</td>
<td>111,753.18</td>
</tr>
</tbody>
</table>
Example: Business Case

• Company selling different products
 – “units” of a high-tech material
 – different parameters
 – base product for other (high-tech) products
 – B2B scenario

• Company sees profit is dropping
 – Why?
Example: Business Case

• Different salesmen sell the products to their customers
 – Different price; result of negotiation
 – Transaction stored in sales database
 • Some transactions are to “compensate” incorrect transactions
 – There are seasonal effects (less sales in winter)
 – Data spread over different branches; formats are slightly different
Example: Business Case

Example Inc., August 2012

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>4,237</td>
<td>32,916</td>
<td>3,987</td>
<td>53,000</td>
<td>49,374</td>
<td>52,000</td>
<td>1,000</td>
<td>3,626</td>
<td></td>
</tr>
<tr>
<td>Total sales</td>
<td>4,237</td>
<td>32,916</td>
<td>3,987</td>
<td>53,000</td>
<td>49,374</td>
<td>52,000</td>
<td>1,000</td>
<td>3,626</td>
<td></td>
</tr>
<tr>
<td>Costs of goods sold</td>
<td>1,983</td>
<td>15,405</td>
<td>1,866</td>
<td>24,804</td>
<td>23,107</td>
<td>24,336</td>
<td>468</td>
<td>1,697</td>
<td>Standard %</td>
</tr>
<tr>
<td>% of total sales</td>
<td>46.8%</td>
<td>46.8%</td>
<td>46.8%</td>
<td>46.8%</td>
<td>46.8%</td>
<td>46.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution cost</td>
<td>1,215</td>
<td>9,612</td>
<td>998</td>
<td>13,875</td>
<td>14,418</td>
<td>15,000</td>
<td>-1,125</td>
<td>-543</td>
<td></td>
</tr>
<tr>
<td>% of total sales</td>
<td>28.7%</td>
<td>29.2%</td>
<td>25.0%</td>
<td>26.2%</td>
<td>29.2%</td>
<td>28.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross margin</td>
<td>1,039</td>
<td>7,899</td>
<td>1,123</td>
<td>14,321</td>
<td>11,849</td>
<td>12,664</td>
<td>1,657</td>
<td>2,472</td>
<td></td>
</tr>
<tr>
<td>% of total sales</td>
<td>24.5%</td>
<td>24.0%</td>
<td>28.2%</td>
<td>27.0%</td>
<td>24.0%</td>
<td>24.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td>214</td>
<td>1,712</td>
<td>211</td>
<td>2,568</td>
<td>2,568</td>
<td>2,568</td>
<td>0</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td>% of total sales</td>
<td>5.1%</td>
<td>5.2%</td>
<td>5.3%</td>
<td>4.8%</td>
<td>5.2%</td>
<td>4.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin</td>
<td>115</td>
<td>920</td>
<td>112</td>
<td>1,380</td>
<td>1,380</td>
<td>1,380</td>
<td>0</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td>% of total sales</td>
<td>2.7%</td>
<td>2.8%</td>
<td>2.8%</td>
<td>2.6%</td>
<td>2.8%</td>
<td>2.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>36</td>
<td>312</td>
<td>42</td>
<td>465</td>
<td>468</td>
<td>465</td>
<td>0</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>% of total sales</td>
<td>0.8%</td>
<td>0.9%</td>
<td>1.1%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EBITA</td>
<td>674</td>
<td>4,955</td>
<td>758</td>
<td>9,908</td>
<td>7,433</td>
<td>8,251</td>
<td>1,657</td>
<td>2,475</td>
<td></td>
</tr>
<tr>
<td>% of total sales</td>
<td>15.9%</td>
<td>15.1%</td>
<td>19.0%</td>
<td>18.7%</td>
<td>15.1%</td>
<td>15.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>410</td>
<td>3,280</td>
<td>410</td>
<td>4,920</td>
<td>4,920</td>
<td>4,920</td>
<td>0</td>
<td>0</td>
<td>Fixed</td>
</tr>
<tr>
<td>% of total sales</td>
<td>9.7%</td>
<td>10.0%</td>
<td>10.3%</td>
<td>9.3%</td>
<td>10.0%</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBITDA</td>
<td>264</td>
<td>1,675</td>
<td>348</td>
<td>4,988</td>
<td>2,513</td>
<td>3,331</td>
<td>1,657</td>
<td>2,475</td>
<td></td>
</tr>
<tr>
<td>% of total sales</td>
<td>6.2%</td>
<td>5.1%</td>
<td>8.7%</td>
<td>9.4%</td>
<td>5.1%</td>
<td>6.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.1: An example P&L statement.

Picture from MSc thesis Gerard de Ruig, TU/e
Example: Business Case

• Gathering the sales data took considerable time
• Data needed to be cleaned
• Analysis questions
 – Average, minimal, maximal price per region/salesman for comparable transactions
 – Average sales per product type and region
 – Evolution of sales this year over time, compared to last year’s sales
Example: Business Case

• Typically: want to browse the data
 – Explore
 – Concentrate on certain slices of the data
 – Refine analysis in a suspicious region
 – ...

• Almost impossible using original data sources and OLTP-geared systems
Requirements for Decision Support?

• Concurrent access
 → not really
 → read-only

• Data consistency, non-redundancy
 → data comes from consistent sources (sort of)
 → data does not change during analysis; once clean, always clean
Requirements for Decision Support?

• Ad-hoc Querying
 → No longer true;
 → Spread-sheet like queries
 → Long-running queries, touching large parts of the database
 → In combination with transactions, kills the database

• Efficiency
 → Relational DBMS optimized for other types of queries
Requirements for Decision Support?

• OLTP systems not very efficient for data analysis tasks
 – analysis queries might stall operational systems
 – architecture suboptimal
 • different indexing structures
 • denormalization
 – need of historical data versus only current data
Outline

Online Analytical Processing

• **Data Warehouses**

• Conceptual model: Data Cubes

• Query languages for supporting OLAP
 – Typical data cube operations
 – SQL extensions
 – MDX

• Database Explosion Problem
Data Warehouse

- A decision support DB maintained separately from the operational databases.

- Why Separate Data Warehouse?
 - Different functions
 - DBMS—tuned for OLTP
 - Warehouse—tuned for OLAP
 - Different data
 - Decision support requires historical data
 - Integration of data from heterogeneous sources
Data Warehouse

- Data Warehouse is
 - Subject-oriented (vs function-oriented)
 - Non-volatile (vs only holding most recent version)
 - Integrated (different data sources)
 - Time-variant (can be related to time)
 - Supporting decision support
Three-Tier Architecture

Data Sources
- OLTP systems
- Many users
- Other sources
- Operational DBs
- Operational DBs
- Other sources
- Operational DBs

Data Storage
- Oracle, IBM DBII, MS SQL Server, MySQL, PostgreSQL
- Data Sources
- OLTP systems
- Many users
- Other sources
- Operational DBs
- Operational DBs
- Other sources
- Operational DBs

Front-End Tools
- SSIS, IBM DataStage, Informatica, Talend, ...
- OLAP Engine
- Front-End Tools
- SSIS, IBM DataStage, Informatica, Talend, ...
- OLAP Engine
- Front-End Tools

Extract Transform Load Refresh
- Extract Transform Load Refresh
- Extract Transform Load Refresh
- Extract Transform Load Refresh

Analysis
- Microstrategy, Tableau, SSRS Targit, ...
- Analysis
- Microstrategy, Tableau, SSRS Targit, ...
- Analysis
- Microstrategy, Tableau, SSRS Targit, ...

Query/Reporting
- OLAP Engine
- Query/Reporting
- OLAP Engine
- Query/Reporting
- OLAP Engine

Data Mining
- Mondrian
- Data Mining
- Mondrian
- Data Mining
- Mondrian

OLAP Engine
- SSAS
- OLAP Engine
- SSAS
- OLAP Engine
- SSAS

Data Marts
- Operational DBs
- Other sources

Operational DBs
- OLTP systems
- Many users
Example: MS SQLSERVER

SSIS: SQL Server Integration Services
SSAS: SQL Server Analysis Services
SSRS: SQL Server Reporting Services

Operational Setting

Client

OLTP

SQL Server

ETL

SSIS

SQL Server

ROLAP

SSAS

MOLAP

SSRS

report

Browse cube
Example: Top-Down

W.H. Inmon

Operational DBs
- SQL Server
- Oracle

Staging area

ETL

DBMS

Data Warehouse

Data mart

ETL

Log file

XML doc.
Example: Bottom-Up

- Operational DBs
- SQL Server
- Oracle
- Oracle

- ETL
- Staging area

- ETL
- Data mart

- ETL
- Data mart

- ETL
- Data mart

- ETL
- MDDB

- Data Warehouse

- Log file
- XML doc.
OLAP

• OLAP = OnLine Analytical Processing
 – Online = no waiting for answers

• OLAP system = system that supports *analytical queries* that are *dimensional* in nature.

• Most data warehousing systems support OLAP functionalities
Outline

Online Analytical Processing

• Conceptual model: Data cubes

• Query languages for supporting OLAP
 – Typical data cube operations
 – SQL extensions
 – MDX

• Database Explosion Problem
Supermarket Example

- Evaluate the sales of products
 - Product cost in $
 - Customer: ID, city, state, country,
 - Store: chain, size, location,
 - Product: brand, type, ...
 - ...

Dim. measure hierarchies

store Cost in $

product customer
Supermarket Example

- Multi-dimensional view on data
Cross Tabulation

- Cross-tabulations are highly useful
 - Sales of clothes June→August ‘06

<table>
<thead>
<tr>
<th></th>
<th>Blue</th>
<th>Red</th>
<th>Orange</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>51</td>
<td>25</td>
<td>158</td>
<td>234</td>
</tr>
<tr>
<td>July</td>
<td>58</td>
<td>20</td>
<td>120</td>
<td>198</td>
</tr>
<tr>
<td>August</td>
<td>65</td>
<td>22</td>
<td>51</td>
<td>138</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
<td>67</td>
<td>329</td>
<td>570</td>
</tr>
</tbody>
</table>

Date: month, June→August 2006
Data Cubes

• Extension of Cross-Tables to multiple dimensions
 – Conceptual notion

<table>
<thead>
<tr>
<th></th>
<th>Blue</th>
<th>Red</th>
<th>Orange</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>51</td>
<td>25</td>
<td>158</td>
<td>234</td>
</tr>
<tr>
<td>July</td>
<td>58</td>
<td>20</td>
<td>120</td>
<td>198</td>
</tr>
<tr>
<td>August</td>
<td>65</td>
<td>22</td>
<td>51</td>
<td>138</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
<td>67</td>
<td>329</td>
<td>570</td>
</tr>
</tbody>
</table>

Dimensions

- 1st level of aggregation
- Aggregated w.r.t. X-dim
- Aggregated w.r.t. Y-dim
- Aggregated w.r.t. X and Y
Data Cubes

Aggregated over
- country
- date
- product
Data Cubes

Aggregated over:
- product & date
- date & country
- product & country
Data Cubes

![Data Cube Diagram]

- **Product**: TV, PC, VCR
- **Date**: 1Qtr, 2Qtr, 3Qtr, 4Qtr, sum
- **Country**: Ireland, France, Germany, sum

Aggregated over all
SSAS – Data Cubes

Cube name

Measures

“key performance indicators”

Dimensions
Hierarchy, Level

Hierarchy Geography on Dimension Customer

<table>
<thead>
<tr>
<th>ALL</th>
<th>Country</th>
<th>State-Provience</th>
<th>City</th>
<th>Postal code</th>
<th>Customer</th>
</tr>
</thead>
</table>

- One dimension can have multiple hierarchies
- Hierarchies consist of *levels*
- Levels are in a linear order
Member

Hierarchy Geography on Dimension Customer

<table>
<thead>
<tr>
<th>ALL</th>
<th>Country</th>
<th>State-Province</th>
<th>City</th>
<th>Postal code</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adriana Smith</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aimee Guo</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Allison R. Young</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ann A. Sara</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antonio G. Patterson</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ariana Stewart</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arthur Kapoor</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Barbara W. Lal</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bobby D. Saunders</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brianna J. Johnson</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bruce G. Madan</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bryant L. Perez</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carla D. Madan</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carlos Edwards</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carly Anand</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cedric Liu</td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clarence Xu</td>
</tr>
</tbody>
</table>

Australia
Canada
France
Germany
United Kingdom
United States
New South Wales
Queensland
South Australia
Tasmania
Victoria
Alberta
British Columbia
Brunswick
Manitoba
Ontario
Quebec
Charente-Maritime
Essonne
Garonne (Haute)
Gers
Hauts de Seine
Loir et Cher
Alexandria
Coffs Harbour
Darlinghurst
Goulburn
Lane Cove
Lavender Bay
Malabar
Matraville
Milsons Point
Newcastle
North Ryde
North Sydney
Port Macquarie
Rhodes
Silverwater
Springwood
St. Leonards
Sydney
2015
2450
2010
2580
1597
2060
2036
2036
2061
2300
2113
2055
2444
2138
2264
2777
2065
1002

2015
2450
2010
2580
1597
2060
2036
2036
2061
2300
2113
2055
2444
2138
2264
2777
2065
1002
Children, Parent

Hierarchy Geography on Dimension Customer

<table>
<thead>
<tr>
<th>ALL</th>
<th>Country</th>
<th>State-Province</th>
<th>City</th>
<th>Postal code</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Australia</td>
<td>New South Wales</td>
<td>Alexandria</td>
<td>2015</td>
<td>Adriana Smith</td>
</tr>
<tr>
<td></td>
<td>Canada</td>
<td>Queensland</td>
<td>Coffs Harbour</td>
<td>2450</td>
<td>Aimee Guo</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td>South Australia</td>
<td>Darlinghurst</td>
<td>2010</td>
<td>Allison R. Young</td>
</tr>
<tr>
<td></td>
<td>Germany</td>
<td>Tasmania</td>
<td>Goulburn</td>
<td>2580</td>
<td>Ann A. Sara</td>
</tr>
<tr>
<td></td>
<td>United Kingdom</td>
<td>Victoria</td>
<td>Lane Cove</td>
<td>1597</td>
<td>Antonio G. Patterson</td>
</tr>
<tr>
<td></td>
<td>United States</td>
<td>Alberta</td>
<td>Lavender Bay</td>
<td>2060</td>
<td>Ariana Stewart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>British Columbia</td>
<td>Malabar</td>
<td>2036</td>
<td>Arthur Kapoor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Matraville</td>
<td>2036</td>
<td>Barbara W. Lal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Milsons Point</td>
<td>2061</td>
<td>Bobby D. Saunders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Australia</td>
<td>New South Wales</td>
<td>2300</td>
<td>Brianna J. Johnson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germany</td>
<td>Essonne</td>
<td>2113</td>
<td>Bruce G. Madan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gers</td>
<td>2055</td>
<td>Bryant L. Perez</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Garonne (Haute)</td>
<td>2444</td>
<td>Carla D. Madan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>France</td>
<td>Gers</td>
<td>2138</td>
<td>Carlos Edwards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hauts de Seine</td>
<td>2264</td>
<td>Carly Anand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>United States</td>
<td>Loiret Cherrier</td>
<td>2777</td>
<td>Cedric Liu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maine</td>
<td>2065</td>
<td>Clarence Liu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>United Kingdom</td>
<td>Maine</td>
<td>1002</td>
<td>Colin Chavez</td>
</tr>
</tbody>
</table>
Outline

Online Analytical Processing

• Conceptual model: Data cubes
• Query languages for supporting OLAP
 – Typical data cube operations
 – SQL extensions
 – MDX
• Database Explosion Problem
Pivoting

• Change the dimensions that are “displayed”; select a cross-tab.
 – look at the cross-table for product-date
 – display cross-table for date-customer

<table>
<thead>
<tr>
<th>Sales</th>
<th>Country</th>
<th>Date</th>
<th>1st sem</th>
<th>2nd sem</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td>20</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>126</td>
<td>138</td>
<td>264</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td>56</td>
<td>48</td>
<td>104</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>202</td>
<td>209</td>
<td>411</td>
</tr>
</tbody>
</table>
Browsing a Cube
Browsing a Cube

In the AdventureWorks cube, the measures include:
- Internet Customers
- Internet Orders
- Internet Order Count
- Internet Sales
- Reseller Orders
- Reseller Sales
- Sales Orders
- Sales Summary
- Sales Targets
- Internet Customers
- Reseller Orders
- Reseller Sales
- Sales Orders
- Sales Summary
- Sales Targets
- Calendar Quarter
- Internet Order Count
- Customer Count

The table shows data for different calendar quarters (Q3 CY 2005 to Q3 CY 2008) for Customer Count and Internet Order Count.
Slicing

- Select a part of the cube by restricting one or more dimensions to some values
Browsing a Cube
Drill-down and Roll-Up

• Change level to a descendant in the hierarchy
 – city → store
 – country → cities
 – product type → product

• Roll-up = inverse operation

• Drill-through:
 – go back to the original, individual data records
Browsing a Cube

The image shows a screenshot of a data browsing interface for a cube. The left pane displays various dimensions and measures, including Customer Geography. The right pane shows a table with data for different cities and periods, with columns for Customer Count and Internet Order Count. The highlighted row indicates data for 'France' in 'Q4 CY 2007' with specific counts for each city.
Browsing a Cube

Dimension:
- **Customer**
 - Hierarchy: Customer Geography
 - Operator: Equal
 - City: Equal

Table:
<table>
<thead>
<tr>
<th>Calendar Quarter</th>
<th>Month</th>
<th>Date</th>
<th>Customer Count</th>
<th>Internet Order Count</th>
<th>Customer Count</th>
<th>Internet Order Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 CY 2005</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Q4 CY 2005</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Q1 CY 2006</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Q2 CY 2006</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Q3 CY 2006</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Q4 CY 2006</td>
<td>November</td>
<td></td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Q1 CY 2007</td>
<td></td>
<td>October</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Q2 CY 2007</td>
<td>November</td>
<td></td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q3 CY 2007</td>
<td></td>
<td>November</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Q4 CY 2007</td>
<td></td>
<td>December</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>Q1 CY 2008</td>
<td></td>
<td>December</td>
<td>26</td>
<td>26</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Q2 CY 2008</td>
<td></td>
<td>December</td>
<td>6</td>
<td>6</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Q3 CY 2008</td>
<td></td>
<td>December</td>
<td>13</td>
<td>13</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Q4 CY 2008</td>
<td></td>
<td>December</td>
<td>21</td>
<td>21</td>
<td>90</td>
<td>140</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>31</td>
</tr>
</tbody>
</table>
Roll-Up

Product:
- TV
- PC
- VCR

Date:
- 1Qtr
- 2Qtr
- 3Qtr
- 4Qtr
- sum

Country:
- Ireland
- France
- Germany

sum
Browsing a Cube

![Screenshot of a data analysis tool](image.png)

The screenshot shows a data analysis tool with a tree view on the left and a data grid on the right. The tree view includes categories such as Measure Group, Adventure Works, Customer, and Calendar. The data grid displays various metrics and dimensions, with specific focus on Q4 CY 2007 and the City column.
Dicing

• Roll-up on multiple dimensions at once
Outline

Online Analytical Processing

• Conceptual model: Data cubes

• Query languages for supporting OLAP
 – Typical data cube operations
 – SQL extensions
 – MDX

• Database Explosion Problem
Extended Aggregation

• SQL-92 aggregation quite limited
 – Many useful aggregates are either very hard or impossible to specify
 • Data cube
 • Complex aggregates (median, variance)
 • Binary aggregates (correlation, regression curves)
 • Ranking queries (“assign each student a rank based on the total marks”)

• SQL:1999 adds several OLAP extensions
 – Group by cube/by rollup
Representing the Cube

<table>
<thead>
<tr>
<th>Sales</th>
<th>Date</th>
<th>1st sem</th>
<th>2nd sem</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td>20</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>126</td>
<td>138</td>
<td>264</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td>56</td>
<td>48</td>
<td>104</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>202</td>
<td>209</td>
<td>411</td>
</tr>
</tbody>
</table>
Representing the Cube

- Special value « null » is used:

<table>
<thead>
<tr>
<th>Date</th>
<th>Country</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st semester</td>
<td>Ireland</td>
<td>20</td>
</tr>
<tr>
<td>1st semester</td>
<td>France</td>
<td>126</td>
</tr>
<tr>
<td>1st semester</td>
<td>Germany</td>
<td>56</td>
</tr>
<tr>
<td>1st semester</td>
<td>null</td>
<td>202</td>
</tr>
<tr>
<td>2nd semester</td>
<td>Ireland</td>
<td>23</td>
</tr>
<tr>
<td>2nd semester</td>
<td>France</td>
<td>138</td>
</tr>
<tr>
<td>2nd semester</td>
<td>Germany</td>
<td>48</td>
</tr>
<tr>
<td>2nd semester</td>
<td>null</td>
<td>209</td>
</tr>
<tr>
<td>null</td>
<td>Ireland</td>
<td>43</td>
</tr>
<tr>
<td>null</td>
<td>France</td>
<td>264</td>
</tr>
<tr>
<td>null</td>
<td>Germany</td>
<td>104</td>
</tr>
<tr>
<td>null</td>
<td>null</td>
<td>411</td>
</tr>
</tbody>
</table>
Group by Cube

• **group by cube:**

```sql
select item-name, color, size, sum(number)
from sales
group by cube(item-name, color, size)
```

Computes the union of eight different groupings of the *sales* relation:

```sql
{ (item-name, color, size), (item-name, color),
  (item-name, size), (color, size), (item-name),
  (color), (size), () }
```
Group by Cube

• Relational representation of the date-country-sales cube can be computed as follows:

```sql
select semester as date, country, sum(sales)
from sales
group by cube(semester,country)
```

Instead of:

```sql
select semester as date, country, sum(sales)
from sales group by semester, country
UNION select null as date, country, sum(sales)
from sales group by country
UNION select semester as date, null as country,
sum(sales) from sales group by country
UNION select null as date, null as country,
sum(sales) from sales
```
Group by Rollup

- rollup construct generates union on every prefix of specified list of attributes

```sql
select country, province, city, sum(number)
from sales
group by rollup(country, province, city)
```

Generates union of groupings:
```
{(country, province, city), (country, province),
 (country), ( ) }
```

Useful when there is a hierarchy between items

- e.g., `group by (province)` does not make sense in the presence of `group by (country, province)`
Multiple rollups and cubes can be used in a single group by clause

```sql
select country, province, city, category, product,
    sum(number) from sales
group by rollup(country, province, city),
    rollup(category, product)
```

Generates 12 groups; all combinations of:

```
{(country, province, city), (country, province),
  (country), ()}
and
{(category, product), (category),(())}
```
Outline

Online Analytical Processing

• Conceptual model: Data cubes
• Query languages for supporting OLAP
 – Typical data cube operations
 – SQL extensions
 – MDX

• Database Explosion Problem
MDX

• Multidimensional Expressions (MDX) is a query language for cubes
 – Supported by many data warehousing systems
 • MS SQL Server, SAS OLAP Server, drivers for MDX for Oracle OLAP
 – Works on cubes, generates Pivot Tables

SELECT { [Measures].[Store Sales] } ON COLUMNS,
 { [Date].[2002], [Date].[2003] } ON ROWS
FROM Sales
WHERE ([Store].[USA].[CA])

SELECT { continent.[Europe], continent.[Asia]} ON Axis(0),
 { Product.[Computers], Product.[Printers]} ON Axis(1),
 { Years.[1996], Years.[1997] } ON Axis(2)
FROM Sales
Outline

Online Analytical Processing

• Data Warehouses
• Conceptual model: Data cubes
• Query languages for supporting OLAP
 – SQL extensions
 – MDX
• Database Explosion Problem
Three-Tier Architecture

Data Sources

Operational DBs
other sources

Data Storage

Metadata
Extract Transform Load Refresh

Monitor & Integrator

OLAP Engine

OLAP Server

ROLAP Server

Data Marts

Analysis
Query/Reporting
Data Mining

OLAP Engine Front-End Tools
Implementation

• To make query answering more efficient: consolidate (materialize) all aggregations

• Early implementations used a multidimensional array.
 – Fast lookup: cell(prod. p, date d, prom. pr):
 • look up index of p1, index of d, index of pr:
 index = (p x D x PR) + (d x PR) + pr

• Obvious problem: sparse data
 – easy to solve, though;
 • binary search tree, hash table, ...

• Nevertheless: very quickly people were confronted with the *Data Explosion Problem*
Data Explosion Problem

• Why?
 – n dimensions, every dimension has d values
 • d^n possible tuples.
 – Number of cells in the cube: $(d+1)^n$
 • Only a factor d increase

• However, most data is not dense, but sparse
 – not all d^n tuples are there in the source data.

Example: 10 dimensions with 10 values
10 000 000 000 possibilities
One tuple increases the count of 2^{10} cells
How many for N tuples?
Dense Cube

<table>
<thead>
<tr>
<th>Country</th>
<th>Brand</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>A</td>
<td>123</td>
</tr>
<tr>
<td>FR</td>
<td>B</td>
<td>456</td>
</tr>
<tr>
<td>BE</td>
<td>A</td>
<td>678</td>
</tr>
<tr>
<td>BE</td>
<td>B</td>
<td>254</td>
</tr>
</tbody>
</table>
Explosion Problem: Sparsity

<table>
<thead>
<tr>
<th>Country</th>
<th>Brand</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR</td>
<td>A</td>
<td>123</td>
</tr>
<tr>
<td>NL</td>
<td>B</td>
<td>456</td>
</tr>
<tr>
<td>BE</td>
<td>C</td>
<td>678</td>
</tr>
<tr>
<td>US</td>
<td>D</td>
<td>254</td>
</tr>
<tr>
<td>US</td>
<td>E</td>
<td>134</td>
</tr>
</tbody>
</table>
Data Explosion Problem

• Suppose:
 – m dimensions
 – n data points
 – dimensions are i.i.d.
 – all values drawn uniformly from \{ 0, 1 \}

• Under these settings we will analyze how the size of the cube grows with the number of dimensions
Data Explosion Problem

Size of cube w.r.t. number of data points (10 dimensions)
Data Explosion Problem

Size of cube w.r.t. number of dimensions (500 data points)
Data Explosion Problem

Logs: Size of cube w.r.t. number of dimensions (500 data points)
Summary

• Datawarehouses supporting OLAP for decision support
• Data Cubes as a conceptual model
 – Measurement, dimensions, hierarchy, aggregation
• Queries
 – Roll-up, Drill-down, Slice and dice, pivoting...
 – SQL:1999 extensions for supporting OLAP
• Straightforward implementation is problematic