Solution Exam Data Warehouses January 2014

1. (4p) Carefully read the description stating the requirements for a data warehouse
for a record label:
A record label wants to keep track of all contracts they have with bands, records they
are producing and the sales of these records. Currently they are only keeping data of
their ongoing contracts; no historical information is kept. Therefore it is decided to
construct a data warehouse for collecting and storing historical information. With
the data warehouse the company wants to analyze its sales. Based on conversations
with the managers of the company, you were able to compile the following description
of the available data.

The record label has several bands under contract. Fach band has a name, a main
category of music it plays, and one or more artists. A band may have a manager,
but does not have to. Bands without a manager must have one of the artists as their
main representative. An artist has one main instrument, which can also be his/her
voice. Quer time, bands can split and attract or replace group members. Bands make
records which are physically produced and distributed by the record label. Records,
including those that are not yet finished, have a title and are identified by a special
international code. For every record the price to produce it and its release date are
stored. The record label has contracts with the bands. For every contract start and
end data are registered as well as for which records it holds, what percentage of sales
goes to the manager of the group (if present), how much to the group, and how
much to the record label. A contract can apply to multiple records, but every record
falls under exactly one contract. Shops can order records at the record label. The
date, amount, and agreed price of these orders are recorded, as well as the number of
records that were sent to the shop in the end (sometimes demand outweighs supply)
and the date on which the order was fulfilled. For every shop, the record label has
iformation about the spatial location, including: city, country, and region of the
shop.

Some examples of the types of analyses the record label wants to perform based on
the data warehouse are the following:

o Which record/group/artist has given the record label the highest/lowest gain/return
on investment per week/month/year.

o What seller/city/country has the highest number of demands that could not be
met?

o Which record/group/artist has the highest number of demands?

(a) Draw a dimensional fact model (DFM) for the data warehouse. Notice that
there is not a single correct solution and that multiple facts may be needed.
For every fact in your model explain succinctly what it represents. Not all
information in the description is necessarily relevant for the dimensional fact
model. Your model should represent the description as faithfully as possible.

(b) Translate the DFM you constructed in (a) to an appropriate relational model.
Clearly indicate primary and foreign keys in your tables. In order to gain
full points for (b) the model given in your answer to (a) must be reasonable.
For instance: not answering (a) and giving an empty relational schema as a
(correct) answer for (b) will obviously not gain you any points.

day_of week

Contract category

pctManager manager

pctBand
pctLabel

record

Order

amount_ordered
amount_delivered
price
production_cost

shop
city
country

region

Common mistakes: dimensional attributes that are incorrectly placed into a hierarchy (for
instance, roll-up from band to record); many-to-many relations modeled as one-to-many;
models with only one fact usually did not work: contracts are not a property of sales, not
vice versa. These are two different subjects in the data warehouse, hence requiring two
facts. A third fact, for record, or the production of a record could be considered.

A possible relational schema:

e dimDate(DID, day, day_of_week, month, year)

e dimBand(BID, bandName, manager)

e dimArtist(AID, instrument, artistName)

e bridgeBandArtist(BID, AID)

e dimRecord(SpIntCode, releaseDID, recordName, BID)

e recordGroup(RGID, SpIntCode)

e factContract(start DID, endDID, RGID, BID, pctMan, pctBand, pctLabel)

e dimShop(SID, shopName, city, country, region)

o factOrder(deliveryDID, orderDID, SID, SpIntCode, amount_ordered, amount_delivered,
price, production_cost)

2. (2.5p) Consider a data cube Sales with three dimensions Customer, Date, and Prod-
uct. Dimension Customer has a hierarchy with levels City and Country. City is the
lowest level of granularity in this dimension. Dimension Date has levels Day and
Month. Dimension Product is stored at product-level and can be rolled up to level
Type and level Brand. There is only one measure Amount. The DFM for the cube
is hence as follows:

custCountry

custCity
brand

month day Sales
O—O0—
amount
product

type

The users of the reports that are based on this data cube are complaining about
degrading performance. So, you analyze the usage statistics in order to find out
which queries have been asked how many times. All queries are of the form:

SELECT A1, ...,Ak, SUM(Amount)

FROM (Sales joined with the dimension tables)

GROUP BY A1, ..., Ak

A1, ..., Ak are dimensional attributes of the cube. We will represent every query

by its set of grouping attributes. For instance: (Day, Brand) represents the query

SELECT Day, Brand, SUM(Amount)
FROM (Sales joined with the dimension tables)
GROUP BY Day, Brand

The cube is dense. That is: for every combination of a city ¢, date d, and product
p, there is a tuple (¢, d, p,a) in the base table with a non-zero amount a. There are
10 000 products of 100 brands and 20 product types, 50 cities from 10 countries, there
are 1000 days and 36 months. Hence, in total there are 50 x 1 000 x 10 000 = 500M
tuples in the base table. Furthermore, for every brand there is at least one product
of each type. The following table summarizes the results.

Query Frequency of query | Output size
(City,Month,Product) | 15% 18M
(Country,Brand) 40% 1K
(Country, Type) 20% 200
(Country,Month, Type) | 25% 7.2K

No other queries were executed on the data warehouse.

(a) Apply the greedy method described by Harinarayan, Rajaraman, and Ullman
in their seminal paper “Implementing Data Cubes Efficiently” (SIGMOD 1996)
(this is the greedy algorithm we saw in class) to select two views to materialize.

(b) What benefit (in %) do you expect from materialization these two views?

Solution: As you will quickly notice if you try, constructing the complete lattice
is very cumbersome and time-consuming; it is too large to completely draw it and
to compute the benefit of every single view in it. Fortunately, we do not need the
complete lattice. Since that there are only 4 views that are ever asked, we can
restrict the views we need to consider. For instance, we do not need to consider the
view (Country,Product); indeed: if we would materialize (Country, Product), of the
4 views only (Country,Brand) and (Country, Type) benefit. But, these 2 views would
benefit even more if we materialize the smaller (Country,Brand,Type). Given the
relation between the 4 views, it suffices to consider the following additional views:
(Country,Brand, Type), and (Country,Month,Brand, Type). (Convince yourself by
trying out some other views; always one of the following six views will be even
better.) This gives us the following roll-up lattice:

(City,Day,Product)

|

(City, Month, Product)

|

(Country, Month, Brand, Type)

/ \

(Country, Month, Type) (Country, Brand, Type)
(Country, Type) (Country, Brand)
Of these 6 views we now compute the benefit of materializing them:
View Benefit
(City,Month,Product) 100% x (500M — 18 M)
(Country,Month,Brand, Type) | 85% x (500M — 720K)
(Country,Month, Type) 45% x (500M — 7.2K)
(Country,Brand, Type) 60% x (500M — 20K)
(Country, Type) 20% x (500M — 200)
(Country,Brand) 40% x (500M — 1K)

(City,Month,Product) gives the highest benefit, so this view is selected as the first
to materialize. Then the benefits are computed again:

View Benefit
(Country,Month,Brand, Type) | 85% x (18 M — 720K)
(Country,Month, Type) 45% x (18M — 7.2K)
(Country,Brand, Type) 60% x (18 M — 20K)
(Country, Type) 20% x (18 M — 200)
(Country,Brand) 40% x (18M — 1K)

This time (Country,Month,Brand, Type) gives the highest benefit and is selected.

The total benefit is: (500M — 18M) + 85% x (18 M — 720K). The relative benefit

is hence:
(500M — 18M) + 85% x (18 M — T20K)

500M

~ 0.99%

3. (2.5p) An insurance company has a data warehouse holding all contracts of its
customers. One of the dimensions is dimCustomer which is storing information
about customers. This dimension holds the following properties for a customer:

e passport number. The passport number uniquely identifies the customer.
e first name, middle name, last name

e date of birth and gender
e * street, number, postal code, city, country

* marital status (single, married, divorced, widowed)

* number of children

whether or not he or she is a home owner
whether or not he or she owns a car
whether or not he or she is a VIP client
e * credit score (A+, A, B, C, or D)

* market segment (a number from 1 to 8)

* risk categorization as a car driver (number 1 to 10; starts at 5, decreases 1

per year, increases if person has an accident)

e * health categorization (low risk, medium, or high risk)

The attributes with a star indicate attributes for which the history has to be main-
tained. The attributes without * are in principle not changing, except maybe for
errors that may have to be corrected. You may assume that the address of a
person, his or her marital status and number of children, whether he or she is a
homeowner /car-owner, and whether he or she is a VIP client do not change very
frequently. The credit score, market segment, risk and health categorizations, how-
ever, change frequently.

(a) Give the relational table(s) with its (their) attributes for storing this dimension
in a ROLAP solution.

Solution: To keep track of the type-II changes, we need to introduce versioning
of the tuples. Therefore we need at least a surrogate key. Furthermore, later when
updating the database, we will need to be able to identify the current version of the
tuple. As such we also need either an attribute “valid” or attributes “start” and
“end” that indicate the valid time of the tuple.

Furthermore, since some of the attributes are rapidly changing, it is better to split
the dimension into two separate dimensions; one of them a so-called mini-dimension.
The mini-dimension consists of the attributes credit score, market segment, risk, and
health categorizations. These are placed in a separate dimensional table with its
own surrogate key. The mini-dimension should not be versioned, and the key of
the mini-dimension needs to be added in the fact table, not in the customer dimen-
sion table. Given that the mini-dimension contains only few attributes, each with
only few different values, it is a good idea to completely materialize it right from
the start. It does not give any benefit, on the contrary even, to further split up
the customer dimension. If order to maintain the changes in the customer dimen-
sion, even if the customer does not generate new facts, one could add a measureless

fact-table with dimensions customer and the newly created mini-dimension. A fact
in this table would then represent a change in the customers credit score, market
segment, risk or health categorization. This complete solution is depicted below:

| DimCustomer | Fact
/’ Lo Cl
Passport_number ScoreKe
Surrogate key First name —\l
middle_name measures
Last_name
Gender ScoreKey
iltur(::tt)er Credit_Score
Postal_code SRti?Sgkment
City
Country Health

CustScore

CID
ScoreKey

Marital_status
Number_of children
Home_owner

Car_owner

VIP
Versioning Q Start Measureless fact
attributes -3 Enq (optional)

Valid

(b) Describe the process of updating this (these) dimension table(s) for the follow-
ing updates (the attributes for which no value is specified are not important for
this exercise). Clearly indicate which tuples are added in what table(s). Ev-
ery update is assumed to take place during different data warehouse updates.
That is: between every two changes in the source databases there is a data
warehouse update.

i. A new customer with passport number 1234 and name Jan Janssens is

added to the database. He is single, has no children and has a perfect
credit score A+.
Solution: A new tuple is added to DimCustomer. A new surrogate key
CID is generated for this tuple. Valid is set to true for this tuple; start
is the current time, and end is null. One fact is added to the measureless
fact table CustScore, connecting the CID of Jan Janssens with the right
combination of scores.

ii. The customer with passport number 1234 gets married.
Solution: The current version of the tuple for 1234 (the tuple with
Valid=true and end is null) gets updated: end is set to the current time,
and Valid to false. A new version for 1234 is inserted with his updated
marital status. A new fact is added in CustScore to connect this new
version to the correct combination of scores.

iii. Customer 1234 buys a house. Obviously his address changes.

1v.

vi.

Solution: Similar as previous.

The name of customer 1234 is corrected to Jan Jansens (one s is removed
from the last name).

Solution: This is a type 1 change. All versions of the tuple for customer
1234 are updated.

Customer 1234 becomes the father of twins. His credit score drops to B.
Solution: The current version of the tuple for 1234 (the tuple with
Valid=true and end is null) gets updated: end is set to the current time,
and Valid to false. A new version for 1234 is inserted with his updated
parenthood status. A new fact is added in CustScore to connect this new
version to the updated combination of scores.

Customer 1234’s credit score raises again to A. He buys a car.

Solution: The current version of the tuple for 1234 (the tuple with
Valid=true and end is null) gets updated: end is set to the current time,
and Valid to false. A new version for 1234 is inserted with his updated
car owner status. A new fact is added in CustScore to connect this new
version to the updated combination of scores.

4. (1p) Consider the following relational model (this relational model was one of the
solutions of the exercises in week 1):

State(sName, region)
District(dID, dName, sName)
Congressman(cName, dID, sDate, party)
Bill(bName, bDate, passed)
Sponsors(cName, bName, bDate)
Voted(cName, bName, bDate, vote)

There are the following foreign key dependencies:

District(sName) references State

Congressman(dID) references District

Sponsors(cName) references Congressman and
Sponsors(bName,bDate) references Bill

Voted(cName) references Congressman and
Voted(bName,bDate) references Bill

For this database, give an example of a bitmap-join index, and a query that benefits
from this index.

Solution: Examples of a useful bitmap-join index are: for sName into table Sponsors
(sName into Voted, for party into sponsors if in combination with other indices, for party
into voted, if in combination with other indices). Example query for which this index is
useful:

SELECT count(distinct bName, bDate)
FROM Sponsors S, Congressman C, District D
WHERE S.cName=C.cName AND C.dID=D.dId AND D.sName="Florida";

For this query we don’t even have to do any of the joins, the result can directly be derived
from the index.

(Common errors included: giving a bitmap index instead of a bitmap join index, or
selecting an index that was insufficiently selective—unless used in combination with other
bitmap /bitmap-join indices; stating a query that does not have a selection on the indexed
attribute.)

