
One-dimensional index structures
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Motivation: The I/O model of computation

The I/O model

• Data is stored on disk, which is divided into blocks of bytes (typically 4 kilobytes)

(each block can contain many data items)

• The CPU can only work on data items that are in memory, not on items on disk

• Therefore, data must first be transferred from disk to memory

• Data is transferred from disk to memory (and back) in whole blocks at the time

• The disk can hold D blocks, at most M blocks can be in memory at the same
time (with M << D).
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Motivation: The I/O model of computation

However: complexity of algorithms is traditionally analyzed in the RAM
model of computation

• Data is stored in an (infinite) memory

• The CPU works on data items in memory

• Complexity is measured in terms of the number of memory accesses and CPU
operations.
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Motivation: The I/O model of computation

“The difference in speed between modern CPU and disk technologies is analogous
to the difference in speed in sharpening a pencil using a sharpener on ones desk
or by taking an airplane to the other side of the world and using a sharpener on
someone elses desk.”

(D. Comer)
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Motivation: The I/O model of computation

• In-memory computation is fast (memory access latency ≈ 10−8s )

• Disk-access is slow (HDD disk access latency: ≈ 10−3s, SSD: ≈ 10−5s )

• Hence: execution time is dominated by disk I/O

We will use the number of I/O operations required as cost metric
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Intermezzo: Understanding memory and disk performance

The performance of storage devices (including memory) is measured
using three metrics:

• Access latency: How long it takes for a storage device to start an I/O task
(measured in seconds)

• Transfer rate (a.k.a. throughput or bandwidth): The speed at which data is
transferred out of or into the storage device, once it has started (measured in
MB/s)

• For a given block size, how often a storage device can perform I/O tasks of that
block size is measured in Input/Output Operations per Second (IOPS).
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Intermezzo: Understanding memory and disk performance

Some typical values:

memory HDD SSD
Access latency ≈ 10−8 s ≈ 10−3 s ≈ 10−5 s
Throughput 20 GB/s 100-200 MB/s 500-600 MB/s
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Motivation: searching in a database

A hypothetical database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

Searching for record with C = 10 in case R is arbitrary

• For every block X in R:

◦ Load X from disk in memory

◦ Check whether there is a tuple with A = 10 in X ;

◦ If so output record and terminate loop; otherwise continue

◦ Release X from memory

•Worst case I/O Cost: the total number of blocks in R, or 106 I/O’s.

• At 10−3 s per IO this takes 16.6 minutes. ⇒ Can we do better?
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Index structures

See corresponding slides
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Searching in a database with a index (1/2)

The database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

The index

• There is a secondary index on attribute C.

• A (key value, ptr) pair in the index takes 16 bytes.

• Question: How many (key, ptr) pairs fit in a block?

• Question: How many blocks does the dense 1st level index take?

• Question: How many blocks does the sparse 2nd level index take?
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Searching in a database with a index (1/2)

The database

• A relation R(A,B,C,D). Each tuple comprises 32 bytes.

• Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

• Hence there are 128 tuples per block, or 106 blocks in total.

The index

• There is a secondary index on attribute C.

• A (key value, ptr) pair in the index takes 16 bytes.

• Question: How many (key, ptr) pairs fit in a block? 256

• Question: How many blocks does the dense 1st level index take? 5 · 105
• Question: How many blocks does the sparse 2nd level index take? 1954
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Searching in a database with a index (2/2)

Searching for records with C = 10 using the index

• Algorithm:
◦ Loop through all of the blocks X in sparse index, one, by one, and find the
(key, ptr) pair in X with the largest key value satisfying key <= 10.

◦ Follow ptr to dense index block, and use the information in this block to locate
the block in R containing the record with C = 10 (if it exists).

•Worst case I/O Cost: loading of all blocks of sparse index + 1 block of dense
index + 1 block of R, or 1954 + 1 + 1 = 1956 I/Os.

• At 10−3 s per I/O this takes 2 seconds.

Since the sparse index is sorted, we could perform binary search on it if
it is sequential.

• I/O Cost: binary search in sparse index + 1 block of dense index + 1 block of R,
or log2(1954) + 1 + 1 = 14 I/Os → 0.014 seconds.
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Searching in a database with a BTree index (1/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index on attribute C.

• A key value takes 8 bytes, a ptr also 8 bytes.

• Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?
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Searching in a database with a BTree index (2/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index on attribute C.

• A key value takes 8 bytes, a ptr also 8 bytes.

• Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

• Answer: A BTree of order n stores n + 1 pointers and n key values in each
block. We are hence looking for the largest integer value of n satisfying:

(n + 1) ptrs × 8 bytes/ptr + n keys × 8 bytes/ptr ≤ 4096 bytes

As such, n = 255: we store 256 pointers and 255 keys in a block.
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Searching in a database with a BTree index (3/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?
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Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
�
128·106
255

�
leaf blocks (at level 1)
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Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
�
128·106
255

�
leaf blocks (at level 1)

◦ there are
�
128·106
(255)2

�
blocks at level 2
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Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ there are
�
128·106
255

�
leaf blocks (at level 1)

◦ there are
�
128·106
(255)2

�
blocks at level 2

◦ there are
�
128·106
(255)3

�
blocks at level 3
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Searching in a database with a BTree index (4/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

• Answer: : Observe:

◦ So, there are
�
128·106
(255)h

�
blocks at level h

Since the root is at the level where there is only one block, we are looking for the

smallest value of h such that
�
128·106
(255)h

�
= 1.

So, h =
�
log255 128 · 106

�
= 4 .
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Searching in a database with a BTree index (5/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Observe: The height of the BTree is the smallest when all blocks are full. It is
the largest when all blocks are only half full (when each block has its minimum
size).

• Question: What is the height of the BTree assuming that all blocks are only
half full?
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Searching in a database with a BTree index (5/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Observe: The height of the BTree is the smallest when all blocks are full. It is
the largest when all blocks are only half full (when each block has its minimum
size).

• Question: What is the height of the BTree assuming that all blocks are only
half full? Answer: Same reasoning as before:
=

�
log128 128 · 106

�
= 4

133



Searching in a database with a BTree index (6/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of searching for the record with C = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?
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Searching in a database with a BTree index (6/6)

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation. The block size B = 4096 bytes.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of searching for the record with C = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

Answer: height of the Bree in which blocks are half full + 1 I/O to access main
file
=

�
log128 128 · 106

�
+ 1 = 5 → at 10−3s per I/O this takes 0.005 seconds.
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Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index of order 255 on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

136



Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: in this scenario, we will need to split an existing block at each level,
and create a new root.
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Inserting in a BTree index

The database

• A relation R(A,B,C,D). Attribute C is a (secondary) key for R.

• There are 128 · 106 tuples in the relation.

The index

• There is a BTree index on attribute C.

• Hence we can store at most 256 pointers; and 255 key values in a block.

• Question: What is the cost of inserting a new record in this BTree, assuming
the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: cost of a search + 2 I/O’s per level of the BTree + new root
=

�
log255 128 · 106

�
+ 2

�
log255 128 · 106

�
+ 1 = 3

�
log255 128 · 106

�
+ 1 = 13 →

0.013s
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