One-dimensional index structures

113

Motivation: The 1/0 model of computation

The 1/0 model
e Data is stored on disk, which is divided into blocks of bytes (typically 4 kilobytes)

(each block can contain many data items)
e The CPU can only work on data items that are in memory, not on items on disk
e Therefore, data must first be transferred from disk to memory
e Data is transferred from disk to memory (and back) in whole blocks at the time

e The disk can hold D blocks, at most M blocks can be in memory at the same
time (with M << D).

114

Motivation: The I/O model of computation

However: complexity of algorithms is traditionally analyzed in the RAM
model of computation

e Data is stored in an (infinite) memory
e The CPU works on data items in memory

e Complexity is measured in terms of the number of memory accesses and CPU
operations.

115

Motivation: The 1/0 model of computation

“The difference in speed between modern CPU and disk technologies is analogous
to the difference in speed in sharpening a pencil using a sharpener on ones desk
or by taking an airplane to the other side of the world and using a sharpener on

someone elses desk.”

(D. Comer)

116

Motivation: The 1/0 model of computation

e In-memory computation is fast (memory access latency ~ 1055)
e Disk-access is slow (HDD disk access latency: = 107%s, SSD: = 10~°s)

e Hence: execution time is dominated by disk 1/0

We will use the number of 1/O operations required as cost metric

117

Intermezzo: Understanding memory and disk performance

The performance of storage devices (including memory) is measured
using three metrics:

e Access latency: How long it takes for a storage device to start an I/O task
(measured in seconds)

e Transfer rate (a.k.a. throughput or bandwidth): The speed at which data is
transferred out of or into the storage device, once it has started (measured in

MB/s)

e For a given block size, how often a storage device can perform |/O tasks of that
block size is measured in Input/Output Operations per Second (IOPS).

118

Intermezzo: Understanding memory and disk performance

Some typical values:

memory |HDD SSD
Access latency |~ 1078 s|~ 1073 s ~ 1075 s

Throughput |20 GB/s | 100-200 MB/s | 500-600 MB /s

- AS SSD Benchmark 1.7.4739.38088 (o] =@][=]] & AS SSD Benchmark 1.7.4739.38088 (o] = =]
File Edit View Toels Language Help File Edit View Tools Language Help
| £: Heachi HDS7230208LAG42 v| |HDD SATA 197 Win 81 IRST 131 | |c: SanDisk SDSSDXP480G v| SanDisk EX I Win 8.1 UEFIIRST 13.1 |
Hitachi Read: Write: SanDisk Read: Write:
MNBOASCD R1311
iaStorh - OK iaStord - OK
1024 K- OK 541696 K- OK
1863.01 GB 44713 GB
~¥ 16MB

¥ 16MB

4K 4K
4K-64Thrd 4K-64Thrd
512B 512B
Score:

Score:

119

Motivation: searching in a database

A hypothetical database
e A relation R(A, B,C, D). Each tuple comprises 32 bytes.
e Attribute C is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

e Hence there are 128 tuples per block, or 10° blocks in total.

Searching for record with C' = 10 in case R is arbitrary
e For every block X in R:

o Load X from disk in memory
o Check whether there is a tuple with A = 10 in X;
o If so output record and terminate loop; otherwise continue

o Release X from memory

e Worst case |/O Cost: the total number of blocks in R, or 10° I/O’s.
e At 1073 s per |0 this takes 16.6 minutes. = Can we do better?

120

Index structures

See corresponding slides

121

Searching in a database with a index (1/2)

The database
e A relation R(A, B,C, D). Each tuple comprises 32 bytes.
o Attribute C is a (secondary) key for R.
e There are 128 - 10Y tuples in the relation. The block size B = 4096 bytes.

e Hence there are 128 tuples per block, or 10° blocks in total.

The index

e There is a secondary index on attribute C.

e A (key value,ptr) pair in the index takes 16 bytes.

e Question: How many (key, ptr) pairs fit in a block?

e Question: How many blocks does the dense 1st level index take?

e Question: How many blocks does the sparse 2nd level index take?

122

Searching in a database with a index (1/2)

The database
e A relation R(A, B,C, D). Each tuple comprises 32 bytes.
o Attribute C is a (secondary) key for R.

e There are 128 - 10Y tuples in the relation. The block size B = 4096 bytes.

e Hence there are 128 tuples per block, or 10° blocks in total.

The index

e There is a secondary index on attribute C.

e A (key value,ptr) pair in the index takes 16 bytes.

e Question: How many (key, ptr) pairs fit in a block? 256

e Question: How many blocks does the dense 1st level index take? 5 - 10°

e Question: How many blocks does the sparse 2nd level index take? 1954

123

Searching in a database with a index (2/2)

Searching for records with C' = 10 using the index

e Algorithm:

o Loop through all of the blocks X in sparse index, one, by one, and find the
(key, ptr) pair in X with the largest key value satisfying key <= 10.

o Follow ptr to dense index block, and use the information in this block to locate
the block in R containing the record with C' = 10 (if it exists).

e Worst case |/O Cost: loading of all blocks of sparse index + 1 block of dense
index + 1 block of R, or 1954 + 1+ 1 = 1956 1/Os.

e At 1079 s per 1/O this takes 2 seconds.

Since the sparse index is sorted, we could perform binary search on it if
it is sequential.

e | /O Cost: binary search in sparse index + 1 block of dense index + 1 block of R,
or log,(1954) + 14+ 1 =14 1/0Os — 0.014 seconds.

124

Searching in a database with a BTree index (1/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index
e There is a BTree index on attribute C.
e A key value takes 8 bytes, a ptr also 8 bytes.

e Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

125

Searching in a database with a BTree index (2/6)

The database
e A relation R(A, B,C, D). Attribute C is a (secondary) key for R.
e There are 128 - 10% tuples in the relation. The block size B = 4096 bytes.

The index
e There is a BTree index on attribute C'.
e A key value takes 8 bytes, a ptr also 8 bytes.

e Question: What is the maximum order n of the BTree, taking into account that
blocks are 4096 bytes large?

e Answer: A BTree of order n stores n + 1 pointers and n key values in each
block. We are hence looking for the largest integer value of n satisfying:

(n+ 1) ptrs x 8 bytes/ptr + n keys x 8 bytes/ptr < 4096 bytes
As such, n = 255: we store 256 pointers and 255 keys in a block.

126

Searching in a database with a BTree index (3/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C.

e Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

127

Searching in a database with a BTree index (4/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C.

e Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

e Answer: : Observe;

6
o there are {1255150 —‘ leaf blocks (at level 1)

128

Searching in a database with a BTree index (4/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C.

e Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

e Answer: : Observe;

128100 |
o there are | =Tz~ | leaf blocks (at level 1)

128100 |
(255)2

o there are blocks at level 2

129

Searching in a database with a BTree index (4/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C'.

e Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

e Answer: : Observe:

o there are
o there are

o there are

[128106]
255

128100 |
(255)2

[128106 |

(255)3

leaf blocks (at level 1)
blocks at level 2

blocks at level 3

130

Searching in a database with a BTree index (4/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C.

e Question: What is the height of the BTree assuming that leaf blocks are full
and internal blocks contain 255 pointers?

e Answer: : Observe;

6
o So, there are | 2810\ blocks at level A
(255)"

Since the root is at the level where there is only one block, we are looking for the

6
smallest value of / such that {%W = 1.

So, h = [logys;128 - 10°| =4 .

131

Searching in a database with a BTree index (5/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C.

e Observe: The height of the BTree is the smallest when all blocks are full. It is
the largest when all blocks are only half full (when each block has its minimum
size).

e Question: What is the height of the BTree assuming that all blocks are only
half full?

132

Searching in a database with a BTree index (5/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index

e [here is a BTree index of order 255 on attribute C.

e Observe: The height of the BTree is the smallest when all blocks are full. It is
the largest when all blocks are only half full (when each block has its minimum
size).

e Question: What is the height of the BTree assuming that all blocks are only

half full? Answer: Same reasoning as before:
= [logy95 128 - 10°| =4

133

Searching in a database with a BTree index (6/6)

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index
e There is a BTree index of order 255 on attribute C.
e Hence we can store at most 256 pointers; and 255 key values in a block.

e Question: What is the cost of searching for the record with C' = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

134

Searching in a database with a BTree index (6/6)

The database
e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10° tuples in the relation. The block size B = 4096 bytes.

The index
e There is a BTree index of order 255 on attribute C.
e Hence we can store at most 256 pointers; and 255 key values in a block.

e Question: What is the cost of searching for the record with C' = 10 using this
BTree, assuming the worst-case scenario that each block in the BTree is half full?

Answer: height of the Bree in which blocks are half full + 1 1/0 to access main
file
= [logm 128 - 1O6W +1=>5 — at 107°s per 1/O this takes 0.005 seconds.

135

Inserting in a BTree index

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10% tuples in the relation.

The index
e There is a BTree index of order 255 on attribute C.

e Hence we can store at most 256 pointers; and 255 key values in a block.

e Question: What is the cost of inserting a new record in this BTree, assuming

the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

136

Inserting in a BTree index

The database

e A relation R(A, B,C, D). Attribute C' is a (secondary) key for R.
e There are 128 - 10% tuples in the relation.

The index

e There is a BTree index on attribute C.
e Hence we can store at most 256 pointers; and 255 key values in a block.

e Question: What is the cost of inserting a new record in this BTree, assuming

the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: in this scenario, we will need to split an existing block at each level,
and create a new root.

137

Inserting in a BTree index

The database

e A relation R(A, B,C, D). Attribute C is a (secondary) key for R.
e There are 128 - 10% tuples in the relation.

The index
e There is a BTree index on attribute C.
e Hence we can store at most 256 pointers; and 255 key values in a block.

e Question: What is the cost of inserting a new record in this BTree, assuming

the record is already in the main file, and assuming the worst-case scenario where
each block in the BTree is full?

Answer: cost of a search + 2 |/O's per level of the BTree + new root
= |10gys5 128 - 10°| + 2 |logyss 128 - 10°| +1 = 3 |logyss 128 - 109] +1 =13 —
0.013s

138

