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Exam modalities

• You are allotted a maximum of 3.5 hours to complete this exam.

• You are allowed to use a calculator, provided that this is a bare-bones calculator, and not a
“graphical” calculator capable of being programmed and/or capable of storing text.

• Draft paper is provided by the exam supervisor.

• You should answer each question in the foreseen space after the question. Should this space
prove to be insufficient you are allowed to use the back of the page as well. Draft paper will
not be corrected!

• Be sure to motivate your answer, and give subresults where appropriate. In the absense of
subresults, an incorrect final answer yields a score of 0!
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Question 1. (20 pts) Consider the relations JobParts(job nbr, part nbr), and SupParts(sup nbr,

part nbr) of suppliers and the parts that they provide. Translate the following SQL query to the
relational algebra:

SELECT JP1.job_nbr, SP1.sup_nbr

FROM JobParts AS JP1, SupParts AS SP1

WHERE NOT EXISTS

(SELECT *

FROM JobParts AS JP2

WHERE JP2.job_nbr = JP1.job_nbr

AND JP2.part_nbr NOT IN

(SELECT SP2.part_nbr

FROM SupParts AS SP2

WHERE SP2.sup_nbr = SP1.sup_nbr)

)

Use the algorithm studied in the course for this purpose. Give sub-results and motivate your answer.

Step 1. Normalize all subqueries into a form with only EXISTS and NOT EXISTS.

SELECT JP1.job_nbr, SP1.sup_nbr

FROM JobParts AS JP1, SupParts AS SP1

WHERE NOT EXISTS

(SELECT *

FROM JobParts AS JP2

WHERE JP2.job_nbr = JP1.job_nbr

AND NOT EXISTS

(SELECT SP2.part_nbr

FROM SupParts AS SP2

WHERE SP2.sup_nbr = SP1.sup_nbr

AND JP2.part_nbr = SP2.part_nbr)

)

Step 2 Normalize into CNF (for the subqueries). But this query is already in CNF.

Step 3 Translation of the innermost subquery Q1:

(SELECT SP2.part_nbr

FROM SupParts AS SP2

WHERE SP2.sup_nbr = SP1.sup_nbr

AND JP2.part_nbr = SP2.part_nbr)

The context relations are SP1, and JP2. The translation is hence

e1 := πSP2.part nbr,SP1.∗,JP2.∗σSP2.sup nbr = SP1.sup nbr AND JP2.part nbr = SP2.part nbr

(ρSP2SupParts× ρSP1SupParts× ρJP1Jobparts)

Step 4 Translation of the subquery Q2:

(SELECT *

FROM JobParts AS JP2

WHERE JP2.job_nbr = JP1.job_nbr

AND NOT EXISTS
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(SELECT SP2.part_nbr

FROM SupParts AS SP2

WHERE SP2.sup_nbr = SP1.sup_nbr

AND JP2.part_nbr = SP2.part_nbr)

)

Here, the context relation is JP1 (for the query itself), but also SP1 since it occurs as a context
relation in a NOT EXISTS subquery. The from-where part is hence

e2 = ρJP2JobParts× ρSP1SupParts× ρJP1Jobparts

De-correlation is done by means of an anti-join since this is a NOT EXISTS subquery. The optimization
can hence not be applied in this case. The de-correlation gives

e3 = e2onπSP1.∗,JP2(e1)

It remains to translate the select and where clause, which yields:

e4 = πJP2.∗,JP1.∗,SP1.∗σJP2.job nbr = JP1.job nbr(e3)

Step 5 It now remains to translate the entire query. There are hence not context relations. Translation
The from-where part of the outer query yields:

e5 = ρSP1SupParts× ρJP1Jobparts

De-correlation is done by means of an anti-join since this is a NOT EXISTS subquery. The optimization
can hence not be applied in this case. The de-correlation gives

e6 = e5onπSP1.*,JP1.*e4

It remains to translate the select clause, which yields:

e7 = πJP1.job nbr,SP1.sup nbr(e6)

In full, with merging of subsequent projections::

πJP1.job nbr,SP1.sup nbr((ρSP1SupParts× ρJP1Jobparts)

onπJP1.∗,SP1.∗σJP2.job nbr = JP1.job nbr((ρJP2JobParts× ρSP1SupParts× ρJP1Jobparts)

onπSP1.∗,JP2σSP2.sup nbr = SP1.sup nbr AND JP2.part nbr = SP2.part nbr

(ρSP2SupParts× ρSP1SupParts× ρJP1Jobparts)))
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Question 2. (10 pts) Consider the two following queries over the relations R(A,B) and S(C,D). Are
these queries equivalent, i.e., do they yield the same answer on every database? Explain why (not).

• πR1.AσR2.A=S1.C∧S2.C=R1.A∧S2.D=R2.B (ρR1(R)onR1.B=R2.A ρR2(R)× σS1.D=”ULB”ρS1(S)× ρS2(S))

• Q(u)← R(u, v), R(v, u), S(u, ”ULB”), S(u, u)

These queries are not equivalent. To see why we reason as follows.

Step 1. We convert the first query into an equivalent query in the syntax of conjunctive queries.

Q2(x)← R(x, y), R(y, z), S(y, "ULB"), S(x, z)

Step 2. To be equivalent, it must hold that both Q1 ⊆ Q2 and Q2 ⊆ Q1. However, Q2 6⊆ Q1, as
shown by running Q1 on the canonical database D2 = {R(ẋ, ẏ), R(ẏ, ż), S(ẏ, "ULB"), S(ẋ, ż)} of Q2.
Indeed, ẋ ∈ Q2(D2) but ẋ 6∈ Q1(D2). To verify the latter, suppose for the purpose of contradiction
that there is a matching of Q1 in D2 that returns ẋ. Then it has to map u 7→ ẋ. Furthermore, in order
to embed the first atom R(u, v) of Q1 into D2, it has to map

u 7→ ẋ v 7→ ẏ

But then, the second atom R(v, u) of Q1 is mapped to R(ẏ, ẋ), which is not in D2, a contradiction.

Conclusion. ẋ ∈ Q2(D2), but ẋ 6∈ Q1(D2). Therefore, we have established that Q2 6⊆ Q1, and hence
Q2 is not equivalent to Q1.
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Question 3. (15 pts) Consider the following extensible hash table with k = 4 (the hash function maps
values to 4-bit integers) and i = 2.

1. Insert a key with the hash value 0111 into the extensible hash table above. Document each
intermediate step in the process and draw the final result.

This key is inserted into the bucket with prefix 01. The corresponding block is full, but its local
depth is 1 whereas the global depth i = 2. We can hence just split the block, where the old
block retains key 0001 (since it has prefix 00) and the new block gets keys 0110 and 0111. Both
blocks have their local depth set to 2, and we re-direct the pointer of bucket 01 to the new block
containing keys 0110 and 0111.
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2. Insert a key with the hash value 1011 into the original extensible hash table above (not the result
of (1)). Document each intermediate step in the process and draw the final result.

This key needs to be inserted into the bucket with prefix 10. The block corresponding to this
bucket is full, however, and its local depth equals the global depth i = 3. We hence increase i
to 3, causing the directory to double, with buckets for prefixes 000 − 111. The block is split,
into two blocks, one corresponding to prefix 100 (containing key 100) and the other to prefix 101
(containing keys 1010 and 1011). The directory is updated accordingly (see figure).
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3. Give a sequence of two insertions that will cause the directory to double twice. If this is not
possible, write NOT POSSIBLE. Start from the original extensible hash table above. The two
hashed key values in your sequence should be distinct, and should be distinct from the values
already shown in the hash table.

NOT POSSIBLE with a hash function that only outputs k = 4 bits.
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Question 4. (40 pts) State if the following statements are TRUE or FALSE. If the statement is
FALSE, also briefly explain why.

1. Relational algebra expressions and conjunctive queries are two separate syntaxes for the same
class of queries.

FALSE. Select-project-join expressions and conjunctive queries are two separate syntaxes for the
same class of queries. Relational algebra expressions are strictly more powerful.

2. A conjunctive query Q1 is contained in a conjunctive query Q2 if, and only if, there is a homo-
morphism from Q1 to Q2.

FALSE. Conjunctive query Q1 is contained in conjunctive query Q2 if and only there is a
homomorphism from Q2 to Q1.

3. Consider relations R(A,B) and S(B,C) where T (R) = 5000, T (S) = 3000, and B is a primary
key on S. The expected number of tuples in R on S is less than or equal to 3000.

FALSE. The expected number is given by the formula

T (R on S) =
T (R)× T (S)

max(V (R,B), V (S,B))

We do not know V (R,B), but V (S,B) = 3000 (since B is a primary key for S). Therefore, the
above formula yields T (R on S) = T (R) = 5000.

4. Consider relation R(A) with T (R) = 5000 and A an integer attribute whose values are uniformly
distributed within [1, 1000]. The expected number of tuples in σA 6=500(R) is 4995.

TRUE.

5. For any data file, it is possible to construct two separate sparse first level indexes on different
keys.

FALSE. A sparse index only makes sense if the data file is sorted on the search key. It is hence
not possible to have two separate sparse first level indexes on the same data file, for different
keys.

6. For any data file, it is possible to construct two separate dense first level indexes on different
keys.

TRUE
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7. For any data file, it is possible to construct a sparse first (lower) level index and a dense second
(higher) level index. Both indices should be useful.

FALSE. A dense second level index does not provide any value.

8. For any data file, it is possible to construct a dense first (lower) level index and a sparse second
(higher) level index. Both indices should be useful.

TRUE.

9. k-d tree indexes are better than hash tables based on partitioned hash functions for answering
range queries on multiple key attributes.

TRUE.

10. We have a B-tree index on attributes (A,B) of a relation R (i.e., a single B-tree index for both
of these attributes together). It is possible to use this index to efficiently retrieve the records in
R with A = 10 and B = 50.

TRUE.

11. We have a B-tree index on attributes (A,B) of a relation R (i.e., a single B-tree index for both
of these attributes together). It is not possible to use this index to efficiently retrieve the records
in R with A = 10 and B > 50.

FALSE. The B-tree index sorts (A,B) using the lexicographic order, i.e., (x, y) < (x′, y′) if x < x′

or x = x′ and y < y′. This implies that we can first search the B-tree for the key A = 10∧B = 50,
and scan leaves to the right (in ascending order) to find those records with A = 10 ∧B = 50.

12. Consider a relation R(A,B) that has one clustered index on A. When retrieving records for a
range query σA≥10, the clustered index should always be used.

FALSE. We do not know if the index is a B-tree or a hash table. If it is a hash table, we cannot
use the index to answer this query. If it is a B-tree, then yes, using the index cannot be worse
than just scanning the table.
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13. When it is possible, a single-pass join is always the most efficient method for joining two relations.

FALSE. If one of the tables is very small and the other has an index on the join attribute, then
an index join may be cheaper than even the one-pass join.

14. When computing the set-based union R ∪ S by means of a sort-merge based algorithm, we can

reduce the cost by 2B(R) + 2B(S) I/Os, provided that
⌈
B(R)
M

⌉
+
⌈
B(S)
M

⌉
≤M . Here, B(R) and

B(S) are the size of R and S (in blocks) and M is the available memory (in blocks). B(R) and
B(S) can be arbitrarily large.

FALSE. We can reduce this cost only if⌈
B(R)

M dlogM B(R)e−1

⌉
+

⌈
B(S)

M dlogM B(S)e−1

⌉
≤M

The formula listed hence only applies when logM B(R)− 1 = 1 and logM B(S)− 1 = 1.

15. Consider that we want to compute the set-based union R∪ S of relations R and S with B(R) =
1000, B(S) = 200, and M = 32 buffers available. In this case, the sort-merge algorithm and the
hash-based algorithm have the same cost.

FALSE. The sort-merge join cannot be optimized and costs

2B(R) dlogM B(R)e+ 2B(S) dlogM B(S)e+B(R) +B(S) = 6000

while the has join costs

2B(R)
⌈
logM−1B(S)− 1

⌉
+ 2B(S)

⌈
logM−1B(S)− 1

⌉
+B(R) +B(S) = 3600

16. Any lock-based schedule is conflict serializable.

FALSE. Only if the lock-based schedule is two-phase locked.

17. Undo logging is suitable for use with archiving, although it is less efficient than redo or undo/redo
logging.

FALSE. Undo logging is not suitable for archiving since we cannot use it to redo the part of
the log that was captured after the backup was made (in order to forward the backup to our
operational database).

18. Consider an undo/redo log that contains a successfully completed non-quiescent checkpoint. A
crash occurs just after the checkpoint finishes and the log records were flushed on disk. To
recover from this error, in no case do we need to scan further back in the log than the start of
this last successfully completed non-quiescent checkpoint.

FALSE. We may need to scan further back to undo those transactions that were active when
the checkpoint start, yet did not commit yet at the time that the crash occurred.
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19. The schedule r1(A), w2(A), r2(B), w1(B), w3(A), w3(B) is conflict-serializable.

FALSE Here is the dependency graphs, which contains a cycle.

20. Consider the sequences of events

R1(A,B);R2(B,C);V1;R3(C,D);V3;W1(A);V2;W2(A);W3(B);

When processed by a validation-based scheduler, all validation attempts succeed (and hence, no
transaction is restarted).

In the above schedule, we use Ri(X) to mean “transaction Ti starts, and its read set is the list
of database elements X”. Also, Vi means “Ti attempts to validate,” and Wi(X) means that “Ti
finishes, and its write set was X.”

FALSE. When V2 tries to validate, the scheduler will check that RS(T2)∩WS(T3) = ∅, which is
not the case. Hence, T2 is aborted and restarted.
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Question 5. (55 pts) The following relations store emails, and link each email with keywords that
occur in the email. Primary keys are underlined.

• Email(eid integer, from char(60), to char(60), sentdate date, subject char(100), body char(1800))

• KeyWordOccurrence(kid integer, eid integer, position integer)

• KeyWord(kid integer, keyword char (100))

Integers and dates comprise 4 bytes. Each of these relations has a clustered B-tree on the primary
key. In addition, there are unclustered B-tree indexes on Email.from and Email.to. Blocks are 4096
bytes large and there are 78 main memory buffers available. The Email relation has 4096 records; the
KeyWordOccurrence relation has 20480 records and the KeyWord relation has 256 records. There are
20 unique senders and 40 unique receivers in the Email table. No keyword is repeated in the Keyword

table.
The query compiler has already obtained the following logical query plan:

πkid,from
(
σto="John"(Email) on KeywordOccurrence on σkeyword="databases"(Keyword)

)
Construct a sufficiently optimal physical query plan. Use disk I/Os as your optimization metric.
Motivate your answer, and describe assumptions that you make. It suffices to make only locally-
optimal decisions (in other words: you may use the greedy algorithm, and your solution need not be
globally optimal.)

Observations:

• Email tuples are 2028 bytes large. We can hence fit 2 tuples in a block. Hence

B(E) =

⌈
4096

2

⌉
= 2048.

• KeyWordOccurrence tuples are 12 bytes large. We can hence fit 341 tuples in a block. Hence

B(KWO) =

⌈
20480

341

⌉
= 61.

• Keyword tuples are 104 bytes large. We can hence fit 40 tuples per block Hence

B(KW ) =

⌈
256

40

⌉
= 7.

Step 1. We start bottom-up and first determine a plan for e1 = σto="John"(Email). A full table scan
followed by a filter costs B(E) = 2048 blocks. Alternatively, we can use the unclustered B-tree index
on Email.to, which costs T (e1) block I/O,s where

T (e1) =

⌈
1

40
× T (E)

⌉
=

⌈
1

40
× 4096

⌉
= 103.

We hence prefer to use the unclustered index, since it is cheaper.
There are T (e1) = 103 tuples in the output of e1, which fits in 52 blocks.

Step 2. To evaluate e2 = σkeyword="databases"(Keyword) we can only use a table scan (since there is no
index on keyword. This costs B(KW ) = 7 I/Os. The estimated number of tuples resulting from e2 is

T (e2) =

⌈
1

256
× T (KW )

⌉
= 1
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This fits in a single block, i.e., B(e2) = 1.

Step 3. Now, we have to fix a join order. We consider all pairs, and pick the one with the least cost.

Pair e1 on KWO. We need 1 buffer to compute e1. Hence we have M ′ := M − 1 = 77 main
memory buffers left. Both e1 and KWO fit in main memory and hence a one-pass join is possible,
which costs B(e1) + B(KWO) = 52 + 61 = 113 I/Os. An index join is not possible, because KWO
has an index on the composite key (kid, eid), which we cannot use to answer point queries on eid
efficiently if the index stores keys in (kid,eid) lexicographic order. Furthermore, e1 is a subresult and
hence does not have indexes. All other join methods always have a higher cost. Hence, the one-pass
join is to be preferred here, which costs 113.

Pair KWO on e2. We need 1 buffer to compute e2. Hence we have M ′ := M − 1 = 77 main
memory buffers left. Both KWO and e2 fit in main memory, and hence a one-pass join is possible,
which costs B(KWO) +B(e2) = 61 + 1 = 62 I/Os. An index join using KWO as the outer relation is
not possible, since e2 is a subresult and does not have any indexes. An index join using e2 as the outer
relation is possible because KWO has an index on the composite key (kid, eid). If we assume that this
BTree uses the lexicographic order to sort its search keys, we can use it to answer point queries on kid
efficiently. Since the BTree is clustered, this costs:

B(e2) + T (e2)×
B(KWO)

V (KWO, kid)

Assuming that ever keyword in KW occurs in KWO, V (KWO, kid) = 256. Therefore, the index join
costs

B(e2) + T (e2)×
B(KWO)

V (KWO, kid)
= 1 + 1×

⌈
61

256

⌉
= 2

(Note: this assumes a uniform distribution of keywords in the KWO table.)
All other join methods always have a higher cost. Hence, the index join is to be preferred here,

which costs 2.

Pair e1 on e2. This is a cartesian product. Both fit in main memory and a one-pass join is possible,
which costs B(e1) + B(e2) = 52 + 1 = 53 I/Os. An index join is not possible since e1 and e2 are
subresults and do not have indexes. All other join methods always have a higher cost.

Conclusion. The pair with the least expected cost is e3 = KWO on e2. The number of expected
tuples in the output is

T (e3) =
T (KWO)× T (e2)

max(V (KWO, kid), V (e2, kid))
=

20480 ∗ 1

256
= 80.

We expect a tuple of e3 to be of size 12 + 104 = 114 (the sum of the sizes of KWO and KW records).

We can fit
⌊
4096
114

⌋
= 35 of such tuples in a block. Hence, B(e3) =

⌈
T (e3)
35

⌉
= 3 blocks.

Step 4. It remains to join e3 with E. We need 2 buffers to compute the index join of e3. This hence
leaves M ′ := M − 2 = 76 buffers remaining. Since e3 fits in memory, we can then use a one-pass join
to compute e4 = e3 on E. This costs B(e3) + B(E) = 3 + 61 = 64 I/Os. Alternatively, we can use e3
as an outer relation and use the index on E’s primary key to compute e4 by means of an index join.
Since eid is a primary key of KWO, there can be only one matching tuple per lookup. The cost of the
index join hence is

B(e3) + T (e3)× 1 = 3 + 80× 1 = 81

which is more expensive than the one-pass join. All other join methods cost more. Hence, the one-pass
join is to be preferred.

Step 5. Finally the project can be computed on the fly when we compute the final join and does not
incur any cost.
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