Question 1. Consider the two relations Works(eid, did, pct_time) and Dept(did, budget, floor). Translate the following SQL query to the relational algebra and heuristically optimize this expression by applying the algebraic rewriting laws:

```sql
SELECT D.did, COUNT(W.eid)
FROM Dept D, Works W,
WHERE
    (D.floor = 1 OR D.budget < 15000)
    AND D.did IN
        ( SELECT D2.did FROM Dept D2
            WHERE 2000 >= (SELECT SUM(W2.pct_time)
                FROM Works W2
                WHERE W2.did = D2.did)
        )
GROUP BY D.did
```

Use the algorithm studied in the course for the translation. Give sub-results and motivate your answer.

Question 2. Prove that a conjunctive query \(Q_1 \) is contained in a conjunctive query \(Q_2 \) if, and only if, there exists a homomorphism from \(Q_2 \) into \(Q_1 \).

Question 3. Consider the following relational algebra expression over the relation \(R(A, B, C) \):

\[
\pi_{R_2.A,R_3.B,R_1.C} \\
\sigma_{R_1.A=R_5.A} \sigma_{R_2.A=R_4.A} \sigma_{R_1.B=R_2.B} \sigma_{R_4.B=R_5.B} \sigma_{R_2.C=R_3.C} \sigma_{R_5.C=R_1.C} \\
\rho_{R_1(R)} \times \rho_{R_2(R)} \times \rho_{R_3(R)} \times \rho_{R_4(R)} \times \rho_{R_5(R)}
\]

Optimize this expression by removing redundant joins. Give sub-results and motivate your answer.
Question 4. Consider the clustered relations \(R(A, B, C) \) and \(S(B, C) \). Relation \(R \) has a clustered B-tree index on \(A \). Relation \(S \) has a hashing index on \((B, C)\) together. The attributes \((B, C)\) form a key for \(S \). An \(R \)-record comprises 50 bytes while an \(S \)-record comprises 40 bytes. Blocks are 4000 bytes large, and there are 5 main memory buffers available. The statistics show that \(R \) has 36000 tuples, and that \(S \) has 10000 tuples. They also show that the values of \(R.A \) lie within the range \([0, 100]\), uniformly distributed.

The query compiler has already obtained the following logical query plan:

\[
\sigma_{\Sigma_{\text{sum}(C)}>1500} \gamma_{B, \Sigma_{\text{sum}(C)}}(\pi_{B,C}(\sigma_{A\geq 90}(R)) \cap S)
\]

Construct a sufficiently optimal physical query plan. Use disk I/Os as your optimization metric. Motivate your answer, and describe any assumptions that you make. It suffices to make only locally-optimal decisions (in other words: you may use the greedy algorithm, and your solution need not be globally optimal.)

Question 5. Assume that we control concurrency by means of a validation-based scheduler. Explain what this scheduler does upon the following sequence of actions. Here, \(R_i(X) \) is used to mean “transaction \(T_i \) starts, and its read set is the list of database elements \(X \); \(V_i \) means “\(T_i \) attempts to validate”; and \(W_i(X) \) means “\(T_i \) finishes, and its write set was \(X \).”

1. \(R_1(A, B); R_2(B, C); R_3(C); V_1; V_2; V_3; W_1(C); W_2(B); W_3(A); \)
2. \(R_1(A, B); R_2(B, C); V_1; R_3(C, D); V_3; W_1(A); V_2; W_2(A); W_3(D); \)