
Optimizing select-project-join expressions

Jan Van den Bussche
Stijn Vansummeren

1 Introduction

The expression that we obtain by translating a SQL query q into the re-
lational algebra is called the logical query plan for q. The ultimate goal is
to further translate this logical query plan into a physical query plan that
contains all details on how the query is to be executed. First, however, we
can apply some important optimizations directly on the logical query plan.
These optimizations transform the logical query plan into an equivalent log-
ical query plan that is more efficient to execute.

In paragraph 16.3.3, the book discusses the simple (but very important)
logical optimizations of “pushing” selections and projections; and recogniz-
ing joins, based on the algebraic equalities from section 16.2.

In addition, in these notes, we describe another important logical opti-
mization: the removal of redundant joins.

2 Undecidability of the general problem

In general, we could formulate the optimization problem of relational algebra
expressions as follows:

Input: A relational algebra expression e.

Output: A relational algebra expression e′ such that:

1. e′ is equivalent to e (denoted as e′ ≡ e), in the sense that e(D) =
e′(D) for every database D. Here, e(D) stands for the relation
resulting from evaluating e on D.

2. e′ is optimal, in the sense that there is no expression e′ that is
shorter than e′, yet still equivalent to e.

Of course, we have to define what the length of a relational algebra expression
is. A good way to do this is to count the number of times a relational algebra
operator is applied in the expression.

1



Example 1. The length of the expression R∩ (S ∩R) is two (there are two
applications of ∩). This expression is not optimal because it is equivalent
to the shorter expression R ∩ S.

Unfortunately, it is possible to show that there is no algorithm that solves
the relational algebra optimization problem above. We can see this by con-
sidering the following equivalence problem for the relational algebra:

Input: Two relational algebra expressions.

Output: ‘Yes’ if these two expressions are equivalent; ‘no’ otherwise.

It is known that this problem is undecidable: there is no algorithm that (1)
always returns the correct answer and (2) always returns this answer after
a finite amount of time. Actually, the problem is already undecidable for
relational algebra expressions over the extremely simple database schema
with a single relation R(A,B). The proof that the equivalence problem is
undecidable falls outside the scope of this course.

Using the undecidability of the equivalence problem, however, we can
show that there is no algorithm that solves the optimization problem. In-
deed, suppose, for the purpose of contradiction, that there does exists some
algorithm for the optimization problem. We can then construct the following
algorithm to decide the equivalence problem:

1. Given two expressions e1 and e2, construct the expression (e1 − e2) ∪
(e2 − e1), and optimize it. Let e′ be the result.

2. If e′ is syntactically equal to one of the following two expressions,
output ‘Yes’, otherwise output ‘No’

σfalse(R) or R−R.

Indeed, e1 and e2 are equivalent if, and only if, (e1−e2)∪ (e2−e1) expresses
the empty query, i.e., the query that returns the empty relation on all input
databases. And the two expressions σfalse(R) and R − R above are exactly
the only two shortest expressions that express the empty query.

Conclusion We may hence conclude that there is no algorithm that can
optimize general relational algebra expressions. In the remainder of these
notes, however, we will see that there does exist an algorithm for optimizing
expressions in a fragment of the relational algebra. This fragment consist
of the so-called select-project-join expressions (to be formally defined later).
Optimizing such expressions consists of eliminating redundant joins. We
first motivate why eliminating such joins is important, and then move on to
the actual optimization algorithm.

2



3 Redundant Joins

The relational algebra expression obtained by translating a SQL query can
contain redundant joins for various reasons. The three most important rea-
sons are human errors; using views; and integrity constraints.

Human errors. Inexperienced (or careless, or sleepy) SQL-programmers
can occasionally be caught writing needlessly complicated SQL statements.
Consider the following example.

SELECT movieTitle FROM StarsIn S1

WHERE starName IN (SELECT name

FROM MovieStar, StarsIn S2

WHERE birthdate = 1960

AND S2.movieTitle = S1.movieTitle)

A moment’s reflection shows that there is no need to use the StarsIn relation
twice in this statement. Indeed, the statement is equivalent to the following,
simpler one.

SELECT movieTitle FROM StarsIn

WHERE starName IN (SELECT name

FROM MovieStar

WHERE birthdate = 1960)

If we now compare the relational algebra translations of the above two state-
ments, then we see that the first expression has a redundant join:

πS1.movieTitle(ρS2
(StarsIn) on

S2.movieTitle=S1.movieTitle
ρS1

(StarsIn)

on
S1.starName=name

σbirthdate=1960(MovieStar))

whereas the second does not:

πS1.movieTitle(ρS1
(StarsIn) on

S1.starName=name
σbirthdate=1960(MovieStar)).

Views. Many applications query the database using views rather than the
raw base tables. To evaluate such queries, the query compiler will automati-
cally substitute each view name in a query by its corresponding defining SQL
expression. The corresponding relational algebra expression will frequently
contain redundant joins.

Consider, for example, the following view definition that bundles all
information in the base relations Movie, StarsIn, and MovieStar into a big
virtual “universal relation”:

3



CREATE VIEW MovieView AS

SELECT title, year, length, studioName, producerC#,

name, address, gender, birthdate

FROM Movie, StarsIn, MovieStar

WHERE title = movieTitle AND year = movieYear

AND starName = name

This view makes it easier to formulate queries. To retrieve all titles of movies
with an actor born in 1960, we could write, for example:

SELECT title FROM MovieView WHERE birthdate = 1960

The query compiler transforms this statement by replacing MovieView by
its defining expression:

SELECT title FROM (Q) WHERE birthdate = 1960

Here, Q denotes the Select-statement from the view definition above.
Now consider the following query, which retrieves all actors that have

co-acted with Kevin Bacon:

SELECT V1.name

FROM MovieView V1, MovieView V2

WHERE V1.title = V2.title AND V1.year = V2.year

AND V2.name = ’Kevin Bacon’

If we replace the two occurrences of MovieView by Q, and subsequently
translate the resulting SQL query into the relational algebra, then we obtain
the following expression (from which we have omitted the final projection)

ρV1(Movie on
title=movieTitle
year=movieYear

StarsIn on
starName=name

MovieStar)

on
V1.title=V2.title
V1.year=V2.year

ρV2(Movie on
title=movieTitle
year=movieYear

StarsIn on
starName=name

σname=‘Kevin Bacon’(MovieStar))

Note that, because of the central join, one of the two joins with Movie is re-
dundant. The expression is hence equivalent to the following simplification:

ρV1(Movie on
title=movieTitle
year=movieYear

StarsIn on
starName=name

MovieStar)

on
V1.title=V2.movieTitle
V1.year=V2.movieYear

ρV2(StarsIn on
starName=name

σname=‘Kevin Bacon’(MovieStar)) (∗)

4



Integrity constraints Consider the following query:

SELECT title

FROM Movie, StarsIn, MovieStar

WHERE title = movieTitle AND starName = name

AND birthdate = 1960

In the presence of the integrity constraint that every movieTitle that occurs
in the relation StarsIn must also occur as the title in relation Movie, we
can simplify this query as follows:

SELECT movieTitle

FROM StarsIn, MovieStar

WHERE starName = name AND birthdate = 1960

The relational algebra translation for the first SQL query is

πtitle(Movie on
title=movieTitle

StarsIn on
starName=name

σname=1960(MovieStar))

(†)
while the translation of the second SQL query has one join less:

πmovieTitle(StarsIn on
starName=name

σname=1960(MovieStar)).

Note, however, that this join is only redundant when the database satisfies
the integrity constraint mentioned above.

4 Select-project-join expressions and conjunctive
queries

From now on, we will only occupy ourselves with relational algebra expres-
sions built from the following operators:

• projection;

• selection σθ, where the condition θ is a conjunction of equalities;

• cartesian product; natural join; or theta-join. For theta-joins, the join
condition must again be a conjunction of equalities;

• renaming.

We call such expressions “select-project-join” expressions. To illustrate, all
expressions from Section 3 are examples of select-project-join expressions.
In contrast, R∪S and R−S are not select-project-join expressions (because
union and difference are not mentioned in the list of operators above), nor
are R onR.A=S.B∨R.C=S.C S and R onR.A>S.B S (because the join conditions
are not conjunctions of equalities).

There exists an alternate syntax for select-project-join queries that is
much easier to work with for the purpose of optimization. This syntax is
the syntax of “conjunctive queries”.

5



4.1 Definition of conjunctive queries

An atom is an expression of the form R(u1, . . . , uk), where R is the name of
a database relation with k attributes, and u1, . . . , uk are terms. A term is
either a variable or a constant value. For example, the following is an atom:

MovieStar(‘Kevin Bacon’, x, y, 1960).

Here, x and y are variables, and ‘Kevin Bacon’ and 1960 are constants.
A conjunctive query consists of a head and a body :

• The body is a finite set of atoms. These atoms in the body are some-
times also called subgoals.

• The head is a finite tuple of variables. Each variable from the head
must occur in some atom in the body.

We write conjunctive queries as

Q(head)← body

where Q is a name for the query.

Example 2. The following are two examples of conjunctive queries.

Q1(t)←Movie(t, y, `, i, s, p), StarsIn(t, y2, n), MovieStar(n, a, g, 1960)

Q2(n)←Movie(t, y, `, i, s, p), StarsIn(t, y, n), MovieStar(n, a, g, b),

StarsIn(t, y, ‘Kevin Bacon’), MovieStar(‘Kevin Bacon’, a2, g2, b2)

Notice in particular that the same variable (like t and n) can occur multiple
times in a conjunctive query!

4.2 Semantics of conjunctive queries

There is a very elegant way to define the result of a conjunctive query Q on
a database D. For this, we have to look at a relational database through
another pair of eyes: we can view every tuple t in a relation R as the atom
R(t). Since t contains only constant data values (not variables), all terms in
R(t) are constants. Such atoms without variables are called facts. We can
then view a relational database simply as a set of facts.

Example 3. Consider the following toy database D:

R

1 2
2 3
2 5
6 7
7 5
5 5

S

2
7

6



Viewed through our other set of eyes, this database is the following set of
facts:

{R(1, 2), R(2, 3), R(2, 5), R(6, 7), R(7, 5), R(5, 5), S(2, 7), S(2), S(7)}

A substitution of a conjunctive query Q in a database D is a function f
that maps each variable occurring in Q to a constant occurring in D.

We can apply f also on tuples of variables; atoms; and sets of atoms as
follows. If t is a tuple of variables (e.g., the head of Q), then we write f(t)
for the tuple of constants obtained by replacing each variable x in t by f(x).
Similarly, we can apply f to whole atoms: simply replace each variable x
occurring in the atom by f(x) and leave the constants untouched. Note that
the result is always a fact. Finally, we can also apply f to sets of atoms:
simply apply f on every atom in the set. Note that the result is always a
set of facts.

Example 4. Consider again the database D from Example 3. Consider the
following conjunctive query over the relations R(A,B) en S(C):

Q(x, y)← R(x, y), R(y, 5), S(y).

Then f defined as follows is a substitution of Q into D:

f : x 7→ 1
y 2

When we apply f to the atom U(1, x, 2, y) we get the fact U(1, 1, 2, 2). When
we apply f on the body of Q (which, by definition, is a set of atoms), we
get:

f({R(x, y), R(y, 5), S(y)}) = {R(1, 2), R(2, 5), S(2)}.

We say that f is a matching if f(body) ⊆ D. We then define the result
of Q on D as the following relation:

Q(D) := {f(head) | f is a matching of Q into D}.

Example 5. Let D be the database from Example 3 and let Q be the
conjunctive query from Example 4. Then the following two substitutions of
Q into D are the only matchings of Q into D:

f : x 7→ 1
y 2

and g : x 7→ 6
y 7

Indeed, f(body) = {R(1, 2), R(2, 5), S(2)}, and this set of facts is indeed
a subset of the set of facts in D. In the same way we have g(body) =
{R(6, 7), R(7, 5), S(7)} which is again a subset of D. So,

Q(D) = {f(x, y), g(x, y)} = {(1, 2), (6, 7)}.

7



4.3 Translating select-project-join expressions into conjunc-
tive queries

Each select-project-join expression can easily be translated into an equiva-
lent conjunctive query:

• For each relation in the expression we add a new atom to the body of
the conjunctive query.

• Initially, all atoms have distinct variables.

• However, when a select condition, or a natural join, or a join condition
specifies that two attributes are equal, we identify the corresponding
variables of the corresponding atoms.

• Moreover, when a select condition specifies that the value of an at-
tribute is equal to a constant, we replace the corresponding variable
in the corresponding atom by that constant.

• Finally, the head of the conjunctive query consists of those variables
that correspond to the output-attributes of the expression.

Example 6. Q1 from Example 2 corresponds in this sense to the conjunc-
tieve query for expression (†) on page 5. Q2 from Example 2 corresponds in
this sense to the conjunctive query for expression (∗) on page 4.

Conversely, we can translate each conjunctive query into an equivalent
select-project-join expression:

• We take the cartesian product consisting of a relation for each atom in
the body. When multiple atoms in the body share the same relation
name, the corresponding occurrences of relation names in the cartesian
product must be renamed (ρ).

• Whenever two atoms share a variable, we add to the select-project-join
expression constructed so far a select (σ) condition that equates the
corresponding attributes.

• Whenever an atom mentions a constant, we add to the select-project-
join expression constructed so far a select (σ) condition that equates
the corresponding attribute to that constant.

• Finally, we add a projection (π) on the attributes that correspond to
the variables in the head.

Example 7. By translating the conjunctive query from Example 5 in this
way, we obtain:

πR1.A,R1.B σR1.B=R2.A σR2.B=5 σR1.B=C(ρR1
(R)× ρR2

(R)× S).

8



Conclusion We may hence conclude that Select-project-join expressions
and conjunctive queries are two different syntaxes for the same class of
queries.

5 Containment

We say that a query Q1 is contained in a query Q2 if, for each database
D, we have Q1(D) ⊆ Q2(D). We write Q1 ⊆ Q2 to indicate that Q1 is
contained in Q2.

Example 8. Consider the following extremely simple conjunctive queries
over a relation R(A,B):

Q0(x)← R(x, 33)
Q1(x)← R(x, x)
Q2(x)← R(x, y)

Then Q0 ≡ πAσB=33(R); Q1 ≡ πAσA=B(R); and Q2 ≡ πA(R). Clearly,
therefore, Q0 ⊆ Q2 and Q1 ⊆ Q2.

Example 9. Consider the following conjunctive queries:

A(x, y)← R(x,w), G(w, z), R(z, y)
B(x, y)← R(x,w), G(w,w), R(w, y)

Then B ⊆ A. Let us formally prove this by means of the formal definition
of the semantics of conjunctive queries. Let D be an arbitrary database,
and consider an arbitrary tuple in B(D), the result of B on D. We have to
show that this tuple is also in A(D). By definition of B(D), we know that
the tuple under consideration is of the form (f(x), f(y)), with f a matching
from B into D. In particular,

f({R(x,w), G(w,w), R(w, y)})
= {R(f(x), f(w)), G(f(w), f(w)), R(f(w), f(y))} ⊆ D.

Then the following substitution is a matching from A into D:

g : x 7→ f(x)
y f(y)
w f(w)
z f(w)

Indeed,

g({R(x,w), G(w, z), R(z, y)})
= {R(f(x), f(w)), G(f(w), f(w)), R(f(w), f(y))} ⊆ D.

Hence, (g(x), g(y)) ∈ A(D). As such, (f(x), f(y)) = (g(x), g(y)) ∈ A(D), as
desired.

9



Note that Q1 ≡ Q2 if, and only if, both Q1 ⊆ Q2 and Q2 ⊆ Q1. We
shall now show that containment, and hence also equivalence, of conjunctive
queries is decidable. To this end, we require the following definition.

A homomorphism of Q2 to Q1 is a function h that maps each variable
in Q2 to either a variable or constant in Q1 such that

h(head2) = head1 and h(body2) ⊆ body1.

Example 10. In Example 8:

• x 7→ x and y 7→ 33 is a homomorphism of Q2 to Q0.

• x 7→ x and y 7→ x is a homomorphism of Q2 to Q1.

• Homomorphisms leave constant values untouched. Hence, because the
constant 33 does not occur in Q1, nor in Q2, there cannot exist a
homomorphism from Q0 to Q1 or Q2. After all, there is no atom of
the form R(h(x), 33) in the body of Q1 or Q2, whatever the choice of
h(x).

• There also cannot exist a homomorphism from Q1 to Q2. After all,
there is no atom of the form R(h(x), h(x)) in the body of Q2, whatever
the choice of h(x) and h(y).

Example 11. In example 9 there is a homomorphism from A to B, namely:

h : x 7→ x
y y
w w
z w

In contrast, there is no homomorphism of B to A. Such a homomorphism
would have to map G(w,w) onto G(w, z), which implies that we would
have both w 7→ w and w 7→ z. This is a contradiction, however, since a
homomorphism must be function.

Example 12. Consider the conjunctive queries C1 and C2:

C1(x)← R(x, y), R(y, z), R(z, w)
C2(x)← R(x, y), R(y, x)

There is a homomorphism from C1 to C2, namely:

h : x 7→ x
y y
z x
w y

10



However, there is no homomorphism from C2 to C1. Indeed, suppose for
the purpose of contradiction that such a homomorphism h does exist. Then
it would have to map x 7→ x in order to map the head of C2 into the head
of C1. In that case, however, R(h(x), h(y)) = R(x, h(y)) must occur in the
body of C1. This implies that the first subgoal of C2 must be mapped onto
the first subgoal of C1 (since this is the only subgoal where x occurs in the
first column), and hence, that h must map y 7→ y. Analogously, this implies
that the second subgoal of C2 must be mapped to the second subgoal of C1.
Hence we would have to have x 7→ z. But we had already established that
x 7→ x, which yields the desired contradiction since h must be a function.

Theorem. Q1 ⊆ Q2 if, and only if, there is a homomorphism from Q2 to
Q1.

Proof. (If) Let h : Q2 → Q1 be a homomorphism. Let D be a database.
Fix an arbitrary tuple t ∈ Q1(D). We have to prove that t ∈ Q2(D).
Since t ∈ Q1(D) we know by definition of the semantics of conjunctive
queries that t = f(head1), with f a matching of Q1 into D. Now consider
the composition f ◦ h of f with h. Clearly, this is a substitution of Q2

into D. Because h is a homomorphism we know that h(body2) ⊆ body1.
Consequently f(h(body2)) ⊆ f(body1) ⊆ D. In other words, f ◦ h is a
matching of Q2 into D, and hence f(h(head2)) ∈ Q2(D). As such, t =
f(head1) = f(h(head2)) ∈ Q2(D), as desired.

(Only if) Suppose that Q1 ⊆ Q2. If we consider the variables in Q1 not
as variables but as constant data values, then we can look at body1 as a mini-
database D0. The identity function is a matching of Q1 into D0, and hence
head1 ∈ Q1(D0). Then, since Q1 ⊆ Q2, we know that head1 ∈ Q2(D0).
There hence exists a matching f fromQ2 intoD0 such that head1 = f(head2)
and f(body2) ⊆ D0 = body1. This f is clearly a homomorphism of Q2 to Q1

(by considering variables again as variables).

From the proof above we may synthesize the following surprising con-
clusion:

Golden Method. To decide whether Q1(D) ⊆ Q2(D) for every database
D, it suffices to evaluate Q2 on one single database D0, namely the body
of Q1, and check that the head of Q1 is in the result.

This rule immediate yields an algorithm to test containment of conjunc-
tive queries. We call the database D0 above also the “canonical database”
of Q1.

Example 13. Let us reconsider Example 12. We have seen that there exists
a homomorphism from C1 to C2. Hence, by Theorem 5, we know C2 ⊆ C1.
(Careful: C2 plays the role of Q1 and C1 the role of Q2 in Theorem 5.)
We can also check this by means of the Golden Rule above. The canonical

11



database D0 is {R(x, y), R(y, x)}. If we evaluate C1 on this database we
indeed get (x), the head of C2, in the output through the following matching:

x 7→ x
y y
z x
w y

It is no coincidence that this is exactly the homomorphism from C1 to C2

that we already knew from Example 12!
Conversely, let us check that C1 is not contained in C2, again by means

of the Golden Rule. In this case, the canonical database is {R(x, y), R(y, z),
R(z, w)}. If we evaluate C2 on this database we see that the result is empty;
there is no matching of C2 into D0. Since, in contrast, (x) ∈ C1(D0), we
see that D0 is a counterexample to the hypothesis that C1(D) ⊆ C2(D) for
every database D!

6 Optimizing conjunctive queries

The number of atoms in the body of a conjunctive query corresponds to
the number of joins in the corresponding select-project-join expression. We
therefore call a conjunctive query optimal if there is no equivalent conjunc-
tive query with fewer atoms in the body. Optimizing a given conjunctive
query then consists in finding an equivalent conjunctive query that is opti-
mal.

We could imagine the following optimization algorithm:

1. Given a conjunctive query Q.

2. Pick a random atom in the body.

3. Check whether the chosen atom is redundant as follows: Let Q′ be the
query we obtain by removing the chosen atom from the body of Q.
Then decide whether Q′ is equivalent to Q. (It suffices to only check
Q′ ⊆ Q since Q ⊆ Q′ always holds; do you know why?)

4. If Q′ is indeed equivalent to Q, then replace Q by Q′.

5. Repeat until we have removed all redundant atoms.

However, it is not clear that this algorithm is correct. Even if we have
removed all redundant atoms, it is in principle possible that there exists a
completely different equivalent conjunctive query with fewer atoms in its
body. Luckily, we can show, however, that this is not the case.

Theorem. For each conjunctive query we can find an equivalent, optimal
conjunctive query by removing atoms from its body.

12



Proof. Let Q be a conjunctive query and let P be an arbitrary query that is
optimal, and equivalent to Q. Since Q ≡ P , certainly Q ⊆ P . By Theorem 5
there hence exists a homomorphism h of P to Q. Then let Q′ be the query
obtained from Q by removing all atoms in its body that are not in the image
of h on P (i.e., body(Q′) = h(body(P ))).

Then, on the one hand we have Q ⊆ Q′ (the identity function is a
homomorphism from Q′ to Q), and on the other hand we have Q′ ⊆ P
(because of h). Therefore, Q′ is equivalent to Q. Moreover, Q′ is optimal,
since it has at most as many atoms in its body as P .

Example 14. Consider the conjunctive query

Q(x)← R(x, x), R(x, y)

If we remove R(x, y) we obtain

Q′(x)← R(x, x).

We have Q′ ⊆ Q since x 7→ x, y 7→ x is a homomorphism. Hence Q′ is
equivalent to Q. In addition Q′ is optimal: we cannot remove more atoms
from Q′ because it has only one atom.

Example 15. Consider

Q(y)← R(x, x), R(x, y)

We cannot remove R(x, y) because we would then end up with an invalid
conjunctive query (variable y in the head would no longer occur in the body).
When we remove R(x, x) we obtain:

Q′(y)← R(x, y).

We have Q′ 6⊆ Q (consider the canonical database {R(x, y)}) and hence Q
is already optimal; no atom can be removed.

7 Closing remarks

The select-project-join expressions (the conjunctive queries) essentially cap-
ture the relational algebra without the union and difference operators. We
have seen that the equivalence problem for the relational algebra in general
is undecidable, while it is decidable for the select-project-join fragment. Can
we extend the latter fragment without losing decidability? The asnwer to
this question is affirmative: it turns out that we can allow union and dif-
ference in a limited manner such that equivalence remains decidable. This
falls outside the scope of this course, however.

Note that, as long as the equivalence problem is decidable, one can always
(inefficiently) optimize a given expression by systematically enumerating all

13



shorter expressions (there can be many such expressions, but only a finite
number), from smaller to larger, and returning the first equivalent expression
found.

Finally, we would like to briefly return on the subject of eliminating
redundant joins in the presence of integrity constraints (see the end of Sec-
tion 3). With the techniques introduced in these notes we can only decide
whether two queries are equivalent on all databases. Expression (†) on
page 5 is not equivalent to expression (3) in this sense, however. It is only
equivalent on those database satisfying the integrity constraint. There exists
a technique called the “chase” that allows deciding equivalence of conjunc-
tive queries only over database that satisfy a given integrity constraint.

14


