Optimization of Logical Queries

Task:

Consider the following relational schema:

- Emp(eid, did, sal, hobby)
- Dept(did, dname, floor, phone)
- Finance(did, budget, sales, expenses)

For the following SQL statement:

1. Translate the query into the relational algebra.
2. Remove redundant joins from the select-project-join subexpressions in the obtained logical query plan.
3. By means of the algebraic laws, further optimize the obtained expression.
Optimization of Logical Queries

Task (continued)

SELECT D.floor
FROM Dept D, Emp E
WHERE
 (D.floor = 1
 OR D.floor IN
 (SELECT D2.floor FROM Dept D2, Finance F1
 WHERE F1.budget > 150 AND D2.did = F1.did)
)
AND E.did = D.did
AND E.did IN (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300)
Optimization of Logical Queries

Solution: translation into the relational algebra

First, we normalize the query to a form with only EXISTS and NOT EXISTS subqueries:

```sql
SELECT D.floor
FROM Dept D, Emp E
WHERE
  (D.floor = 1 OR EXIST
   ( SELECT D2.floor FROM Dept D2, Finance F1
     WHERE F1.budget > 150 AND D2.did = F1.did
     AND D2.floor = D.floor) )
AND E.did = D.did
AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
WHERE F2.did = E.did AND E2.did = D.did
AND E2.eid = E.eid AND F2.expenses = 300
AND E.did = F2.did)
```
Optimization of Logical Queries

Conjunctive Normal Form

```
SELECT D.floor
FROM Dept D, Emp E
WHERE ( D.floor = 1
    AND E.did = D.did
    AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
                WHERE F2.did = E.did AND E2.did = D.did
                AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did)
    ) OR ( EXIST ( SELECT D2.floor FROM Dept D2, Finance F1
                WHERE F1.budget > 150 AND D2.did = F1.did
                AND D2.floor = D.floor)
    AND E.did = D.did
    AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
                WHERE F2.did = E.did AND E2.did = D.did
                AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did) )
```
Optimization of Logical Queries

Normalize to UNION

Q1 = SELECT D.floor
 FROM Dept D, Emp E
 WHERE D.floor = 1
 AND E.did = D.did
 AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)
Optimization of Logical Queries

Normalize to UNION

Q2 = SELECT D.floor
FROM Dept D, Emp E
WHERE
EXIST (SELECT D2.floor FROM Dept D2, Finance F1
 WHERE F1.budget > 150 AND D2.did = F1.did
 AND D2.floor = D.floor)
AND E.did = D.did
AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)

The new query is Q1 UNION Q2.
Optimization of Logical Queries

Translation of the innermost subqueries

```
SELECT F2.did FROM Finance F2, Emp E2
    WHERE F2.did = E.did AND E2.did = D.did
    AND E2.eid = E.eid AND F2.expenses = 300
    AND E.did = F2.did
```

This subquery is translated as follows:

```
e_1 = \pi_{F2.did,E.*,D.*} F2.did=E.did \land E2.did=D.did \land E2.eid=E.eid
\sigma_{F2.expenses=300 \land E.did=F2.did} (\rho_D(Dept) \times \rho_E(Emp) \times \rho_{F2}(Finance) \times \rho_{E2}(Emp))
```
Optimization of Logical Queries

Translation of the innermost subqueries

SELECT D2.floor FROM Dept D2, Finance F1
WHERE F1.budget > 150 AND D2.did = F1.did
AND D2.floor = D.floor

This subquery is translated as follows:

\[e_2 = \pi_{D_2.floor, D} \circ \sigma_{F_1.budget > 150 \land D_2.did = F_1.did} \]
\[\sigma_{D_2.floor = D.floor} (\rho_D(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F_1}(\text{Finance})) \]
Optimization of Logical Queries

Translation of the Middle Queries

Q1 = SELECT D.floor FROM Dept D, Emp E
 WHERE D.floor = 1 AND E.did = D.did
 AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)

The translation of the from part gives

\[e_3 = (\rho_D(\text{Dept}) \times \rho_E(\text{Emp})) \]

To de-correlate we compute:

\[f = \hat{e}_3 \Join \pi_{D.*,E.*}(e_1) \]

Note that \(\hat{e}_3 \) is empty and hence

\[f = \pi_{D.*,E.*}(e_1) \]

To this expression we add the WHERE and SELECT clause:

\[e_4 = \pi_{D.floor}(\sigma_{D.floor=1 \land E.did=D.did}(\pi_{D.*,E.*}(e_1))) \]
Optimization of Logical Queries

Translation of the Middle Queries

Q2 = SELECT D.floor
 FROM Dept D, Emp E
 WHERE
 EXIST (SELECT D2.floor FROM Dept D2, Finance F1
 WHERE F1.budget > 150 AND D2.did = F1.did
 AND D2.floor = D.floor)
 AND E.did = D.did
 AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)

The translation of the from part gives

\[e_5 = (\rho_D(\text{Dept}) \times \rho_E(\text{Emp})) \]

To de-correlate we compute:

\[f' = \hat{e}_5 \Join (\pi_{D,*}(e_1) \Join \pi_{D,*}(e_2)) = (\pi_{D,*}(e_1) \Join \pi_{D,*}(e_2)) \]
To this expression we add the WHERE and SELECT clause:

$$ e_6 = \pi_{D.\text{floor}} \sigma_{E.did=D.did}(\pi_{D.*,E.*}(e_1) \Join \pi_{D.*}(e_2)) $$
Optimization of Logical Queries

Translation of the Whole Query

Q1 UNION Q2

Since the schemas of \(e_4\) and \(e_6\) are the same, the union is straightforward:

\[e = e_4 \cup e_6 \]

Written in full:

\[
e = \pi_{D.\text{floor}} \sigma_{D.\text{floor}=1 \land E.\text{did}=D.\text{did}} \left(\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F2}(\text{Finance}) \times \rho_{E2}(\text{Emp}) \right) \]

\[
\cup \pi_{D.\text{floor}} \sigma_{E.\text{did}=D.\text{did}} \left(\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F2}(\text{Finance}) \times \rho_{E2}(\text{Emp}) \right) \]

\[
\ltimes \pi_{D.\text{floor}} \sigma_{F1.\text{budget}>150 \land D_2.\text{did}=F_1.\text{did} \land D_2.\text{floor}=D.\text{floor}} \left(\rho_D(\text{Dept}) \times \rho_{D2}(\text{Dept}) \times \rho_{F1}(\text{Finance}) \right) \]

Solution of the exercises
Optimization of Logical Queries

Redundant Joins Removal

The query comprises the following maximal select-project-join subexpressions:

- $\pi_{D.\text{floor}} \sigma_{D.\text{floor}=1} \land E.\text{did}=D.\text{did} \pi_{D.*,E.*} \ldots (\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times
 \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp}))$
- $[\pi_{D.*,E.*} \ldots (\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})]$
- $(\rho_D(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F_1}(\text{Finance}))$

Note that “$F_1.\text{budget} > 150$” cannot be included in a select-project-join expression. Also note that the third expression does not contain redundant joins (Why?).
Optimization of Logical Queries

Redundant Joins Removal

The first expression corresponds to:

\[Q_1(“1”) \leftarrow \text{Dept}(a_1, a_2, “1”, a_4), \text{Emp}(b_1, a_1, b_3, b_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4) \]

The first and third atoms cannot be removed (Why?)

We check whether we can remove the second atom:

\[Q_2(“1”) \leftarrow \text{Dept}(a_1, a_2, “1”, a_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4) \]

The corresponding canonical database: \(D_2(“1”) = \{\text{Dept}(a_1, a_2, “1”, a_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4)\} \)

Clearly ("1") \(\in Q_1(D_2) \) because of the matching

\[
\begin{align*}
a_1 & \mapsto a_1 & a_2 & \mapsto a_2 & a_4 & \mapsto a_4 \\
b_1 & \mapsto b_1 & b_3 & \mapsto d_3 & b_4 & \mapsto d_4 \\
c_2 & \mapsto c_2 & c_3 & \mapsto c_3 & d_3 & \mapsto d_3 & d_4 & \mapsto d_4
\end{align*}
\]

hence \(Q_2 \subseteq Q_1 \). The other direction always holds. Hence \(Q_1 \equiv Q_2 \)
Optimization of Logical Queries

Redundant Joins Removal

No other atom can be removed (Why?).

The optimal query is hence

\[Q_2(“1”) \leftarrow \text{Dept}(a_1, a_2, “1”, a_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4) \]

Translating this query back to the relational algebra, we obtain:

\[\pi_{D.\text{floor}} \left([\sigma_{D.\text{floor}=1 \land E_2.\text{did}=D.\text{did} \land F_2.\text{did}=E_2.\text{did} \land E_2.\text{did}=D.\text{did} \land F_2.\text{expenses}=300} \quad (\rho_D(\text{Dept}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})) \]
Optimization of Logical Queries

Redundant Joins Removal

The second expression is:

$$\left[\pi_{D.*,E.*} \sigma_{F_2.did=E.did \land E_2.did=D.did \land E_2.eid=E.eid \land F_2.expenses=300 \land E.did=F_2.did} (\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})) \right]$$

Translated:

$$Q_3(a_1, a_2, a_3, a_4, b_1, b_3, b_4) \leftarrow \text{Dept}(a_1, a_2, a_3, a_4), \text{Emp}(b_1, a_1, b_3, b_4), \\
\text{Finance}(a_1, c_2, c_3, "300"), \text{Emp}(b_1, a_1, d_3, d_4)$$

We cannot remove the second atom, this time (why?)
Optimization of Logical Queries

Redundant Joins Removal

However, with a similar mapping as for the first expression, the fourth atom can be removed, and we obtain:

\[Q_4(a_1, a_2, a_3, a_4, b_1, b_3, b_4) \leftarrow \text{Dept}(a_1, a_2, a_3, a_4), \text{Emp}(b_1, a_1, b_3, b_4), \text{Finance}(a_1, c_2, c_3, “300”) \]

We have thus \(Q_4 \subseteq Q_3 \). The other direction always holds. Hence \(Q_3 \equiv Q_4 \).

Translating this query back to the relational algebra, we obtain:

\[
\left[\pi_{D.*E.*} \sigma_{F_2.did=E.did \land E.did=D.did \land F_2.expenses=300 \land E.did=F_2.did} \left(\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F_2}(\text{Finance}) \right) \right]
\]
Optimization of Logical Queries

Redundant Joins Removal

The third expression is:

\[(\rho_D(\text{Dept}) \times \rho_{D2}(\text{Dept}) \times \rho_{F1}(\text{Finance})) \]

Translated:

\[Q_5(a_1, \ldots, a_4, b_1, \ldots, b_4, c_1, \ldots, c_4) \leftarrow \text{Dept}(a_1, a_2, a_3, a_4), \text{Dept}(b_1, b_2, b_3, b_4), \text{Finance}(c_1, c_2, c_3, c_4) \]

No atoms can be removed (why?)
Optimization of Logical Queries

Redundant Joins Removal

The optimized expression is therefore:

\[e = \pi_{D.\text{floor}}\left([\sigma_{D.\text{floor}=1} \land E_2.\text{did}=D.\text{did} \land F_2.\text{did}=E_2.\text{did} \land E_2.\text{did}=D.\text{did} \land F_2.\text{expenses}=300 \right. \]
\[\left. (\rho_D(\text{Dept}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})) \right) \]
\[\cup \]
\[\pi_{D.\text{floor}}\left([\pi_{D.*,E.\text{*}} F_2.\text{did}=E.\text{did} \land E.\text{did}=D.\text{did} \land F_2.\text{expenses}=300 \land E.\text{did}=F_2.\text{did} \right. \]
\[\left. (\rho_D(\text{Dept}) \times \rho_{E}(\text{Emp}) \times \rho_{F_2}(\text{Finance})) \right) \]
\[\times \left[[\pi_{D.*,\sigma} F_1.\text{budget}>150 \land D_2.\text{did}=F_1.\text{did} \land D_2.\text{floor}=D.\text{floor} \right. \]
\[\left. (\rho_D(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F_1}(\text{Finance})) \right) \]}
Cost-based plan selection

Task

(refer to the handouts for the full exercise)

Construct a sufficiently optimal physical query plan for:

\[\pi_{E.eid, D.did, P.pid} \sigma_{E.sal=50000} (E) \bowtie \sigma_{D.budget \geq 20000} (D) \bowtie P \]

Assume that employee salaries are uniformly distributed over the range [10000, 110000] and that project budgets are uniformly distributed over [10000, 30000]. There are clustered indexes available on E.sal, D.did and P.pid.
Cost-based plan selection

Solution
Cost-based plan selection

Solution

\[
\pi \join \sigma E \theta \sigma D P
\]
Cost-based plan selection

Solution

Subexpression:

$$\sigma_{E.\text{sal}=50000}(E)$$

First possibility: we use the clustered index on $E.\text{sal}$ to get the records such that $E.\text{sal} = 50000$.

The number of tuples that satisfy the salary requirement is estimated to:

$$\left\lceil \frac{1}{110008 - 10009} \right\rceil \times 20000 \text{ employees} = 1 \text{ tuples}$$

Hence, the result can be stored in 1 block:

$$\left\lceil \frac{20 \text{ bytes}}{4000 \text{ bytes/block}} \right\rceil = 1 \text{ block}$$

A table scan would cost:

$$\frac{20000 \text{ tuples}}{\frac{4000 \text{ bytes/block}}{20 \text{ bytes/tuple}}} = 100 \text{ block I/Os}$$
Cost-based plan selection

Solution

\[
\begin{align*}
\pi \bowtie \sigma_E \sigma_D T = 1 \\
B = 1
\end{align*}
\]
Cost-based plan selection

Solution

\[
\pi \Join \sigma \ E \
\sigma \
\sigma \ D \
P
\]
Cost-based plan selection

Solution

Subexpression:

\[\sigma_{D.budget \geq 20000}(D) \]

The number of tuples returned is estimated to 2500:

\[
\left\lceil \frac{30000 - 20000}{30000 - 10000} \right\rceil \times 5000 \text{ departments} = 2500 \text{ tuples}
\]

This corresponds to 25 Blocks:

\[
\frac{2500}{\left\lceil \frac{4000 \text{ bytes/block}}{40 \text{ bytes/tuple}} \right\rceil} = 25 \text{ blocks}
\]

Since no index is available, a table scan is our only possibility:

\[
\frac{5000}{\left\lceil \frac{4000 \text{ bytes/block}}{40 \text{ bytes/tuple}} \right\rceil} = 50 \text{ blocks}
\]
Cost-based plan selection

Solution

\[\pi \ \bowtie \ \sigma \ E \ \sigma \ D \ \sigma \ P \]

\[T = 2500 \]

\[B = 25 \]
Cost-based plan selection

Solution

\[
\pi \\
\sigma \\
\emptyset \\
\sigma \\
\times \\
E \\
P \\
\sigma \\
D
\]
Cost-based plan selection

Solution

Subexpression:

\[P \]

A table scan on \(P \) requires 500 block I/O’s. This is also the estimated number of blocks returned:

\[
\frac{1000 \text{ tuples}}{\frac{4000 \text{ bytes/block}}{2000 \text{ bytes/tuple}}} = 500 \text{ blocks}
\]
Cost-based plan selection

Solution

\[
\pi \downarrow \sigma E \sigma D \leftarrow P \quad T = 1000 \\
B = 500
\]
Cost-based plan selection

Solution

Solution of the exercises 31
Cost-based plan selection

Solution

Now, we must determine an ordering for the joins. We consider all pairs of joins and keep the one with the smallest cost.

\[
\sigma_{e_{\text{sal}=50000}(E)} \quad \text{and} \quad \sigma_{d_{\text{budget}\geq20000}(D)}
\]

The selection on each side requires one buffer to execute, leaving only 10 buffers for the join.

The output of \(e_1 \) contains only 1 tuples, and can therefore be computed in 1 block. Since \(1 = B(e_1) \leq M = 10 \), we can apply the one-pass join algorithm. Its cost is

\[
B(e_1) + B(e_2) = 1 + 25 = 26 \text{ I/O's}
\]

An index-join cannot be used on \(e_2 \) since it is not a base relation. All other join methods always cost more than one-pass join. Hence the one-pass join is preferred.
Cost-based plan selection

Solution

Solution of the exercises
Cost-based plan selection

Solution

The second join pair is:

\[\sigma_{D.\text{budget} \geq 20000 (D)} \quad \text{and} \quad P \]

We have 11 buffers at our disposal, given that we need 1 buffer to perform the selection in \(e_2 \). It is not possible to use a one-pass join, since

\[25 = B(e_2) \geq M = 11 \quad \text{and} \quad 500 = B(P) \geq M = 11. \]

We have enough memory to perform an optimized sort-merge join:

\[
8 = \left\lfloor \frac{B(e_2)}{M \left\lfloor \log_M B(e_2) \right\rfloor - 1} \right\rfloor + \left\lfloor \frac{B(P)}{M \left\lfloor \log_M B(P) \right\rfloor - 1} \right\rfloor \leq M = 11 \text{ available buffers}
\]

This optimized sort-merge join has a cost of:

\[
2B(e_2) \left\lfloor \log_M B(e_2) \right\rfloor + 2B(P) \left\lfloor \log_M B(P) \right\rfloor - B(e_2) - B(P)
\]

\[
= 2 \times 25 \times 2 + 2 \times 500 \times 3 - 25 - 500
\]

\[
= 2575 \text{ I/O's}
\]
Cost-based plan selection

Solution

Assuming that the clustered index on \(P.p\text{id} \) is a \(BTree \), it ensues that \(P \) is already sorted on this join attribute. Given that we just have to sort \(e_2 \), the cost of a non-optimized sort-merge join is:

\[
2B(e_2) \left\lceil \log_M B(e_2) \right\rceil + B(e_2) + B(P)
\]

Furthermore, we can optimize the last merge:

4 necessary buffers \(= \left\lceil \frac{B(e_2)}{M} \right\rceil + 1 \leq M = 11 \) available buffers

The cost thereof is:

\[
2B(e_2)(\left\lceil \log_M B(e_2) \right\rceil - 1) + B(e_2) + B(P)
\]
\[
= 2 \times 25 \times 1 + 25 + 500
\]
\[
= 575 \text{ I/Os}
\]
Cost-based plan selection

Solution

The cost of an hash-join is:

\[2B(e_2) \left\lfloor \log_{M-1} B(e_2) - 1 \right\rfloor + 2B(P) \left\lfloor \log_{M-1} B(e_2) - 1 \right\rfloor + B(e_2) + B(P) \]
\[= 2 \times 25 \times 1 + 2 \times 500 \times 1 + 25 + 500 \]
\[= 1575 \text{ I/O's} \]

It is also possible to use an index-join, using the clustered index on P.did. This method has a cost of:

\[B(e_2) + T(e_2) \times \left[\frac{B(P)}{V(P, \text{pid})} \right] = 25 + 2500 \times 1 = 2525 \text{ I/O's} \]

Hence, the optimized sort-merge join is always preferred. If the index on P.did is a BTree, sorting \(P \) is not necessary.
Cost-based plan selection

Solution

Solution of the exercises 37
Cost-based plan selection

Solution

The third join pair is:

$\sigma_{E.\text{sal}=50000}(E) \mid_{e_1}$ and P

Note that this join is a full cartesian product. A one-pass join is available at the following cost:

$B(e_1) + B(P) = 1 + 500 = 501 \text{ I/O's}$

No index can help up for this join, and the one-pass join algorithm gives the best cost.
Cost-based plan selection

Solution

Cost $= 26$
Single pass join

Cost $= 575$
Optimized sort-merge join

Solution of the exercises 39
Cost-based plan selection

Solution

The join-pair with the least cost is therefore:

$$\sigma_{e.sal=50000}(E)_{e_1}\quad\text{and}\quad\sigma_{D.budget\geq20000}(D)_{e_2}$$

Where an one-pass join on E.did is used. Therefore, only 2 buffers are necessary (why?).

The estimated number of tuples in the output of this join is:

$$\frac{T(e_1) \times T(e_2)}{\max(V(e_1,\text{did}), V(e_2,\text{did}))} = \frac{1 \times 2500}{20} = 125$$

These records are 60 bytes long and can be stored in 2 blocks
Cost-based plan selection

Solution

\[\pi \ \bowtie \ \sigma \ E \ \bowtie \ \sigma \ D \]

\[T = 125 \]

\[B = 2 \]
Cost-based plan selection

Solution

\[
\pi \bowtie \bowtie \sigma E \sigma D P
\]
Cost-based plan selection

Solution

We still need to find the best way to join the whole expression

\[
\sigma_{e \cdot \text{sal}=50000}(E) \Join_{e_3} \sigma_{D \cdot \text{budget}\geq20000}(D) \text{ and } P
\]

The output of \(e_3 \) fits in 2 blocks. Given that \(2 = B(e_3) \leq M = 12 \), a one-pass join is possible. The cost thereof is:

\[
B(e_3) + B(P) = 2 + 500 = 502
\]

This joins can also be performed by means of an index-join, using the clustered index on \(P \cdot \text{pid} \).

\[
B(e_3) + T(e_3) \times \left[\frac{B(P)}{V(P, \text{pid})} \right] = 2 + 125 \times 1 = 127 \text{ I/O's}
\]

Hence, the index-join is preferred.
Cost-based plan selection

Solution

\[
\pi \bigoplus \sigma E \sigma D P
\]
Cost-based plan selection

Solution

The projection $\pi_{E.eid,D.did,P.pid}$ can be performed on the fly at the same time as the last join.

Notice that we did not need to materialize any of the intermediate results.
Cost-based plan selection

Solution

Single pass
Cost = 26, $T = 125$

Index scan
Cost = 1, $T = 1$

Index join
Cost = 126, $T = 125$

Table scan
Cost = 50, $T = 2500$

Solution of the exercises 46