Optimization of Logical Queries

Task:

Consider the following relational schema:

- Emp(eid, did, sal, hobby)
- Dept(did, dname, floor, phone)
- Finance(did, budget, sales, expenses)

For the following SQL statement:

1. Translate the query into the relational algebra.
2. Remove redundant joins from the select-project-join subexpressions in the obtained logical query plan.
3. By means of the algebraic laws, further optimize the obtained expression.
Task (continued)

SELECT D.floor
FROM Dept D, Emp E
WHERE
 (D.floor = 1
 OR D.floor IN
 (SELECT D2.floor FROM Dept D2, Finance F1
 WHERE F1.budget > 150 AND D2.did = F1.did
)
)
AND E.did = D.did
AND E.did IN (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300)
Optimization of Logical Queries

Solution: translation into the relational algebra

First, we normalize the query to a form with only EXISTS and NOT EXISTS subqueries:

```
SELECT D.floor
FROM Dept D, Emp E
WHERE
  (D.floor = 1 OR EXISTS
    ( SELECT D2.floor FROM Dept D2, Finance F1
        WHERE F1.budget > 150 AND D2.did = F1.did
        AND D2.floor = D.floor )
  AND E.did = D.did
AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
    WHERE F2.did = E.did AND E2.did = D.did
    AND E2.eid = E.eid AND F2.expenses = 300
    AND E.did = F2.did)
```
Optimization of Logical Queries

Conjunctive Normal Form

```sql
SELECT D.floor
FROM Dept D, Emp E
WHERE ( D.floor = 1
    AND E.did = D.did
    AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
                WHERE F2.did = E.did AND E2.did = D.did
                AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did)
) OR (
    EXIT ( SELECT D2.floor FROM Dept D2, Finance F1
            WHERE F1.budget > 150 AND D2.did = F1.did
            AND D2.floor = D.floor
          AND E.did = D.did
          AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
                      WHERE F2.did = E.did AND E2.did = D.did
                      AND E2.eid = E.eid AND F2.expenses = 300 AND E.did = F2.did) )
```
Optimization of Logical Queries

Normalize to UNION

Q1 = SELECT D.floor
 FROM Dept D, Emp E
 WHERE D.floor = 1
 AND E.did = D.did
 AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)
Optimization of Logical Queries

Normalize to UNION

\[
Q2 = \text{SELECT } D.\text{floor} \\
\text{FROM Dept D, Emp E} \\
\text{WHERE} \\
\quad \text{EXIST (SELECT D2.floor FROM Dept D2, Finance F1} \\
\quad \quad \text{WHERE F1.budget > 150 AND D2.did = F1.did} \\
\quad \quad \quad \text{AND D2.floor = D.floor)} \\
\quad \text{AND E.did = D.did} \\
\quad \text{AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2} \\
\quad \quad \text{WHERE F2.did = E.did AND E2.did = D.did} \\
\quad \quad \quad \text{AND E2.eid = E.eid AND F2.expenses = 300} \\
\quad \quad \quad \text{AND E.did = F2.did)}
\]

The new query is \(Q1 \cup Q2\).
Optimization of Logical Queries

Translation of the innermost subqueries

SELECT F2.did FROM Finance F2, Emp E2
WHERE F2.did = E.did AND E2.did = D.did
AND E2.eid = E.eid AND F2.expenses = 300
AND E.did = F2.did

This subquery is translated as follows:

\[
e_1 = \pi_{F2.did,E.*,D.*} F2.did=E.did \land E2.did=D.did \land E2.eid=E.eid
\]
\[
\sigma_{F2.expenses=300 \land E.did=F2.did} (\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F2}(\text{Finance}) \times \rho_{E2}(\text{Emp}))
\]
Optimization of Logical Queries

Translation of the innermost subqueries

SELECT D2.floor FROM Dept D2, Finance F1
WHERE F1.budget > 150 AND D2.did = F1.did
AND D2.floor = D.floor

This subquery is translated as follows:

\[e_2 = \pi_{D_2.floor, D} \sigma_{F_1.budget > 150 \land D_2.did = F_1.did} \sigma_{D_2.floor = D.floor}(\rho_D(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F_1}(\text{Finance})) \]
Optimization of Logical Queries

Translation of the Middle Queries

Q1 = SELECT D.floor FROM Dept D, Emp E
 WHERE D.floor = 1 AND E.did = D.did
 AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)

The translation of the from part gives

\[e_3 = (\rho_D(\text{Dept}) \times \rho_E(\text{Emp})) \]

To de-correlate we compute:

\[f = \hat{e}_3 \Join \pi_{D.*,E.*}(e_1) \]

Note that \(\hat{e}_3 \) is empty and hence

\[f = \pi_{D.*,E.*}(e_1) \]

To this expression we add the WHERE and SELECT clause:

\[e_4 = \pi_{D.floor}(\sigma_{D.floor=1 \land E.did=D.did}(\pi_{D.*,E.*}(e_1))) \]
Optimization of Logical Queries

Translation of the Middle Queries

Q2 = SELECT D.floor
FROM Dept D, Emp E
WHERE
 EXIST (SELECT D2.floor FROM Dept D2, Finance F1
 WHERE F1.budget > 150 AND D2.did = F1.did
 AND D2.floor = D.floor)
 AND E.did = D.did
 AND EXISTS (SELECT F2.did FROM Finance F2, Emp E2
 WHERE F2.did = E.did AND E2.did = D.did
 AND E2.eid = E.eid AND F2.expenses = 300
 AND E.did = F2.did)

The translation of the from part gives

\[e_5 = (\rho_D(\text{Dept}) \times \rho_E(\text{Emp})) \]

To de-correlate we compute:

\[f' = e_5 \Join (\pi_{D,*}(e_1) \Join \pi_{D,*}(e_2)) = (\pi_{D,*}(e_1) \Join \pi_{D,*}(e_2)) \]
To this expression we add the WHERE and SELECT clause:

\[e_6 = \pi_{D.\text{floor}} \sigma_{E.\text{did}=D.\text{did}} (\pi_{D.*,E.*}(e_1) \bowtie \pi_{D.*}(e_2)) \]
Optimization of Logical Queries

Translation of the Whole Query

Q1 UNION Q2

Since the schemas of \(e_4 \) and \(e_6 \) are the same, the union is straightforward:

\[
e = e_4 \cup e_6
\]

Written in full:

\[
e = \pi D.\text{floor}\sigma D.\text{floor}=1 \land E.\text{did}=D.\text{did} \\
\begin{align*}
&\pi_{D.*,E.*}\sigma_{F_2.\text{did}=E.\text{did}\land E_2.\text{did}=D.\text{did}\land E_2.\text{eid}=E.\text{eid}\land F_2.\text{expenses}=300}\land E.\text{did}=F_2.\text{did} \\
&(\rho_{D}(\text{Dept}) \times \rho_{E}(\text{Emp}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})) \\
\end{align*}
\]

\[
\bigcup \\
\pi_{D.\text{floor}\sigma E.\text{did}=D.\text{did}}\left[
\begin{align*}
&\pi_{D.*,E.*}\sigma_{F_2.\text{did}=E.\text{did}\land E_2.\text{did}=D.\text{did}\land E_2.\text{eid}=E.\text{eid}\land F_2.\text{expenses}=300}\land E.\text{did}=F_2.\text{did} \\
&(\rho_{D}(\text{Dept}) \times \rho_{E}(\text{Emp}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})) \\
\end{align*}\right] \\
\triangleright \left[\pi_{D.*}\sigma_{F_1.\text{budget}>150}\land D_2.\text{did}=F_1.\text{did}\land D_2.\text{floor}=D.\text{floor} \\
(\rho_{D}(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F_1}(\text{Finance}))\right]
\]
Optimization of Logical Queries

Redundant Joins Removal

The query comprises the following maximal select-project-join subexpressions:

- $\pi_{D.floor} \sigma_{D.floor=1 \land E.did=D.did} \pi_{D.*} \sigma_{E.*} \ldots (\rho_D(Dept) \times \rho_E(Emp) \times \rho_{F2}(Finance) \times \rho_{E2}(Emp))$
- $[\pi_{D.*} \sigma_{E.*} \ldots (\rho_D(Dept) \times \rho_E(Emp) \times \rho_{F2}(Finance) \times \rho_{E2}(Emp))]$
- $(\rho_D(Dept) \times \rho_{D2}(Dept) \times \rho_{F1}(Finance))$

Note that “$F_1.budget > 150$” cannot be included in a select-project-join expression. Also note that the third expression does not contain redundant joins (Why?).
Optimization of Logical Queries

Redundant Joins Removal

The first expression corresponds to:

\[Q_1(“1”) \leftarrow \text{Dept}(a_1, a_2, “1”, a_4), \text{Emp}(b_1, a_1, b_3, b_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4) \]

The first and third atoms cannot be removed (Why?)

We check whether we can remove the second atom:

\[Q_2(“1”) \leftarrow \text{Dept}(a_1, a_2, “1”, a_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4) \]

The corresponding canonical database: \(D_2(“1”) = \{ \text{Dept}(\dot{a}_1, \dot{a}_2, “1”, \dot{a}_4), \text{Finance}(\dot{a}_1, \dot{c}_2, \dot{c}_3, “300”), \text{Emp}(\dot{b}_1, \dot{a}_1, \dot{d}_3, \dot{d}_4) \} \)

Clearly ("1") \(\in Q_1(D_2) \) because of the matching

\[
\begin{align*}
a_1 & \mapsto \dot{a}_1 \\
a_2 & \mapsto \dot{a}_2 \\
a_4 & \mapsto \dot{a}_4 \\
b_1 & \mapsto \dot{b}_1 \\
b_3 & \mapsto \dot{d}_3 \\
b_4 & \mapsto \dot{d}_4 \\
c_2 & \mapsto \dot{c}_2 \\
c_3 & \mapsto \dot{c}_3 \\
d_3 & \mapsto \dot{d}_3 \\
d_4 & \mapsto \dot{d}_4
\end{align*}
\]

hence \(Q_2 \subseteq Q_1 \). The other direction always holds. Hence \(Q_1 \equiv Q_2 \)
Optimization of Logical Queries

Redundant Joins Removal

No other atom can be removed (Why?).

The optimal query is hence

\[Q_2(“1”) \leftarrow \text{Dept}(a_1, a_2, “1”, a_4), \text{Finance}(a_1, c_2, c_3, “300”), \text{Emp}(b_1, a_1, d_3, d_4) \]

Translating this query back to the relational algebra, we obtain:

\[
\pi D.\text{floor}([\sigma D.\text{floor}=1 \land E_2.\text{did}=D.\text{did} \land F_2.\text{did}=E_2.\text{did} \land E_2.\text{did}=D.\text{did} \land F_2.\text{expenses}=300 \\
(\rho_D(\text{Dept}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp}))])
\]
Optimization of Logical Queries

Redundant Joins Removal

The second expression is:

$$\left[\pi_{D.\ast, E.\ast} \sigma_{F_2.\text{did}=E.\text{did} \land E_2.\text{did}=D.\text{did} \land E_2.\text{eid}=E.\text{eid} \land F_2.\text{expenses}=300 \land E.\text{did}=F_2.\text{did}} \right]$$

$$(\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp}))$$

Translated:

$$Q_3(a_1, a_2, a_3, a_4, b_1, b_3, b_4) \leftarrow \text{Dept}(a_1, a_2, a_3, a_4), \text{Emp}(b_1, a_1, b_3, b_4), \text{Finance}(a_1, c_2, c_3, "300"), \text{Emp}(b_1, a_1, d_3, d_4)$$

We cannot remove the second atom, this time (why?)
Optimization of Logical Queries

Redundant Joins Removal

However, with a similar mapping as for the first expression, the fourth atom can be removed, and we obtain:

\[
Q_4(a_1, a_2, a_3, a_4, b_1, b_3, b_4) \leftarrow \text{Dept}(a_1, a_2, a_3, a_4), \text{Emp}(b_1, a_1, b_3, b_4), \\
\text{Finance}(a_1, c_2, c_3, "300")
\]

We have thus \(Q_4 \subseteq Q_3\). The other direction always holds. Hence \(Q_3 \equiv Q_4\).

Translating this query back to the relational algebra, we obtain:

\[
[\pi_{D.* E.*} \sigma_{F_2.\text{did}=E.\text{did} \land E.\text{did}=D.\text{did} \land F_2.\text{expenses}=300 \land E.\text{did}=F_2.\text{did}}\]

\[
(\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F_2}(\text{Finance}))
\]
Optimization of Logical Queries

Redundant Joins Removal

The third expression is:

\[(\rho_D(Dept) \times \rho_{D2}(Dept) \times \rho_{F1}(Finance))\]

Translated:

\[Q_5(a_1, \ldots, a_4, b_1, \ldots, b_4, c_1, \ldots, c_4) \leftarrow \text{Dept}(a_1, a_2, a_3, a_4), \text{Dept}(b_1, b_2, b_3, b_4), \text{Finance}(c_1, c_2, c_3, c_4)\]

No atoms can be removed (why?)
Optimization of Logical Queries

Redundant Joins Removal

The optimized expression is therefore:

\[e = \pi_{D.f\text{loor}}\left([\sigma_{D.f\text{loor}=1}\land E_2.d\text{id}=D.d\text{id}\land F_2.d\text{id}=E_2.d\text{id}\land E_2.d\text{id}=D.d\text{id}\land F_2.e\text{xpenses}=300\right.
\]
\[\left(\rho_D(\text{Dept}) \times \rho_{F_2}(\text{Finance}) \times \rho_{E_2}(\text{Emp})\right]\]
\[\bigcup \]
\[\pi_{D.f\text{loor}}\left([\pi_{D,*},E,*\sigma_{F_2.d\text{id}=E.d\text{id}\land E.d\text{id}=D.d\text{id}\land F_2.e\text{xpenses}=300\land E.d\text{id}=F_2.d\text{id}}\left(\rho_D(\text{Dept}) \times \rho_E(\text{Emp}) \times \rho_{F_2}(\text{Finance})\right)\]
\[\bigotimes \left[\pi_{D,*}\sigma_{F_1.budget>150}\land D_2.d\text{id}=F_1.d\text{id}\land D_2.f\text{loor}=D.f\text{loor}\left(\rho_D(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F_1}(\text{Finance})\right)\right]\]
Cost-based plan selection

Task

(refer to the handouts for the full exercise)

Construct a sufficiently optimal physical query plan for:

\[\pi_{E.eid, D.did, P.pid} \sigma_{E.sal=50000} (E) \bowtie \sigma_{D.budget \geq 20000} (D) \bowtie P \]

Assume that employee salaries are uniformly distributed over the range [10009, 110008] and that project budgets are uniformly distributed over [10000, 30000]. There are clustered indexes available on E.sal, D.did and P.pid.
Cost-based plan selection

Solution
Cost-based plan selection

Solution

```
\[\pi \bowtie \sigma E \sigma D \quad \sigma \quad \mathcal{N} \quad \pi \quad \sigma \quad P \quad E \quad D\]
```
Cost-based plan selection

Solution

Subexpression:

\[\sigma_{E.sal=50000}(E) \]

First possibility: we use the clustered index on \(E.sal \) to get the records such that \(E.sal = 50000 \).

The number of tuples that satisfy the salary requirement is estimated to:

\[
\left\lceil \frac{1}{110008 - 10009 + 1} \text{ selectivity } \times 20000 \text{ employees} \right\rceil = 1 \text{ tuples}
\]

Hence, the result can be stored in 1 block:

\[
\left\lceil \frac{20 \text{ bytes}}{4000 \text{ bytes/block}} \right\rceil = 1 \text{ block}
\]

A table scan would cost:

\[
\frac{20000 \text{ tuples}}{\frac{4000 \text{ bytes/block}}{20 \text{ bytes/tuple}}} = 100 \text{ block I/Os}
\]
Cost-based plan selection

Solution

\[T = 1 \]
\[B = 1 \]
Cost-based plan selection

Solution

\[
\begin{array}{c}
\pi \\
\sigma \Join \sigma \\
E \quad D \\
P
\end{array}
\]
Cost-based plan selection

Solution

Subexpression:

$$\sigma_{D \text{.budget} \geq 20000}(D)$$

The number of tuples returned is estimated to 2501:

$$\left\lceil \frac{30000 - 20000 + 1}{30000 - 10000 + 1} \times \text{selectivity} \times 5000 \text{ departments} \right\rceil = 2501 \text{ tuples}$$

This corresponds to 26 Blocks:

$$\frac{2501}{\left\lceil \frac{4000 \text{ bytes/block}}{40 \text{ bytes/tuple}} \right\rceil} = 26 \text{ blocks}$$

Since no index is available, a table scan is our only possibility:

$$\frac{5000}{\left\lceil \frac{4000 \text{ bytes/block}}{40 \text{ bytes/tuple}} \right\rceil} = 50 \text{ blocks}$$
Cost-based plan selection

Solution

\[\pi \left\langle \sigma \left(E \right) \right\rangle \sigma (D) \]

\[T = 2501 \]
\[B = 26 \]
Cost-based plan selection

Solution
Cost-based plan selection

Solution

Subexpression: P

A table scan on P requires 500 block I/O’s. This is also the estimated number of blocks returned:

$$\frac{1000 \text{ tuples}}{\frac{4000 \text{ bytes/block}}{2000 \text{ bytes/tuple}}} = 500 \text{ blocks}$$
Cost-based plan selection

Solution

\[\pi \sigma E \sigma D \]

\[T = 1000 \]
\[B = 500 \]
Cost-based plan selection

Solution

Solution of the exercises 31
Cost-based plan selection

Solution

Now, we must determine an ordering for the joins. We consider all pairs of joins and keep the one with the smallest cost.

\[
\sigma_{e,sal=50000}(E) \text{ and } \sigma_{d,budget\geq20000}(D)
\]

The selection on each side requires one buffer to execute, leaving only 10 buffers for the join.

The output of \(e_1 \) contains only 1 tuples, and can therefore be computed in 1 block. Since \(1 = B(e_1) \leq M = 10 \), we can apply the one-pass join algorithm. Its cost is

\[
B(e_1) + B(e_2) = 1 + 26 = 27 \text{ I/O's}
\]

An index-join cannot be used on \(e_2 \) since it is not a base relation. All other join methods always cost more than one-pass join. Hence the one-pass join is preferred.
Cost-based plan selection

Solution

Solution of the exercises 33
Cost-based plan selection

Solution

The second join pair is:

\[
\sigma_{\text{D.budget} \geq 20000(D)} \quad \text{and} \quad P
\]

\(e_2\)

We have 11 buffers at our disposal, given that we need 1 buffer to perform the selection in \(e_2\). It is not possible to use a one-pass join, since

\[26 = B(e_2) \geq M = 11\quad \text{and} \quad 500 = B(P) \geq M = 11.\]

A block-based nested-loop join costs:

\[
B(e_2) + \left\lceil \frac{B(e_2)}{M - 1} \right\rceil \times B(P) = 26 + \left\lceil \frac{26}{10} \right\rceil \times 500 = 1526 \text{ I/Os}
\]
Cost-based plan selection

Solution

The second join pair is:

\[\sigma_{D, \text{budget} \geq 20000(D)} \quad \text{and} \quad P \]

We have enough memory to perform an optimized sort-merge join:

\[
8 = \left\lceil \frac{B(e_2)}{M \lceil \log_M B(e_2) \rceil - 1} \right\rceil + \left\lceil \frac{B(P)}{M \lceil \log_M B(P) \rceil - 1} \right\rceil \leq M = 11 \text{ available buffers}
\]

This optimized sort-merge join has a cost of:

\[
2B(e_2) \lceil \log_M B(e_2) \rceil + 2B(P) \lceil \log_M B(P) \rceil - B(e_2) - B(P)
\]
\[
= 2 \times 26 \times 2 + 2 \times 500 \times 3 - 26 - 500
\]
\[
= 2578 \text{ I/O's}
\]
Cost-based plan selection

Solution

Assuming that the clustered index on \(P\.pid \) is a \(BTree \), it ensues that \(P \) is already sorted on this join attribute. Given that we then only need to sort \(e_2 \), the cost of a non-optimized sort-merge join is:

\[
2B(e_2) \left\lfloor \log_M B(e_2) \right\rfloor + B(e_2) + B(P)
\]

Futhermore, we can optimize the last merge:

\[
4 \text{ necessary buffers} = \left\lceil \frac{B(e_2)}{M} \right\rceil + 1 \leq M = 11 \text{ available buffers}
\]

The cost thereof is:

\[
2B(e_2)(\left\lfloor \log_M B(e_2) \right\rfloor - 1) + B(e_2) + B(P)
\]

\[
= 2 \times 26 \times 1 + 26 + 500
\]

\[= 578 \text{ I/Os}\]
Cost-based plan selection

Solution

The cost of an hash-join is:

\[2B(e_2) \left\lfloor \log_{M-1} B(e_2) - 1 \right\rfloor + 2B(P) \left\lfloor \log_{M-1} B(e_2) - 1 \right\rfloor + B(e_2) + B(P) \]
\[= 2 \times 26 \times 1 + 2 \times 500 \times 1 + 26 + 500 \]
\[= 1578 \text{ I/O's} \]

It is also possible to use an index-join, using the clustered index on \(P\).pid. This method has a cost of:

\[B(e_2) + T(e_2) \times \left\lceil \frac{B(P)}{V(P, \text{pid})} \right\rceil = 26 + 2501 \times 1 = 2527 \text{ I/O's} \]

Hence, we assume that the index on \(P\).pid is a BTree, and sorting \(P\) is not necessary. In that case the optimized sort-merge join that only sorts \(e_2\) is preferred.
Cost-based plan selection

Solution of the exercises 38
Cost-based plan selection

Solution

The third join pair is:

\[\sigma_{E \text{.sal}=50000}(E) \quad \text{and} \quad P \]

\(e_1 \)

Note that this join is a full cartesian product. A one-pass join is available at the following cost:

\[B(e_1) + B(P) = 1 + 500 = 501 \text{ I/O's} \]

No index can help up for this join, and the one-pass join algorithm gives the best cost.
Cost-based plan selection

Solution

Cost = 27
Single pass join

Cost = 578
Optimized sort-merge join

Cost = 501
Single pass join
Cost-based plan selection

Solution

The join-pair with the least cost is therefore:

\[
\sigma_{e.\text{sal}=50000}(E) \quad \text{and} \quad \sigma_{D.\text{budget}\geq20000}(D)
\]

Where an one-pass join on \(E.\text{did}\) is used. Therefore, only 2 buffers are necessary (why?).

The estimated number of tuples in the output of this join is:

\[
\frac{T(e_1) \times T(e_2)}{\max(V(e_1, \text{did}), V(e_2, \text{did}))} = \frac{1 \times 2501}{20} = 126
\]

These records are 60 bytes long and can be stored in 2 blocks.
Cost-based plan selection

Solution

\[
\begin{align*}
T &= 126 \\
B &= 2
\end{align*}
\]
Cost-based plan selection

Solution

\[
\begin{array}{c}
\pi \\
\times \\
\sigma \\
E \\
\times \\
\sigma \\
D \\
P
\end{array}
\]
Cost-based plan selection

Solution

We still need to find the best way to join the whole expression
\[
\sigma_{e.sal=50000}(E) \Join \sigma_{D.budget\geq 20000}(D) \text{ and } P
\]

We expect to have \(12 - 3 = 9\) main memory buffers available.

The output of \(e_3\) fits in 2 blocks. Given that \(2 = B(e_3) \leq M = 8\), a one-pass join is possible. The cost thereof is:
\[
B(e_3) + B(P) = 2 + 500 = 502
\]

This join can also be performed by means of an index-join, using the clustered index on \(P.pid\).
\[
B(e_3) + T(e_3) \times \left[\frac{B(P)}{V(P, pid)} \right] = 2 + 125 \times 1 = 127 \text{ I/O's}
\]

Hence, the index-join is preferred.
Cost-based plan selection

Solution

\[
\pi \downarrow \sigma \downarrow E \uparrow \sigma \downarrow D \uparrow P
\]
Cost-based plan selection

Solution

The projection $\pi_{E.eid,D.did,P.pid}$ can be performed on the fly at the same time as the last join.

Notice that we did not need to materialize any of the intermediate results.
Cost-based plan selection

Solution

Single pass
Cost = 27, \(T = 126 \)

Index scan
Cost = 1, \(T = 1 \)

Index join
Cost = 127, \(T = 125 \)

Table scan
Cost = 50, \(T = 2501 \)