Physical Operators

Task

(refer to the handouts for the full exercise)

- What is the cost (in disk I/O's) of computing $R \bowtie_{R.A=S.B} S$ using the tuple-based nested loop join?
Physical Operators

Task

(refer to the handouts for the full exercise)

• What is the cost (in disk I/O’s) of computing \(R \bowtie_{R.A=S.B} S \) using the tuple-based nested loop join?

\[B(S) + T(S) \times B(R) = 2000200 \]

That is:
1. the cost of reading \(S \) block by block, fetching its tuples, plus
2. for each tuple for \(S \) the cost of reading \(R \) block by block to find each matching tuple.

Had we chosen \(R \) as the outer relation, the cost would have been slightly higher.

• What is the minimum number of buffer pages required for this cost to remain unchanged?

2
Physical Operators

Task

(refer to the handouts for the full exercise)

• What is the cost (in disk I/O’s) of computing $R \bowtie_{R.A=S.B} S$ using the tuple-based nested loop join?

\[B(S) + T(S) \times B(S) = 2000200 \]

Tuple-based nested loop join

Solution of the exercises
Physical Operators

Task

(refer to the handouts for the full exercise)

- What is the cost (in disk I/O’s) of computing $R \bowtie_{R.A=S.B} S$ using the block-based nested loop join?
Physical Operators

Task

(refer to the handouts for the full exercise)

• What is the cost (in disk I/O’s) of computing $R \bowtie_{R.A=S.B} S$ using the block-based nested loop join?

$$B(S) + B(R) \times \left\lceil \frac{B(S)}{M-1} \right\rceil = 4200$$

If we consider R to be the “outer” relation, the cost will be higher (5000).

• What is the minimum number of buffer pages required for this cost to remain unchanged?

51
Physical Operators

Task

Block-based nested loop join for $M < 15$
Physical Operators

Task

Block-based nested loop join for $M > 15$

I/O cost ($\times1000$)

M

Solution of the exercises
Physical Operators

Task

(refer to the handouts for the full exercise)

• *What is the cost (in disk I/O's) of performing* $R \bowtie_{R.A=S.B} S$ *using a sort-merge join?*
Physical Operators

Task

(refer to the handouts for the full exercise)

• What is the cost (in disk I/O’s) of performing $R \Join_{R.A=S.B} S$ using a sort-merge join?

$$
2B(R) \lfloor \log_M B(R) \rfloor + 2B(S) \lfloor \log_M B(S) \rfloor - B(R) - B(S)
$$

$$
= 2 \times 1000 \times 2 + 2 \times 200 \times 2 - 1000 - 200
$$

$$
= 3600
$$

• What is the minimum number of buffer pages required for this cost to remain unchanged?

The aforementioned join is computed in two passes. After one sorting pass, we can merge the whole relations:

$$
\frac{B(R)}{M} + \frac{B(S)}{M} \leq M
$$

The minimal M that satisfies this is:

$$
35 = \sqrt{B(R) + B(S)}
$$
Physical Operators

Task

Sort merge join

I/O cost (×1000)

Not optimized

Optimized

M

Solution of the exercises 10
Physical Operators

Task

(refer to the handouts for the full exercise)

• What is the cost (in disk I/O’s) of performing $R \bowtie_{R.A=S.B} S$ using a hash join?
Physical Operators

Task

(refer to the handouts for the full exercise)

• What is the cost (in disk I/O’s) of performing \(R \bowtie_{R.A=S.B} S \) using a hash join?

\[
2B(R) \lceil \log_{M-1} B(S) - 1 \rceil + 2B(S) \lceil \log_{M-1} B(S) - 1 \rceil + B(R) + B(S)
\]

\[
= 2 \times 1000 \times 1 + 2 \times 200 \times 1 + 1000 + 200
\]

\[
= 3600
\]

• What is the minimum number of buffer pages required for this cost to remain unchanged?

The aforementioned hash join is performed in 2 passes. After one pass of hashing \(S \), we must have buckets of a size that is at most \(M - 1 \):

\[
\frac{B(S)}{M - 1} \leq M - 1 \iff M^2 - 2M + 1 - B(S) = 0.
\]

The minimal \(M \) that satisfies is (positive root of the quadratic polynom):

\[
\lceil 1 + \sqrt{200} \rceil = 16.
\]
Physical Operators

Task

Note that we need at least 3 buffers (why?)
Physical Operators

Task

(refer to the handouts for the full exercise)

- What join algorithm yields the least cost if you were free to choose the number of free buffers?
 The single pass join. But you need $\min(B(R), B(S)) + 1 = 201$ buffers.

![Graph showing I/O cost vs. M]

I/O cost (×1000)

M
Physical Operators

Task

(refer to the handouts for the full exercise)

How many tuples does the join of R and S produce, at most, and how many blocks are required to store the result of the join back on disk?

Since B is a key of relation S, there is at most one matching tuple in S for each tuple in R. Hence, the maximal number of tuples in the join is $T(R) = 10000$.

A resulting tuple is at most as large as a tuple of R plus a tuple of S. Hence, we have at most 5 of these tuples per block. The maximal number of blocks in the output is therefore 2000.
Physical Operators

Algorithm selection

Visual comparison of different join algorithms for different instance sizes.
Physical Operators

Task

\[B(S) = 200, B(R) = 1000 \]

![Chart showing I/O cost vs. M for different physical operators](image)

- **Block-based nested loop join**
- **Sort merge join**
- **Single pass join**
Physical Operators

Task

\[B(S) = 200, \quad B(R) = 500 \]

- Block-based nested loop join
- Sort merge join
- Single pass join

Solution of the exercises 18
Physical Operators

Task

\[B(S) = 200, B(R) = 500 \]

- Block-based nested loop join
- Sort merge join
- Single pass join

Solution of the exercises 19
Physical Operators

Task

\[B(S) = 10, B(R) = 500 \]

\[I/O \text{ cost } (\times 1000) \]

- Block-based nested loop join
- Sort merge join
- Single pass join

Solution of the exercises 20