Optimization of Logical Queries

Task:

Consider the following relational schema:

- Hotel(hid, name, address)
- Room(rid, hid, type, price)
- Booking(hid, gid, date_from, date_to, rid)
- Guest(gid, name, address)

Translate the following SQL query into the relational algebra and use the algebraic laws to improve the query plan.

```sql
SELECT R.rid, R.type, R.price
FROM Room R, Booking B, Hotel H
WHERE R.rid = B.rid AND B.hid = H.hid
    AND H.name = 'Hilton' AND R.price > 100
```
Optimization of Logical Queries

Solution

The translation gives us the following relational algebra expression:

\[\pi_{R.\text{rid}, R.\text{type}, R.\text{price}} \sigma_{R.\text{rid}=B.\text{rid} \land B.\text{hid}=H.\text{hid} \land H.\text{name}=\text{Hilton} \land R.\text{price}>100} \]

\[(\rho_{R}(\text{Room}) \times \rho_{H}(\text{Hotel}) \times \rho_{B}(\text{Booking})) \]
Optimization of Logical Queries

Solution

The translation gives us the following relational algebra expression:

\[\pi_{R.\text{rid}, R.\text{type}, R.\text{price}} \sigma_{R.\text{rid}=B.\text{rid} \land B.\text{hid}=H.\text{hid} \land H.\text{name}=\text{Hilton} \land R.\text{price}>100} (\rho_R(\text{Room}) \times \rho_H(\text{Hotel}) \times \rho_B(\text{Booking})) \]

First, we split the selections:

\[\pi_{R.\text{rid}, R.\text{type}, R.\text{price}} \sigma_{R.\text{rid}=B.\text{rid}} \sigma_{B.\text{hid}=H.\text{hid}} \sigma_{H.\text{name}=\text{Hilton}} \sigma_{R.\text{price}>100} (\rho_R(\text{Room}) \times \rho_H(\text{Hotel}) \times \rho_B(\text{Booking})) \]

And we push the selections:

\[\pi_{R.\text{rid}, R.\text{type}, R.\text{price}} \sigma_{R.\text{rid}=B.\text{rid}} (\sigma_{R.\text{price}>100} \rho_R(\text{Room}) \times \sigma_{B.\text{hid}=H.\text{hid}} (\sigma_{H.\text{name}=\text{Hilton}} \rho_H(\text{Hotel}) \times \rho_B(\text{Booking}))) \]
Optimization of logical queries

Solution (continued)

Then, the joins are recognized:

$$\pi_{R.\text{rid}, R.\text{type}, R.\text{price}}(\sigma_{R.\text{price}>100} \rho_R(\text{Room}) \bowtie \left(\sigma_{\text{H.name}='\text{Hilton'}} \rho_H(\text{Hotel}) \bowtie \rho_B(\text{Booking}) \right)$$
Optimization of logical queries

Solution (continued)

Then, the joins are recognized:

\[
\pi_{R.\text{rid}, R.\text{type}, R.\text{price}}(\sigma_{R.\text{price} > 100} \rho_R(\text{Room})) \\
\Join_{R.\text{rid} = B.\text{rid}} (\sigma_{H.\text{name} = 'Hilton'} \rho_H(\text{Hotel})) \Join_{B.\text{hid} = H.\text{hid}} \rho_B(\text{Booking}))
\]

Finally, the projections are pushed:

\[
\pi_{R.\text{rid}, R.\text{type}, R.\text{price}}(\pi_{R.\text{rid}, R.\text{type}, R.\text{price}}(\sigma_{R.\text{price} > 100} \rho_R(\text{Room}))) \\
\Join_{R.\text{rid} = B.\text{rid}} \pi_{B.\text{hid}}(\pi_{H.\text{hid}}(\sigma_{H.\text{name} = 'Hilton'} \rho_H(\text{Hotel}))) \\
\Join_{B.\text{hid} = H.\text{hid}} \pi_{B.\text{hid}, B.\text{rid}}(\rho_B(\text{Booking})))
\]
Conjunctive queries

Task:

Consider a binary relation $Q(A, B)$. First translate the following SQL query into a select-project-join expression, and then into a conjunctive query:

```
SELECT Q1.A, Q3.B FROM Q Q1, Q Q2, Q Q3
```
Conjunctive queries

Task:
Consider a binary relation $Q(A, B)$. First translate the following SQL query into a select-project-join expression, and then into a conjunctive query:

SELECT $Q_1.A$, $Q_3.B$ FROM Q Q_1, Q Q_2, Q Q_3
WHERE $Q_1.B = Q_2.A$ and $Q_2.B = Q_3.A$

Solution
The corresponding select-project-join expression is:

$$\pi_{Q_1.A,Q_3.B} \sigma_{Q_1.B=Q_2.A \land Q_2.B=Q_3.A}(\rho_{Q_1}(Q) \times \rho_{Q_2}(Q) \times \rho_{Q_3}(Q))$$
Conjunctive queries

Task:
Consider a binary relation \(Q(A, B) \). First translate the following SQL query into a select-project-join expression, and then into a conjunctive query:

\[
\text{SELECT } Q1.A, Q3.B \text{ FROM } Q \ Q1, Q \ Q2, Q \ Q3 \\
\text{WHERE } Q1.B = Q2.A \text{ and } Q2.B = Q3.A
\]

Solution
The corresponding select-project-join expression is:

\[
\pi_{Q1.A,Q3.B} \sigma_{Q1.B=Q2.A \land Q2.B=Q3.A}(\rho_{Q1}(Q) \times \rho_{Q2}(Q) \times \rho_{Q3}(Q))
\]

To translate this into a conjunctive query, we create an atom with distinct variables for each relation:

\[
P(x_{Q1.A}, x_{Q3.B}) \leftarrow Q(x_{Q1.A}, x_{Q1.B}), Q(x_{Q2.A}, x_{Q2.B}), Q(x_{Q3.A}, x_{Q3.B})
\]
Conjunctive queries

Task:
Consider a binary relation $Q(A, B)$. First translate the following SQL query into a select-project-join expression, and then into a conjunctive query:

SELECT Q1.A, Q3.B FROM Q Q1, Q Q2, Q Q3

Solution
The corresponding select-project-join expression is:

$$\pi_{Q1.A, Q3.B} \sigma_{Q1.B = Q2.A \land Q2.B = Q3.A}(\rho_{Q1}(Q) \times \rho_{Q2}(Q) \times \rho_{Q3}(Q))$$

We then unify variables that must be equal:

$$P(x_{Q1.A}, x_{Q3.B}) \leftarrow Q(x_{Q1.A}, x_{Q1.B}), Q(x_{Q1.B}, x_{Q2.B}), Q(x_{Q2.B}, x_{Q3.B})$$
Conjunctive queries

Task:

Consider a binary relation $Q(A, B)$. First translate the following SQL query into a select-project-join expression, and then into a conjunctive query:

```
SELECT Q1.A, Q3.B FROM Q Q1, Q Q2, Q Q3
```

Solution

The corresponding select-project-join expression is:

$$\pi_{Q1.A,Q3.B} \sigma_{Q1.B=Q2.A \land Q2.B=Q3.A}(\rho_{Q1}(Q) \times \rho_{Q2}(Q) \times \rho_{Q3}(Q))$$

(Optionally), we rename the variables:

$$P(x, y) \leftarrow Q(x, k), Q(k, l), Q(l, y)$$
Conjunctive queries

Task:
Consider the relations $R(A, B)$, $S(C)$, $T(D, E)$, $U(F, G)$ and $V(A, B, C)$.
Translate the following conjunctive query into a select-project-join expression. What is the corresponding SQL query?

$$Q_1(x, y) \leftarrow S(x), T(x, 3), U(x, y)$$
Conjunctive queries

Task:
Consider the relations $R(A, B)$, $S(C)$, $T(D, E)$, $U(F, G)$ and $V(A, B, C)$. Translate the following conjunctive query into a select-project-join expression. What is the corresponding SQL query?

$$Q_1(x, y) \leftarrow S(x), T(x, 3), U(x, y)$$

Solution
The select-project-join expression is:

$$
\pi_{C,G} \sigma_{C=F} \sigma_{C=D} \sigma_{E=3} (S \times T \times U)
$$
Conjunctive queries

Task:

Consider the relations $R(A, B)$, $S(C)$, $T(D, E)$, $U(F, G)$ and $V(A, B, C)$.
Translate the following conjunctive query into a select-project-join expression.
What is the corresponding SQL query?

$$Q_1(x, y) ← S(x), T(x, 3), U(x, y)$$

Solution

The select-project-join expression is:

$$\pi_{C, G} \sigma_{C=F} \sigma_{C=D} \sigma_{E=3} (S \times T \times U)$$

The corresponding SQL query is:

```sql
SELECT S.C, U.G
FROM S, T, U
WHERE C = F AND C = D AND E = 3
```
Containment and optimization of conjunctive queries

Recap

- A substitution of Q in D is a function that maps each variable occurring in Q to a constant in D.
- A matching of Q in D is a substitution σ such that $\sigma(\text{body}) \subseteq D$
- $Q(D) = \{\sigma(\text{head}) \mid \sigma \text{ a matching of } Q \text{ in } D\}$
- The canonical database of a query Q_i is the set of atoms D_i obtained from the body of Q, where each variable x is considered as a constant.
- To test whether $Q_i \subseteq Q_j$, it suffices to check whether the head of Q_i (considered as a fact) occurs in $Q_j(D_i)$.

Solution of the exercises
Containment and optimization of conjunctive queries

Consider the following conjunctive queries:

- $Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y)$
- $Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y)$
- $Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y)$
- $Q_4(x, y) \leftarrow Q(x, y), Q(y, x)$

Is $Q_1 \subseteq Q_2$? Is $Q_3 \subseteq Q_2$?
Containment and optimization of conjunctive queries

Consider the following conjunctive queries:

• \(Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y) \)
• \(Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y) \)
• \(Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y) \)
• \(Q_4(x, y) \leftarrow Q(x, y), Q(y, x) \)

Is \(Q_1 \subseteq Q_2? \) Is \(Q_3 \subseteq Q_2? \)

Solution: \(Q_1 \subseteq Q_2? \)

We construct the canonical database for \(Q_1. \) For ease of readability, and to avoid confusion, we denote the constants in this canonical database by \(\dot{x}, \dot{a}, \ldots \)

\[
D_1 := \{ Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y}) \}.
\]

Is \((\dot{x}, \dot{y}) \in Q_2(D_1)? \)
Containment and optimization of conjunctive queries

Consider the following conjunctive queries:

• \(Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y) \)
• \(Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y) \)
• \(Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y) \)
• \(Q_4(x, y) \leftarrow Q(x, y), Q(y, x) \)

Is \(Q_1 \subseteq Q_2 \) \(? \) Is \(Q_3 \subseteq Q_2 \) ?

Solution: \(Q_1 \subseteq Q_2 \) ?

We construct the canonical database for \(Q_1 \):

\[
D_1 := \{Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y})\}.
\]

Is \((\dot{x}, \dot{y}) \in Q_2(D_1)\) ? Candidate substitution:

\[
x \mapsto \dot{x}, \ y \mapsto \dot{y}
\]
Consider the following conjunctive queries:

- \(Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y) \)
- \(Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y) \)
- \(Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y) \)
- \(Q_4(x, y) \leftarrow Q(x, y), Q(y, x) \)

Is \(Q_1 \subseteq Q_2 \)? Is \(Q_3 \subseteq Q_2 \)?

Solution: \(Q_1 \subseteq Q_2 \)?

We construct the canonical database for \(Q_1 \):

\[
D_1 := \{Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y})\}.
\]

Is \((\dot{x}, \dot{y}) \in Q_2(D_1)\)? Candidate substitution:

\[
x \mapsto \dot{x}, \dot{y} \mapsto y
\]

Then, to mach \(Q(x, a) \) we would need \(a \mapsto \dot{a} \).
Containment and optimization of conjunctive queries

Consider the following conjunctive queries:

- \(Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y)\)
- \(Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y)\)
- \(Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y)\)
- \(Q_4(x, y) \leftarrow Q(x, y), Q(y, x)\)

Is \(Q_1 \subseteq Q_2\)? Is \(Q_3 \subseteq Q_2\)?

Solution: \(Q_1 \subseteq Q_2\)

We construct the canonical database for \(Q_1\):

\[D_1 := \{Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y})\}\]

Is \((\dot{x}, \dot{y}) \in Q_2(D_1)\)? Candidate substitution:

\[x \mapsto \dot{x}, y \mapsto \dot{y}, a \mapsto \dot{a}\]

Then, to match \(Q(a, b)\) we would need \(b \mapsto \dot{b}\).
Containment and optimization of conjunctive queries

Consider the following conjunctive queries:

- $Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y)$
- $Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y)$
- $Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y)$
- $Q_4(x, y) \leftarrow Q(x, y), Q(y, x)$

Is $Q_1 \subseteq Q_2$? Is $Q_3 \subseteq Q_2$?

Solution: $Q_1 \subseteq Q_2$?

We construct the canonical database for Q_1:

$$D_1 := \{Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y})\}.$$

Is $(\dot{x}, \dot{y}) \in Q_2(D_1)$? Candidate substitution:

$$x \mapsto \dot{x}, y \mapsto \dot{y}, a \mapsto \dot{a}, b \mapsto \dot{b}$$

Then, to match $Q(b, c)$ we would need $c \mapsto \dot{y}$.

Solution of the exercises 20
Consider the following conjunctive queries:

- $Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y)$
- $Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y)$
- $Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y)$
- $Q_4(x, y) \leftarrow Q(x, y), Q(y, x)$

Is $Q_1 \subseteq Q_2$? Is $Q_3 \subseteq Q_2$?

Solution: $Q_1 \subseteq Q_2$?

We construct the canonical database for Q_1:

$$D_1 := \{Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y})\}.$$

Is $(\dot{x}, \dot{y}) \in Q_2(D_1)$? Candidate substitution:

$$x \mapsto \dot{x}, y \mapsto \dot{y}, a \mapsto \dot{a}, b \mapsto \dot{b}, c \mapsto \dot{y}$$

But then, $Q(c, y)$ is mapped to $Q(\dot{y}, \dot{y})$, which is not in D_1! So, our candidate substitution is not a matching.
Containment and optimization of conjunctive queries

Consider the following conjunctive queries:

- \(Q_1(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, y) \)
- \(Q_2(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y) \)
- \(Q_3(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y) \)
- \(Q_4(x, y) \leftarrow Q(x, y), Q(y, x) \)

Is \(Q_1 \subseteq Q_2 \)? Is \(Q_3 \subseteq Q_2 \)?

Solution: \(Q_1 \subseteq Q_2 \)?

We construct the canonical database for \(Q_1 \):

\[
D_1 := \{ Q(\dot{x}, \dot{a}), Q(\dot{a}, \dot{b}), Q(\dot{b}, \dot{y}) \}.
\]

No candidate substitution yielding \((\dot{x}, \dot{y})\) is a matching. Hence, \((\dot{x}, \dot{y}) \notin Q_2(D_1)\).

Therefore: \(Q_1 \not\subseteq Q_2 \) (we constructed a counterexample).
Containment and optimization of conjunctive queries

Solution: $Q_3 \subseteq Q_2$?

- $Q_3 : P(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y)$
- $Q_2 : P(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y)$

We construct the canonical database for Q_3:

$$D_3 := \{Q(\dot{x}, \dot{a}), Q(\dot{a}, 1), Q(1, \dot{b}), Q(\dot{b}, \dot{y})\}.$$

Is $(\dot{x}, \dot{y}) \in Q_2(D_3)$?
Containment and optimization of conjunctive queries

Solution: $Q_3 \subseteq Q_2$?

- $Q_3 : P(x, y) \leftarrow Q(x, a), Q(a, 1), Q(1, b), Q(b, y)$
- $Q_2 : P(x, y) \leftarrow Q(x, a), Q(a, b), Q(b, c), Q(c, y)$

We construct the canonical database for Q_3:

$$D_3 := \{Q(\hat{x}, \hat{a}), Q(\hat{a}, 1), Q(1, \hat{b}), Q(\hat{b}, \hat{y})\}.$$

Yes! The following matching ensures that $(\hat{x}, \hat{y}) \in Q_2(D_3)$

$$[x \rightarrow \hat{x}, y \rightarrow \hat{y}, a \rightarrow \hat{a}, b \rightarrow 1, c \rightarrow \hat{b}]$$

Therefore: $Q_3 \subseteq Q_2$.

Optimization of conjunctive queries

Task

Optimize the following conjunctive query

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]
Optimization of conjunctive queries

Task

Optimize the following conjunctive query

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]

Solution

- The atom \(R(x, y) \) cannot be removed (why?).
Optimization of conjunctive queries

Task

Optimize the following conjunctive query

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]

Solution

- The atom \(R(x, y) \) cannot be removed (why?).
- We check whether \(R(y, w) \) can be removed. Let \(P \) be the following conjunctive query:

\[P(x, z) \leftarrow R(x, y), R(y, z) \]

We must check whether \(P \subseteq Q \) (\(Q \subseteq P \) is trivially true).
Optimization of conjunctive queries

Task

Optimize the following conjunctive query

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]

Solution

- The atom \(R(x, y) \) cannot be removed (why?).
- We check whether \(R(y, w) \) can be removed. Let \(P \) be the following conjunctive query:

\[P(x, z) \leftarrow R(x, y), R(y, z) \]

We must check whether \(P \subseteq Q \) (\(Q \subseteq P \) is trivially true). Therefore, we construct the canonical database for \(P \):

\[D := \{ R(\hat{x}, \hat{y}), R(\hat{y}, \hat{z}) \} \]

The following matching ensures that \((\hat{x}, \hat{z}) \in Q(D) \), and hence that \(P \subseteq Q \):

\[[x \rightarrow \hat{x}, y \rightarrow \hat{y}, w \rightarrow \hat{z}, z \rightarrow \hat{z}] \]
Optimization of conjunctive queries

Task

Optimize the following conjunctive query:

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]

Solution (continued)

- Since \(P \) is equivalent and “more optimal”, we now continue with optimizing query \(P \).

\[P(x, z) \leftarrow R(x, y), R(y, z) \]
Optimization of conjunctive queries

Task

Optimize the following conjunctive query:

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]

Solution (continued)

• Since \(P \) is equivalent and “more optimal”, we now continue with optimizing query \(P \).

\[P(x, z) \leftarrow R(x, y), R(y, z) \]

• The atom \(R(y, z) \) cannot be removed (why?)
Optimization of conjunctive queries

Task

Optimize the following conjunctive query:

\[Q(x, z) \leftarrow R(x, y), R(y, w), R(y, z) \]

Solution (continued)

- Since \(P \) is equivalent and “more optimal”, we now continue with optimizing query \(P \).

\[P(x, z) \leftarrow R(x, y), R(y, z) \]

- The atom \(R(y, z) \) cannot be removed (why?)

- We cannot remove any other atom. Therefore, \(P \) is the minimal query equivalent to \(Q \).
Integrated Exercise

Task

Consider the following relational schema, containing information on employees (Emp), departments (Dept), and finances (Finance):

- Emp(eid, did, sal, hobby)
- Dept(did, dname, floor, phone)
- Finance(did, budget, sales, expenses)

For the following SQL statement:

1. Translate the query into the relational algebra.
2. Remove redundant joins from the select-project-join subexpressions in the obtained logical query plan.
3. By means of the algebraic laws, further optimize the obtained expression.
Integrated Exercise

Task (continued)

SELECT MAX(E.sal)
FROM Emp E
WHERE E.eid IN
 (SELECT E1.eid
 FROM Emp E1, Emp E2, Dept D1, Dept D2, Finance F
 WHERE F.budget = 100 AND E1.did = D1.did AND E1.did = F.did
 AND E2.did = D2.did AND E2.did = F.did
 AND D1.floor = 1 AND D2.dname = 'CID'
)
GROUP BY E.hobby
Integrated Exercise

Solution: translation into the relational algebra

First, we normalize the query to a form with only EXISTS and NOT EXISTS subqueries:

```sql
SELECT MAX(E.sal)
FROM Emp E
WHERE EXISTS
  (SELECT E1.eid
   FROM Emp E1, Emp E2, Dept D1, Dept D2, Finance F
   WHERE F.budget = 100 AND E1.did = D1.did AND E1.did = F.did
     AND E2.did = D2.did AND E2.did = F.did
     AND D1.floor = 1 AND D2.dname = 'CID'
     AND E1.eid = E.eid
  )
GROUP BY E.hobby
```
Integrated Exercise

Solution: translation into the relational algebra

Then, we translate the subquery in the following expression e_1:

$$\pi_{E_1.eid,E.eid,E.did,E.sal,E.hobby} \sigma_{F.budget=100 \land E_1.did=D_1.did \land E_1.did=F.did}$$

$$\sigma_{E_2.did=D_2.did \land E_2.did=F.did \land D_1.floor=1 \land D_2.dname='CID' \land E_1.eid=E.eid}$$

$$\rho_{E}(Emp) \times \rho_{E_1}(Emp) \times \rho_{E_2}(Emp)$$

$$\times \rho_{D_1}(Dept) \times \rho_{D_2}(Dept) \times \rho_{F}(Finance))$$

And we translate the FROM-WHERE part of the outer query without subqueries:

$$e_2 := \rho_{E}(Emp)$$

The decorrelation of the subquery gives:

$$e_3 := \hat{e}_2 \Join \pi_{E.eid,E.did,E.sal,E.hobby}(e_1)$$

Notice that \hat{e}_2 is empty! Therefore, the translation of the complete query is:

$$e_4 := \pi_{\text{MAX}(E.sal)} \gamma_{E.hobby,\text{MAX}(E.sal)} \pi E.eid,E.did,E.sal,E.hobby(e_1)$$
Integrated Exercise

Solution: translation into the relational algebra

This leads to (after merging projections):

$$\pi_{\text{MAX}(E.\text{sal})} \gamma_{E.\text{hobby}, \text{MAX}(E.\text{sal})} \pi_{E.\text{eid}, E.\text{did}, E.\text{sal}, E.\text{hobby}} \sigma_{F.\text{budget}=100 \land E_1.\text{did}=D_1.\text{did} \land E_1.\text{did}=F.\text{did}} \sigma_{E_2.\text{did}=D_2.\text{did} \land E_2.\text{did}=F.\text{did} \land D_1.\text{floor}=1 \land D_2.\text{dname}=\text{'CID'} \land E_1.\text{eid}=E.\text{eid}} \left(\rho_{E}(\text{Emp}) \times \rho_{E_1}(\text{Emp}) \times \rho_{E_2}(\text{Emp}) \times \rho_{D_1}(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_{F}(\text{Finance}) \right)$$
Integrated Exercise

Solution: translation into the relational algebra

The query only contains one (maximal) select-project-join subexpression:

\[\pi_{E.eid, E.did, E.sal, E.hobby} \sigma_{F.budget=100 \land E_1.did=D_1.did \land E_1.did=F.did \land E_2.did=D_2.did \land E_2.did=F.did \land D_1.floor=1 \land D_2.dname='CID' \land E_1.eid=E.eid} (\rho_{E}(Emp) \times \rho_{E_1}(Emp) \times \rho_{E_2}(Emp) \times \rho_{D_1}(Dept) \times \rho_{D_2}(Dept) \times \rho_{F}(Finance)) \]

To remove redundant joins, we translate it to a conjunctive query:

\[Q_1(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Emp}(c_1, b_2, c_3, c_4), \text{Dept}(b_2, d_2, 1, d_4), \text{Dept}(b_2, 'CID', e_3, e_4), \text{Finance}(b_2, 100, f_3, f_4) \]
Integrated Exercise

Solution: removal of redundant joins

\[Q_1(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Emp}(c_1, b_2, c_3, c_4), \]
\[\text{Dept}(b_2, d_2, 1, d_4), \text{Dept}(b_2, 'CID', e_3, e_4), \]
\[\text{Finance}(b_2, 100, f_3, f_4) \]

- We cannot remove $\text{Emp}(a_1, a_2, a_3, a_4)$ and $\text{Finance}(b_2, 100, f_3, f_4)$ (why?)
Integrated Exercise

Solution: removal of redundant joins

\[Q_1(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Emp}(c_1, b_2, c_3, c_4), \text{Dept}(b_2, d_2, 1, d_4), \text{Dept}(b_2, 'CID', e_3, e_4), \text{Finance}(b_2, 100, f_3, f_4) \]

- We cannot remove \(\text{Emp}(a_1, a_2, a_3, a_4) \) and \(\text{Finance}(b_2, 100, f_3, f_4) \) (why?)
- We check whether \(\text{Emp}(a_1, b_2, b_3, b_4) \) can be removed. To this end, we build the canonical database of \(Q_1 \) without this atom:

\[D_2 = \{ \text{Emp}(\dot{a}_1, \dot{a}_2, \dot{a}_3, \dot{a}_4), \text{Emp}(\dot{c}_1, \dot{b}_2, \dot{c}_3, \dot{c}_4), \text{Dept}(\dot{b}_2, \dot{d}_2, 1, \dot{d}_4), \text{Dept}(\dot{b}_2, 'CID', \dot{e}_3, \dot{e}_4), \text{Finance}(\dot{b}_2, 100, \dot{f}_3, \dot{f}_4) \} \]

Note that \((\dot{a}_1, \dot{a}_2, \dot{a}_3, \dot{a}_4) \notin Q_1(D_2) \) (why?), and it ensues that the atom cannot be removed from \(Q_1 \).
Integrated Exercise

Solution: removal of redundant joins

\[Q_1(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Emp}(c_1, b_2, c_3, c_4), \text{Dept}(b_2, d_2, 1, d_4), \text{Dept}(b_2, 'CID', e_3, e_4), \text{Finance}(b_2, 100, f_3, f_4) \]

- We check whether \(\text{Emp}(c_1, b_2, c_3, c_4) \) can be removed. To this end, we build the canonical database of \(Q_1 \) without this atom:

\[D_3 = \{ \text{Emp}(\dot{a}_1, \dot{a}_2, \dot{a}_3, \dot{a}_4), \text{Emp}(\dot{a}_1, \dot{b}_2, \dot{b}_3, \dot{b}_4), \text{Dept}(\dot{b}_2, \dot{d}_2, 1, \dot{d}_4), \text{Dept}(\dot{b}_2, 'CID', \dot{e}_3, \dot{e}_4), \text{Finance}(\dot{b}_2, 100, \dot{f}_3, \dot{f}_4) \} \]

This time, \((\dot{a}_1, \dot{a}_2, \dot{a}_3, \dot{a}_4) \in Q_1(D_3) \). Let \(Q_3 \) be the conjunctive query \(Q_1 \) without \(\text{Emp}(a_1, b_2, b_3, b_4) \). We have just shown that \(Q_3 \equiv Q_1 \), and therefore that this atom can be removed. We can continue the optimization procedure with \(Q_3 \).
Integrated Exercise

Solution: removal of redundant joins

\[Q_3(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Dept}(b_2, d_2, 1, d_4), \text{Dept}(b_2, 'CID', e_3, e_4), \text{Finance}(b_2, 100, f_3, f_4) \]

- We check whether \(\text{Dept}(b_2, d_1, 1, d_4) \) can be removed. To this end, we build the canonical database of \(Q_3 \) without this atom:

\[D_4 = \{ \text{Emp}(\hat{a}_1, \hat{a}_2, \hat{a}_3, \hat{a}_4), \text{Emp}(\hat{a}_1, \hat{b}_2, \hat{b}_3, \hat{b}_4), \text{Dept}(\hat{b}_2, 'CID', \hat{e}_3, \hat{e}_4), \text{Finance}(\hat{b}_2, 100, \hat{f}_3, \hat{f}_4) \} \]

Observe that \((\hat{a}_1, \hat{a}_2, \hat{a}_3, \hat{a}_4) \notin Q_3(D_4) \) (why?) and it ensues that the atom cannot be removed from \(Q_3 \).
Integrated Exercise

Solution: removal of redundant joins

\[Q_3(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Dept}(b_2, d_2, 1, d_4), \]
\[\text{Dept}(b_2, 'CID', e_3, e_4), \text{Finance}(b_2, 100, f_3, f_4) \]

- We check whether \(\text{Dept}(b_2, 'CID', e_3, e_4) \) can be removed. To this end, we build the canonical database of \(Q_3 \) without this atom:

\[D_5 = \{ \text{Emp}(\hat{a}_1, \hat{a}_2, \hat{a}_3, \hat{a}_4), \text{Emp}(\hat{a}_1, \hat{b}_2, \hat{b}_3, \hat{b}_4), \]
\[\text{Dept}(\hat{b}_2, \hat{d}_2, 1, \hat{d}_4), \text{Finance}(\hat{b}_2, 100, \hat{f}_3, \hat{f}_4) \} \]

Observe that \((\hat{a}_1, \hat{a}_2, \hat{a}_3, \hat{a}_4) \notin Q_3(D_5) \) (why?) and it ensues that the atom cannot be removed from \(Q_3 \).
Integrated Exercise

Solution: removal of redundant joins

Thus, the optimized conjunctive query is:

\[Q_3(a_1, a_2, a_3, a_4) \leftarrow \text{Emp}(a_1, a_2, a_3, a_4), \text{Emp}(a_1, b_2, b_3, b_4), \text{Dept}(b_2, d_2, 1, d_4), \text{Dept}(b_2, 'CID', e_3, e_4), \text{Finance}(b_2, 100, f_3, f_4) \]

And \(\rho_{E_2}(\text{Emp}) \) can be removed from the select-project-join expression (as well as the corresponding selections). The translation of \(Q_3 \) into a select-project-join expression is indeed:

\[
\pi_{E.eid, E.did, E.sal, E.hobby} \\
\sigma_{F.budget=100 \land E_1.did=D_1.did \land E_1.did=F.did \land D_1.floor=1} \\
\sigma_{D_2.did=E_1.did \land D_2.dname='CID' \land E_1.eid=E.eid} \\
(\rho_E(\text{Emp}) \times \rho_{E_1}(\text{Emp}) \times \rho_{D_1}(\text{Dept})) \\
\times \rho_{D_2}(\text{Dept}) \times \rho_F(\text{Finance}))
\]
Integrated Exercise

Solution: application of the algebraic laws

The logical query plan for the whole SQL query where we removed the redundant joins is:

\[
\pi_{\text{MAX}(E.\text{sal})} \gamma E.\text{hobby}, \pi_{\text{MAX}(E.\text{sal})} \pi E.\text{eid}, E.\text{did}, E.\text{sal}, E.\text{hobby} \\
\sigma F.\text{budget}=100 \land E_1.\text{did}=D_1.\text{did} \land E_1.\text{did}=F.\text{did} \land D_1.\text{floor}=1 \\
\sigma D_2.\text{did}=E_1.\text{did} \land D_2.\text{name}=\text{CID} \land E_1.\text{eid}=E.\text{eid} \\
(\rho_E(\text{Emp}) \times \rho_{E_1}(\text{Emp}) \times \rho_{D_1}(\text{Dept}) \times \rho_{D_2}(\text{Dept}) \times \rho_F(\text{Finance}))
\]

Now, we apply the algebraic laws. Pushing the selections gives:

\[
\pi_{\text{MAX}(E.\text{sal})} \gamma E.\text{hobby}, \pi_{\text{MAX}(E.\text{sal})} \pi E.\text{eid}, E.\text{did}, E.\text{sal}, E.\text{hobby} \sigma E_1.\text{eid}=E.\text{eid} \\
(\rho_E(\text{Emp}) \times \sigma_{E_1.\text{did}=F.\text{did}}(\sigma_{D_2.\text{did}=E_1.\text{did}} \\
(\sigma_{E_1.\text{did}=D_1.\text{did}}(\rho_{E_1}(\text{Emp}) \times \sigma_{D_1.\text{floor}=1}(\rho_{D_1}(\text{Dept}))) \\
\times \sigma_{D_2.\text{name}=\text{CID}'} \rho_{D_2}(\text{Dept})) \times \sigma_{F.\text{budget}=100}(\rho_F(\text{Finance}))))
\]
Solution (continued)

Recognizing joins:

\[\pi_{\text{MAX}(E.\text{sal})} \gamma_{E.\text{hobby}, \text{MAX}(E.\text{sal})} \pi_{E.\text{eid}, E.\text{did}, E.\text{sal}, E.\text{hobby}} \rho_{E}(\text{Emp}) \times ((\rho_{E_1}(\text{Emp}) \times \sigma_{D_1.\text{floor}=1} \rho_{D_1}(\text{Dept})) \times \sigma_{D_2.\text{dname}=\text{'CID'}(\rho_{D_2}(\text{Dept}))}) \times \sigma_{F.\text{budget}=100}(\rho_{F}(\text{Finance}))) \]

Pushing the projections:

\[\pi_{\text{MAX}(E.\text{sal})} \gamma_{E.\text{hobby}, \text{MAX}(E.\text{sal})} \pi_{E.\text{sal}, E.\text{hobby}}(\pi_{E.\text{eid}, E.\text{sal}, E.\text{hobby}} \rho_{E}(\text{Emp}) \times \pi_{E_1.\text{eid}}((\pi_{E_1.\text{did}, E_1.\text{did}}(\pi_{E_1.\text{did}, E_1.\text{did}}(\rho_{E_1}(\text{Emp})) \times \pi_{D_1.\text{did}}(\sigma_{D_1.\text{floor}=1}(\rho_{D_1}(\text{Dept})))) \times \pi_{D_2.\text{did}}(\sigma_{D_2.\text{dname}=\text{'CID'}(\rho_{D_2}(\text{Dept})))) \times \pi_{F.\text{did}}(\sigma_{F.\text{budget}=100}(\rho_{F}(\text{Finance})))) \times \rho_{F}(\text{Finance})))) \]