
Column-based Databases and
HBase

- Advanced Databases project -

Project Report

Edoardo Conte
Carlos Muñiz Cuza

Université Libre de Bruxelles

Université Libre de Bruxelles
http://www.ulb.ac.be

Title:
Column-based Databases and HBase for
Logs Stores

Course:
Advance Databases

Project Period:
Fall Semester 2018

Project group:

Edoardo Conte
Carlos Muñiz Cuza

Supervisor(s):
Esteban Zimányi

Page Numbers: 30

Date of Completion:
December 17, 2018

Abstract:

This report presents a toy application
implemented using the column-
oriented database HBase. The
database is supposed to store big
number of logs of a software company
and retrieve this information taking
into account specific attributes. The
choice of HBase as the DBMS was
subtended in the idea that traditional
relational database where not able to
fulfill the task due to the unstructured
nature of the data and the impossibil-
ity to retrieve huge volume of data in
a short period of time.
This report shows each process of the
implementation of the problem. From
choosing a suitable row key and col-
umn families to the Java implemen-
tation. In the first part, some details
about the choice of a secondary index
are also provided; for the second part,
we also show the implementation of
concurrent threads to insert the data.
The final application fulfills the expec-
tation running really fast over 1Gb of
information. Further experiments are
required in order to measure the dis-
tributed power of HBase and to calcu-
late performance metric against tradi-
tional databases.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.ulb.ac.be

Contents

Introduction 1

1 Technologies Fundamentals 2
1.1 Column-based Database Management Systems 2

1.1.1 Logical and physical data model: HBase 3
1.1.2 Benefits . 7

1.2 HBase Fundamentals: Distributing Data 7
1.2.1 Apache Hadoop . 7
1.2.2 HBase architecture . 8
1.2.3 Transaction Flow . 9
1.2.4 Indexing, retrieving the right region 10
1.2.5 Write Path . 12
1.2.6 Read Path . 13
1.2.7 Compactions . 14

1.3 HBase and MapReduce . 15

2 Logs Stores Application 17
2.1 Analysis of the Problem . 17

2.1.1 Building the schema . 18
2.2 Implementation . 20

2.2.1 Technology specification . 20
2.2.2 Implementation details . 21
2.2.3 Operations in HBase . 22
2.2.4 Querying data . 25

Conclusion 29

Bibliography 30

ii

Introduction

Nowadays, everything need to be store as potential information. Also, it is ex-
pected to get access to this information instantaneously. Moreover, it is also ex-
pected the results to be useful and tailored to our needs. In this context, companies
need a cost-effective way to store all that data.

Google and Amazon are prominent examples of companies that realized the
value of data and started developing solutions to fit their needs. For instance, in
a series of technical publications, Google described a scalable storage and process-
ing system based on commodity hardware. These ideas were then implemented
outside of Google as part of the open source Hadoop project: HDFS and MapRe-
duce[2]. Also the advent of NoSQL database open the spectrum to handle unstruc-
tured data throwing out the limiting factors to obtain truly scalable systems.

The goal of this project is to explore a NoSQL database called column-oriented
databases through a real application, with a particular focus on Apache HBase.
The application has the goal to show all the main features of the database em-
phasizing its strength points. However, it also tries to show the main weaknesses
of the technology, giving an idea of HBase limitations. During the discussion, a
comparison with a similar representation in a relational database is presented at a
logical level.

In order to give a full overview of the technology, we divided the report in two
main chapters. The first one deals with the general concepts related to column-
oriented databases and how they are applied in HBase. It also deeply analyses the
structure of the database, exploring some features that are not necessarily present
in every columnar database. The second chapter, describes the implementation of
the application in self.

1

Chapter 1

Technologies Fundamentals

In this section we are going to explore the concept of columnar database making
emphasis in the particular case of HBase. Understanding the logical and physical
data model of this technology deeply could make the difference between a bad
design and a very good one. Also understanding the benefits with respect to tradi-
tional database is important in this context. This is why we go in detail about how
HBase stores the data and how it reads and writes it. In order to do that, a brief
explanation about Hadoop file system is also presented. Finally, an explanation
about how HBase computes MapReduce is also given.

1.1 Column-based Database Management Systems

A Column-based Database Management System is a database management system
that stores data tables by column rather than by row. What this means is that each
column or family of columns is stored in a different physical file. This have several
advantages like allowing data compression. But the most important aspect is that
we have more precisely access to the data needed to answer a query rather than
scanning and discarding unwanted data in rows. Table 1.1 shows a User table
storing information in a row based schema. In the physical model we will then
find the same, a list of different rows with a predefined structure per block. On
the opposite, a column-oriented database serializes all values of a column together,
then the values of the next column and so on, as shown in table 1.2 .

Some thoughts come up just by looking the table 1.2. The first one is that
in order to retrieve the name of the user in the table we do not need to load in
memory the last name, the IDs, or the Salary. The second idea is that not Null
value is kept in the file system as difference of the row based database. This new
type of database are known as schemaless, which means that it does not need a
predefined structure or data type for each of the attributes. Instead, records can
have divergent columns, variance in field size, and so on. This kind of data is said

2

1.1. Column-based Database Management Systems 3

RowID EmpID LastName FirstName Salary
001 10 Muñiz Carlos 1000
002 21 Conte Edoardo 2000
003 13 Arora Kunal Null
004 35 Patrascu Eugen 5000

Table 1.1: Row based schema of User table.

10,12,11,22;
Muñiz,Conte,Arora,Patrascu;
Carlos,Edoardo,Kunal,Eugen;
1000,2000,5000;

Table 1.2: Columnar based store of User table.

to have a semi-structured shape. Understanding this assumption in the logical
model is very important to take advantage of the physical implementation of the
database system manager.

In addition semi-structure data brings the opportunity of scaling. The loose
coupling of data components in a semi-structured logical model has the benefit of
being easier to physically distribute [1]. Of course, the lack of structure forces to
give up to some important characteristics like relational constraints.

This is the basic idea of columnar database, but it does not explain how it really
works. Next section will answer those questions using HBase logical and physical
data model as reference.

1.1.1 Logical and physical data model: HBase

In table 1.2 presented an example of how a columnar database would be having
each column stored in a different file. However, this is just a brief idea of the
physical model. Normally we do not specify in which file we want the data to be
stored. In particular we just need to create a table and a set of column families.
The column families are the basic unit of store in HBase. At the same time, each of
them keeps a set of rows which at the same time contains different columns (also
know as column qualifiers). The column families are specified from the beginning
taking into account the information to store. Rows with related columns may want
to be store under the same column family. Figure 1.1 show this idea in a general
perspective using Keyspace as the notation for the table.

As explained before on the level below the column families are rows contained
in them. Each row has an unique ID that is used as primary key. Also, we can
access to particular columns of this row in a specific column family. In addition,
rows within the same column family are not required to have the same set of

1.1. Column-based Database Management Systems 4

Figure 1.1: A keyspace containing columns families, picture taken from
https://database.guide/what-is-a-column-store-database/.

columns. Each column contains a name/value pair, along with a timestamp (also
know as version). This provides the date and time that the data was inserted. Then
every time we insert a new element in the column even if the name and value are
equal a new entry is going to be created with a new timestamp. Figure 1.2 shows
an example where each row have different columns type.

In order to make it more clear next we explicitly mention the logical schema
entities for the particular case of HBase and some other characteristics of each of
them[1].

• Table: HBase organizes data into tables. Table names are Strings and com-
posed of characters that are safe for use in a file system path.

• Row: Within a table, data is stored according to its row. Rows are identified
uniquely by their rowkey. Rowkeys do not have a data type and are always
treated as a byte[].

• Column family: Data within a row is grouped by column family. Column

1.1. Column-based Database Management Systems 5

Figure 1.2: A column family containing 3 rows. Each row contains its own set of columns, picture
taken from https://database.guide/what-is-a-column-store-database/.

families also impact the physical arrangement of data stored in HBase. In
fact each column family is store separately from each other allowing to load
into memory only the columns in specifics column family without loading
the others. For this reason, they must be defined up front and are not easily
modified. Every row in a table has the same column families, although a row
need not store data in all its families. Column family names are Strings and
composed of characters that are safe for use in a file system path.

• Column qualifier: Data within a column family is addressed via its column
qualifier, or column. Column qualifiers need not be specified in advance.
Column qualifiers need not be consistent between rows. Like rowkeys, col-
umn qualifiers do not have a data type and are always treated as a byte[].

• Cell A combination of rowkey, column family, and column qualifier uniquely
identifies a cell. The data stored in a cell is referred to as that cell’s value.
Values also do not have a data type and are always treated as a byte[].

• Version: Values within a cell are versioned. Versions are identified by their
timestamp, a long. When a version is not specified, the current timestamp is
used as the basis for the operation.

As stated bellow, all data type in HBase are byte, so no data type. This provides

1.1. Column-based Database Management Systems 6

HBase of the ability to keep the records sorted. Knowing this is very important
when creating the rowkey and computing the queries. Understanding this detail
allows to design the schema to take advantage of this feature. Also this fact allow
us to understand HBase as an ordered map of maps. This is because each of the
entities describe above can be seen as a coordinate (except the cell in self). Figure
1.3 will help us to understand this idea.

Figure 1.3: Alternative view of the physical model of HBase as map of maps [1].

Consider those coordinates from the inside out. The cell could be consider
as a map keyed on version with the stored data as the value. One layer up, a
column family is a map keyed on column qualifier with the cell as the value.
At the top, a table is a map keyed on rowkey to the column family. Described
in Java, we could have this: Map < RowKey, Map < ColumnFamily, Map <

ColumnQuali f ier, Map < Version, Data >>>> [1].

1.2. HBase Fundamentals: Distributing Data 7

1.1.2 Benefits

• Query speed: Columnar databases boost performance by reducing the amount
of data that needs to be read from disk, both by efficiently compressing the
similar columnar data and by reading only the data necessary to answer the
query.

• Aggregation queries: Due to their structure, columnar databases perform
particularly well with aggregation queries (such as SUM, COUNT, AVG, etc).

• Scalability: Columnar databases are very scalable. They are well suited
to massively parallel processing (MPP), which involves having data spread
across a large cluster of machines often thousands of machines.

1.2 HBase Fundamentals: Distributing Data

Along this section and the next ones, we mainly took the theoretical information
from [1]. In the previous section it has been explained how HBase technology
effectively stores data and how this solution affects the logical data model of the
database. In this section, the architecture of an HBase deployment will be analyzed
in detail. HBase is primarily used to store large dataset, having fast random read-
/write access to it. When the amount of data becomes significant, it is therefore
really difficult to store it on a single machine. The architecture needs to be backed
by a high reliable and scalable distributed system. This section explains in deep
the underlying architecture of an HBase cluster.

1.2.1 Apache Hadoop

Hadoop is a project currently maintained by the Apache Software Foundation.
It is widely used in the field of Big Data and it is the underlying structure for
several data management application. It can be considered as a framework mainly
composed of three elements:

• Hadoop YARN

• Hadoop MapReduce

• Hadoop File System (HDFS)

YARN is a resource manager. It is used in order to schedule resource in the
Hadoop cluster. MapReduce is the core computational element of the Hadoop
framework. It can be considered as a functional programming paradigm, where
each task is achieved through the completion of a Map and a Reduce job. In order
to retrieve and batch process large amount of data, stored in a distributed file

1.2. HBase Fundamentals: Distributing Data 8

system, it is needed to use a highly parallel approach. Through the Map jobs, the
user specifies a method in which the data is mapped from different data sources.
Then, this result is forwarded to the Reduce jobs, which reconstruct the data again.
This processes are executed by each server in the cluster. The two jobs will run
only on partial datasets, then, the results are reconstructed in the reduce phase.

The HDFS is a fault tolerant and highly available distributed storage technol-
ogy. It allows fast retrieval of data on large dataset and it is designed to run on
commodity hardware. Each file stored in the HDFS is divided in blocks of equal
size.

The Hadoop File System is made of a master-slaves architecture, where the
master is called the NameNode and the slaves are the DataNodes. It is important
to note that user data only resides in DataNodes.

The NameNode has several task, one of which is managing the namespaces of
the file system. By accessing different namespaces, it is possible to access different
directories and file structures. Moreover, the NameNode knows where each block
is stored in the DataNodes. Along with this information, it keeps all the needed
metadata related to each stored file. These are the only information that the Na-
meNode stores. However, it has several additional tasks for the correct functioning
of the HDFS. It manages the communication between the DataNodes, it guarantees
load balancing and it detects failures in the slaves cluster, replicating and substitut-
ing data. DataNodes, instead, provide data requested by the user through low-level
read and write operations. Moreover, they can run on commodity hardware and
they do not need to be highly available.

Good practice is to dedicate a single machine for the NameNode and one ma-
chine for each DataNode.

It can be noted that this architecture gives to the system a single point of fail-
ure. If the NameNode crashes or becomes unavailable, all the system can not be
used. HDFS designed a solution to this problem, adding a new component to
the current architecture, the Secondary NameNode. This node is responsible for
getting metadata from NameNode memory and save it on the file system. More-
over, it combines this information with the current state of the file system, saved
in the disk of the NameNode. With this information, it creates the new state of the
distributed file system, saving it back on the NameNode.

Through this procedure, even if the NameNode fails, all the meta-data is stored
safely on the file system until it restarts.

1.2.2 HBase architecture

HBase is a database built on top of the HDFS. As explained in the previous sec-
tion, HDFS is a distributed system able to store efficiently large files. HBase has it-
self a distributed master-slave architecture, where data in HDFS becomes logically

1.2. HBase Fundamentals: Distributing Data 9

organized in order to guarantee query efficiency. HBase architecture is mainly
composed of three server types:

• Master Server

• Region Server

• Zookeeper

The master process, called HMaster, is entitled of DDL operations and region
assignments. A region is a portion of a table, with a fixed maximum dimension,
which is entirely stored in a region server. Due to a load balancer inside the
HMaster, it is able to move and organize regions in a smart way. Region servers,
moreover, accept client requests, serving data. They are entitled of executing query
over the region they own, sending back the results. In order to be efficient with
data retrieval, they need to be physically close to data location. By working on
top of the HDFS, it is a best practice to run region servers on the same machine
which is running the DataNode. The zookeeper process, instead, is entitled of
maintaining an active state of the network. Through a periodic heartbeat, it knows
when a node has failed and communicates it to the HMaster in order to restore the
alive situation.

Figure 1.4: HBase architecture.

1.2.3 Transaction Flow

In the section above, the HBase architecture has been described briefly. Now,
through the subsequent sections, we are going to deeply analyze it through the
practical operations the client may do. In practice, we are going to analyze read
and write operations, basic ways to interact with the database. First, the client may
want to know where it has to insert or read data. This procedure is common for
both operation, so it leaves large possibilities for caching. We are going to learn in

1.2. HBase Fundamentals: Distributing Data 10

the Java client set up that the interaction happens mainly through the Zookeeper
server. This means that the only information the client must know is the IP address
of that server and the port to interact with (typically 2181). After this operation, the
Zookeeper server gives to the client the location of the table named -ROOT-, which
is also a region. We briefly introduced the term region. A region is a portion of
data stored on a RegionServer. The main characteristic of regions is that they only
store data belonging to a specific table and column family. The format has been
explained in section [link]. Whenever a region grows too big, the HMaster may
decide to split it, assigning its pieces to different RegionServers. In this configura-
tion, data is distributed across RegionServers, which themselves work with HDFS
to maintain consistency and availability of information. In this context, where each
table is divided in different regions, the system allocates space for two special kind
of tables. They are the -ROOT- and the .META. tables. While the .META. table
behaves like a normal table, the -ROOT- table has the characteristic to not divide.
This means, that the HMaster can never split the -ROOT- table in different Re-
gionServers. Thanks to these tables, the client may find the right region in which
reading/inserting the data. Next section will explain this in detail.

1.2.4 Indexing, retrieving the right region

In previous section it has been explained the data model of HBase. It presents
itself as a database with random read/write access to big data. This characteris-
tic makes it a suitable choice for an operational database which has to handle a
considerable amount of data. In the current section, it is explained how effectively
HBase achieves this result. It has already been shown that data are indexed by the
rowKey. This is a unique value used to distinguish among different rows. However,
an interesting characteristic is that these values are sorted. This implies that when-
ever a client wants to retrieve information related to several rows with adjacent
rowKeys (alphabetically), the execution time would be significantly optimized. In
short words, this structure allows to have fast search and range queries. Whenever
the client requests for a certain range of rowKeys, this can be retrieved very effi-
ciently looking in the same location. Starting from the knowledge of -ROOT- and
.META. tables, it is possible to understand how effectively this system works. In
order to open a connection to HBase, the client must ask to Zookeeper the posi-
tion of the -ROOT- table. After this information is given, the client will ask to the
corresponding RegionServer the location of the region of interest. It will query the
-ROOT- table giving as input the range of rowKeys it is interested in and the server
will return the corresponding .META. region which contains that information. The
.META. table contains associations between rowKey ranges and corresponding re-
gion locations. As said before, it behaves like a normal table, therefore, it may be
split in several regions. After the client receives the location of the .META. region,
it queries the corresponding RegionServer to finally discover the location of the

1.2. HBase Fundamentals: Distributing Data 11

Figure 1.5: Description of HBase transaction flow [1].

1.2. HBase Fundamentals: Distributing Data 12

region requested. Querying the last RegionServer, the client is now able to insert
or read information in the right location. This is necessary in order to maintain
an overall order of rowKeys. Looking at this process from above, we can immedi-
ately recognize this structure to be similar to a B+tree with fixed height of 3. The
-ROOT- region (table) is always the root, then the first layer is represented by all
the .META. regions and then, the leaves of the tree are the regions of the user table,
sorted by rowKey. This strucure also well explains why search and range queries
are so efficient in HBase. It is also important to note that in such an architecture,
it becomes expensive to add new regions and/or move them. These operations
are supposed to be executed by the HMaster in not heavy-load conditions. Having
talked about the indexing structure of HBase, now it is possible to complete the
transaction flow, analyzing how read and write operations are performed on the
database.

Figure 1.6: Visual explanation of the index structure exploited by HBase[1].

1.2.5 Write Path

When the client needs to write some data to HBase, the following transaction flow
is activated. Recalling the structure of the database, the client must first specify the
table he wants to modify and then the interested column family. It has already been
shown that data are organized internally by means of the column families. Each
physical table represents one column family, where each row is made of a row key,
a timestamp and a column name with the corresponding value. Whenever a client
requests to write some data to HBase, it has to specify the table name, column
family and all the columns it wants to insert. Through the CLI, the PUT command
is responsible for inserting or updating a row. Internally, insertion and update are
exactly the same operation. Recalling the indexing architecture, the client is able
to retrieve the location of the correct region. This is given by the combination of

1.2. HBase Fundamentals: Distributing Data 13

the table name, the column family and the rowKeys range. The corresponding
RegionServer is responsible for data insertion. A write operation is completed
after the server writes the information to the Write Ahed Log (WAL) and to the
MemStore. In order to maintain consistency, in case of crashes or unexpected shut
down, the system needs to have a log with recent changes, not yet propagated.
This is the role of the WAL. It is a file on disk, storing all the changes not yet
persisted on the database. The MemStore, instead, is a in-memory table and can
be considered as a buffer. It maintains the same structure of a region, therefore,
it can be associated to only one column family and each row contains rowKey,
timestamp and column qualifier plus its value. As soon as a MemStore becomes
full, its content is written on disk, persisting the data. The file just generated
is called HFile. Each region is then made of several HFiles. If an unexpected
crash happens before the MemStore was full, all the data can still be recovered
through the WAL. While each RegionServer has one MemStore for each table and
column families, it has only one WAL for the entire database. Considering the
structure of MemStore and HFiles, it is clear why inserting and update operations
are considered the same. Everything consists of a new insertion in the database,
simply with a more recent timestamp. By default, only the latest 3 timestamps are
considered, but it can be tuned.

1.2.6 Read Path

Whenever a client needs to retrieve data from HBase, it has to specify a table name,
a rowKeys range and optionally a column family and a column qualifier. Once it
retrieves the correct region where the data is stored, it has to riconciliate infor-
mation between MemStore and HFiles. In order to avoid frequent HFile accesses,
each RegionServer maintains a cache, the so called BlockCache, storing the most re-
quested records. It works closely to the MemStore and again, it can only store data
belonging to a specific table and column family. The Block is the basic measure
for fetching data from HBase and usually, it has a size of 64kB. The BlockCache is
a set of Blocks. Each HFile is then composed of several Blocks with an index in
order to reach all of them. The reading operation is composed of a sequence of
three operations:

1. The MemStore is checked for any pending modification

2. BlockCache is checked, there should be some blocks with the rowKeys range
specified

3. Valuable HFiles are checked

Whenever one step succeeds, the remaining ones are not executed.
With this articulated structure, HBase is trying to minimize the HFiles access.

Moreover, in a traditional RDBMS, like PostgreSQL, the default block size is 8kB,

1.2. HBase Fundamentals: Distributing Data 14

which results to be 8 times smaller than the one in HBase. This remarks the idea
of using HBase to process large amount of data, asking prevalently for “close”
information. It results in a really strong application-dependent system, where
frequent access to subsequent data plays a fundamental role.

In order to read some values from the CLI, HBase gives to the user two pos-
sible commands, SCAN and GET. The first one works as explained in the current
section, a table name, a rowKeys range and eventually a column family and a col-
umn qualifier are given. However, it can also work without any rowKeys range
specified, in this case, a whole scan of the table is performed. The GET command,
instead, needs a unique rowKey to be specified. It can be thought as a SCAN
operation with the rowKeys range of length 1.

1.2.7 Compactions

While read and write operations have been described in details, we did not talk
about delete operations. Similarly to previous actions, deletion works on a specific
table and column. In order to understand how this operation works, it is important
to note that HFiles are immutable on disk. This implies that deleting a value means
adding a new default value for that column, comparable to NULL. This marker is
called “tumbstone”. However, there is a process during HBase execution which
permanently removes the deleted values. It is called Compaction and it comes in
two versions:

• Minor Compaction. It is executed frequently and merges several HFiles in
a larger compacted file. This operation is needed to keep data as less frag-
mented as possible inside the disk. It is designed not to affect performances
of the database, so, a max number of HFiles considered can be set by the user.

• Major Compaction. It is scheduled rarely by the HMaster, because this pro-
cess affects HBase performances. However, it is the only way to permanently
remove deleted columns. Indeed, during minor compactions, the system
cannot remove values, because the actual column and the marked column
(tumbstone) can be located in different HFiles. In this scenario, the only pos-
sible way to delete a value is to aggregate all HFiles of a specific region. With
this consideration, the system is certain to find all possibile values associated
to that column.

By means of compaction operations, HBase is able to aggregate data and re-
move useless information. However, this comes with a great cost, a huge I/O and
networking (due to HDFS) operation. This description clearly shows how delete
operations are so expensive in HBase. Adding a tombstone to a column in the
database is achieved by means of the DELETE command in the HBase CLI.

1.3. HBase and MapReduce 15

1.3 HBase and MapReduce

In previous sections, the detailed architecture of HBase has been described, giving
an understanding of how it reaches scalability, consistency and random read/write
access. Moreover, it has been explained briefly the Hadoop framework, consisting
of MapReduce computation and HDFS. It has already been explained how HDFS
and HBase are strictly related. In this section we are going to cover possible inter-
actions between HBase and MapReduce jobs.

In the current context, there could be three possible scenarios, in which MapRe-
duce jobs are executed on top of HBase. HBase can either behave as a data source,
a data sink or a shared resource. While the first two implementations are pretty
straightforward, the third one has interesting implications.

Since explaining implementation details of these techniques goes beyond the
scope of this project, we limit the discussion to qualitative solutions.

Generally, MapReduce jobs consume data residing in the HDFS. In the view
of HBase as a data source to MapReduce jobs, the user can define a table as the
input of such jobs. The scan operation performed by HBase can be parallelized by
breaking into pieces the rowKeys range of the requested tuples. In this way, several
scan operations are performed on different processing units, looking concurrently
for data. A map task is assigned to every region of the table, allowing parallel
search. This is ideal when the user needs to access a large amount of data stored on
HBase. In the view of Hbase as a data sink, similarly to the previous solution, data
are reduced in the database. The system will schedule several reduce jobs which
have the goal to write data on a specific table. Again, these jobs are scheduled on
different region, in order to guarantee concurrency. These two implementations
come useful whenever the user needs batch processing over HBase. This brief
description gives a vague idea of how reading and writing can be parallelized
and optimized. However, everything comes with a price. Executing MapReduce
jobs over the whole cluster results to be really expensive. All the map and reduce
jobs are parallelized over the cluster, using a lot of resources. It is advisable to
exploit these operations only when a low-latency response is not requested from
HBase. If the database is highly used for transactional operation, an execution of a
MapReduce job will definitely decrease its performances.

In order to describe the third use of Hbase in the MapReduce framework, we
need to introduce the concept of join. Joining two tables is a common task in the
relational world. By having data in one single physical machine, indexed in a
smart way, it is easier to execute joins. However, through MapReduce jobs, joins
can also be performed on the HDFS. In this scenario, there could be two types of
join: reduce-side joins and map-side joins. We are going to assume that HBase
is the data source of both operations. Starting from reduce-side joins, during the
map task, data from both the tables is mapped in key-value pairs, where the key

1.3. HBase and MapReduce 16

is the joining key. In order to describe this scenario, it is needed to add more
information about the MapReduce algorithm. Before the reduce task takes place,
Hadoop executes two operations automatically, shuffle and sorting of data. Given
the output of the map task, a set of key-value pairs, Hadoop needs to organize
them in order to be consumed by the reduce task. This results in shuffling and
sorting data. Through this operation all key-value pairs are sorted according the
key and grouped by its value. Then, the reduce task is a method to aggregate
all the values of a certain key. In the context of reduce-side joins, data is merged
during this operation. However, this comes with a big problem. Hadoop shuffles
and sort all possible data the user wants to merge. This operation is done with a
big network and I/O cost, which happens to be the bottleneck of every distributed
system. For large datasets, this operation may be too expensive. This is where
map-side joins come into play. Map-side joins need to satisfy some constraints
in order to be executed efficiently. In particular, one of the two tables needs to
have random read access. If one of the two tables can fit in memory, then, the
user can put the data in a proper structure (for example a hash table) in order
to have random accesses. During the map operation, the biggest table is scanned
concurrently and all the values are joined with the values contained in memory.
In this case, the shuffle and the sort steps can be skipped entirely, because the join
has already been executed in the map job. However, if both the tables are too big
to fit in memory, the algorithm does not work. HBase saves this situation thanks
to its feature of random read/write access. Given the structure already explained,
the user can retrieve efficiently specific tables and values. In this case, one table is
stored in HBase, while the other is scanned through the map job. For each value
so obtained, a comparison is made with the values contained in HBase. The most
important thing is that the rowKey of HBase table must be designed properly in
order to let instant access to requested data. In this application, the rowKey must
be related to the joining key. For each tuple in the second table, it must be easy to
retrieve the key for the associated values in the first one. HBase can be seen as an
external hash table, to which all servers have access.

Chapter 2

Logs Stores Application

In the last section we explained the characteristics of HBase, data model and more
important its strengthens and weakness. We conclude that columnar databases
are well-suited for OLAP-like workloads (e.g., data warehouses) which typically
involve highly complex queries over all data and multiple aggregation. While
row-oriented databases are well-suited for OLTP-like workloads which are more
heavily loaded with interactive transactions. This is essential in order to choose
an proper application for this project. Also, we need to address a real problem
for which row-oriented databases are not suitable. Taking this into account the
application is oriented to solve the problem of keeping track of thousands of logs
of a software company. The first section of this chapter is an explanation of the
problematic situation and next we address HBase implementation details.

2.1 Analysis of the Problem

Suppose that big software companies like IBM need to keep track of its software’s
logs for each of its clients (other companies). This logs could come in three different
ways as Error, Warning and Success for several family of products (e.g. Database,
BPM, Office, etc). The content of the logs is variable. Some of them could be
predefined in advance but other can not. For example, an specific software could
keep track of every state and have implemented a crash recovery algorithm. This
software could give details in the logs about the step made to restore the system
and the final output. This info should be store in a different place than the message
sent by the current state. In any case the content of the log could be divided in
two main group, Human Readable Information and Programming Language Specific
Information.

The company is interesting in store this information and be able to retrieve it
according to three different aspect: the kind of error, the product family and the
company in a fast way. For example, they maybe be interesting in get all the logs

17

2.1. Analysis of the Problem 18

of a company, or maybe all the logs for a specific family of software in a company
and so on. Taking into account this and assuming that the company’s departments
take care of specific products family we could give an order of importance to this
attributes. In this case then, getting information aggregated by product family is
more important that getting it by company and at the same time company is more
important than type of log. In addition, the company is sometimes interesting in
getting all the errors of a specific type. For example, all the errors related with
Networking functionalities. All the above is important to decide the schema of the
database as we will see in the next section.

2.1.1 Building the schema

One way to model this situation with a traditional row-based database is to create
a fact table with all the attributes as presented in the following table.

Company SType LogType EType Message wasSolved fPathSolve newProb time

Proximus Database Warning Null
"Slow connection
warning"

Null Null Null 17545

TaxHere BPM Error InvFlow
"The specific
Bussiness Process
Flow is not correct"

Null Null Null 17550

ING Office Error InvChar
"The character
is not valid for
current coding

Yes
Change
coding
for Asci

Null 17705

. .

Table 2.1: Row-based solution of the problem using just one fact table.

The first problem we can notice is that the table is full of Null values. This is
because different software do not produce the same information in the logs. For
example, any Warning type log have values in the last three columns (wasSolver,
fPathSolve and newProb). At the same time, the Error in the second row do not pro-
duce values either for those columns because maybe it does not have implemented
a crash recovery algorithm. Finally, the last row bellows to a software for which a
crash recovery algorithm was implemented and then we need to save the solution
and the new problem if not solved.

Now suppose we what to see all the Error logs from the company Proximus
we had in the last three weeks. A regular row-based database will need to load
every column of the rows matching the condition even when they are fill with
Null values. Also in order to prevent the database manager to do a full scan
table we will need to add indexes in the three main attributes we mention before.
This will bring some performance problem mainly for inserting and updating the

2.1. Analysis of the Problem 19

database. One way to solve these problems could be with a different schema. Let
us consider the following schema where instead of having just one table to store all
the information we have one table for each of the software in the data warehouse.
With this schema we do not need to store null values any more because we can
create specific schemes for each of the software. Also if we need to get information
about an specific program we just need to look at one table. However, what happen
if we want to make a simple query aggregating like counting the number of error
in a period of time for a product type. For doing this the Database will need to load
every table and for each table count the number of error if the software is of the
specified kind of error. Programming this query in SQL could be really challenging
and the cost really high if we have been keeping track of the logs for years. So we
can conclude that this solution is not also convenient for our problem.

On the other hand, a columnar database will solve most of the problems found
above. Taking into account the data model of HBase and using its advantages. We
just need to define a row key and the column families where the information will
be store. Lets consider the following schema for solving this problem.

• Row Key: Defining a good key is the most important feature in HBase. In this
case, our row key was defined as the sum1 of the attributes SType, Company,
LogType and Time respectively. This way we are assuring constant access to
most of the queries since we already now the user is interesting in filtering
and aggregations of this three attributes mainly. Also as we said before, one
of the business rules is that the company is organized by departments of
specific products type. So our preceding order in the row will allow us more
efficient aggregations in the most frequent kind of queries.

• Column families: HBase store the information by column family. This way,
related attributes can be retrieve at the same time. For this particular applica-
tion, we set two column family: Human Readable Information and Programming
Language Specific Information. Using this configuration, we are assuming that
the user ask for this two kind of data individually.

• Secondary index: The system need to retrieve information also according to
the type of the error. Then, we can not put this information in the row key
because is not needed for each log. To solve this we created a new table with
the log type as the row key and the row key of the main table as secondary
index as the value of the cell. This way we could index in constant time by
type of error. Notice that even when logically looks like the table is growing
horizontally adding new columns for each of the logs, physically the table is
growing vertically inserting a new row for each new column with a different
timestamp.

1The sum is this contexts can be see as string concatenation.

2.2. Implementation 20

In table 2.2 we show the schema for the main table in HBase. All not filled
values indicate complete absence of the column in the row. This means for example
that the first row is just kept in secondary memory with the row key and the
message. Table 2.3 show the secondary index table for the error type. Note that
each of the column for this table is the row key in the main table. This allow us to
link each type error with the specific row it was produced.

Row Key
HumanReadInfo ProgLangSpecifInfo

wasSolved Message EType fPathSolve detSol

ProximusDatabaseWarning21333434
"Slow connection
warning"

TaxHereBPMError232343413
"The specific
Bussiness Process
Flow is not correct"

InvFlow

INGOfficeError12323453535 Yes
"The character
is not valid for
current string codin

InvChar
Change
coding
for Asci

Table 2.2: Main table for the column-based solution of the problem.

Row Key
Logs row key

Log2 Log3
InvFlow12123334 TaxHereBPMError232343413
InvChar12233445 INGOfficeError12323453535

Table 2.3: Secondary index on attribute error type.

Next section presents the implementation details in HBase and Java to provide
the reader fully understanding of the project.

2.2 Implementation

In the previous chapter it became clear how the choice of the rowKey is important
for an HBase application. Mainly, the format of the rowKey and the column fami-
lies are the only designing choices. these two information can be compared to the
schema of the table. Once they are defined, the application is free to load any kind
of data that reflects these features.

2.2.1 Technology specification

The first problem our team came across was the installation of HBase. As explained
before, it has a really complicated structure and in order to make it work properly,

2.2. Implementation 21

a particular set up of Hadoop must be made. In order to avoid this type of com-
plexity, we decided to run HBase over a Docker version of Cloudera. Cloudera
is a company that provides full integrated solution in the Apache Big Data stack.
Among the software available in the Virtual Machine, there are Hadoop, HBase
and Zookeeper. After properly running the Docker container associated to Cloud-
era, we were able to run HBase inside the container. HBase gives to the user the
possibility to interact with itself through a JRuby shell. Thanks to this possibility,
the user is able to run simple queries in order to test the state of the database.

Despite that ease of usage, we implemented a more sophisticated application
in Java programming language. Indeed, Hbase exposes a Java client API. However,
we needed to open a communication between the host machine and the Docker
container. This problem has been solved through several ports forwarding from
the host machine to the VM. Then, we set up the project through Maven, let-
ting it download all the dependencies and finally, we started interacting with the
database.

2.2.2 Implementation details

In order to simulate a possible situation with several software sending Logs to a
central Database, we decided to split our program in several threads. In our sce-
nario, each thread represents a different software simulation. For example, one
thread could be associated to the Robot class, a particular product installed by the
owner company in several other companies. The technical manger of this depart-
ment could be interested in seeing all the logs related to this product family. In
order to achieve this goal, the Robot thread writes a huge number of pseudo ran-
dom logs to the database. In these logs, some mandatory information is present:
Log Type, Product Family ID, Company ID, and Timestamp. These 4 information
are the composing the rowKey. Each software sending logs to the database must
specify them. In our simulation these information are randomly chosen among a
set of possible values. Moreover, in order to query correctly the database after-
words, we need to assign a specific space to each attribute. Later, we will see how
to manipulate queries through the rowKeys. The table 2.4 shows the byte size of
each attribute present in the rowKey.

Row key Byte size
Log Type 3

Product Family ID 4
Company ID 4
Timestamp 13

Table 2.4: Format of the Row Key.

However, even if HBase offers great flexibility in the choice of the rowKey and

2.2. Implementation 22

in the related schema of the table, here the first problem arises. The format of the
rowKey is totally in the hands of the application programmer. This implies that
if a software wants to write a rowKey in another format than the one specified,
nothing will stop it. In principle, everyone with access to the database could put
information with different schema, with no exception thrown by the database itself.
HBase is only sorting this tuple with respect to the others. In a real scenario, the
user must be careful not to split the software communicating with the database.
Instead, he should have different software producing logs and a centralized server
that receives all the requests, it formats them and loads them in the database.

After the rowKey has been defined and implemented, each log is made of
a rowKey and several data. We represented this data through an HashMap, a
key/value association among columns and values. Specifically, each key represents
a column family and each value is again a key/value store for column qualifier and
values. Through this structure we are able to map any possible information the
software wants to transmit. Again, each thread simulates this log filling, choosing
randomly among several possible data. This happens when, for example, two
different software, both belonging to the family of robots, want to share different
data, according to their execution environment. A possible output of this scenario
could be the following:

ERR + ROBO + ORNG + 1544443519800
d -> Job ID: 7
d -> Main Path: /home/user/
h -> MESSAGE: Left arm is not responding

In the output above, it is shown the row key as first line, as a composition of
attributes. Then, subsequent lines are columns of that row, specifying column
family, column qualifier and value. Reading the example, there is an error log pro-
duced by a robot product family, installed in a company named Orange. This
log is composed of two column families, d and h: respectively, LogData and
HumanReadableData. For each of them, there can be several column qualifier,
for example, JobID and MainPath are column qualifiers for the d column family,
while MESSAGE is a column qualifier for h column family. Finally, for each of
them, a value is associated.

2.2.3 Operations in HBase

In the previous section the implementation has been fully described. These few
pages want to give an idea to the reader of how to communicate with the database.
The first operation it is needed is the opening of a connection.

1 Configurat ion conf ig = HBaseConfiguration . c r e a t e () ;
2 //conf ig . s e t (" hbase . zookeeper . quorum " , " 1 9 2 . 1 6 8 . 0 . 1 0 2 ") ;
3 //conf ig . s e t (" hbase . zookeeper . property . c l i e n t p o r t " , " 2 1 8 1 ") ;

2.2. Implementation 23

4 HBaseAdmin . checkHBaseAvailable (conf ig) ;

Listing 2.1: Checking availability of HBase

In code 2.1 we are checking the connection to the HBase cluster. First thing to be
noted is the class Con f iguration, which belongs to the hadoop − common package.
This is a configuration instance used to connect in general to an Hadoop cluster.
Through the subsequent commented lines, it is possible to set some configuration
parameters. If they were uncommented, the IP address and the port of Zookeeper
server would be specified. In that scenario, we would execute the VM through a
bridged network configuration. This means that the VM would act as a proper
computer in the local network, having a proper IP address. With this configuration
we would need to specify this address to the HBase configuration. Moreover, 2181
is the standard port for Zookeeper service. As explained in the transaction flow,
the client application just needs the Zookeeper location and then it is able to reach
all the region servers. Finally, line 4 checks the connection to the specified location.
Basically, it checks that an active HMaster with at least one RegionServer are active
in the given location. An exception is thrown if this condition is not met.

1 // Opening the connect ion
2 Connection conn = ConnectionFactory . createConnect ion (conf ig) ;
3 // Creat ing the admin i n s t a n c e
4 Admin admin = conn . getAdmin () ;
5

6 // Creat ing the t a b l e
7 TableName tableName = TableName . valueOf (tableNameStr) ;
8 byte [] hr_c f = Constants .CF_HUMAN_READABLE;
9 byte [] d_cf = Constants .CF_DATA;

10 HTableDescriptor desc = new HTableDescriptor (tableName) ;
11 desc . addFamily (new HColumnDescriptor (hr_c f)) ;
12 desc . addFamily (new HColumnDescriptor (d_cf)) ;
13

14 // Committing
15 admin . c r e a t e T a b l e (desc) ;

Listing 2.2: Creation of the "Logs" table.

In 2.2 it is shown how to open a connection to HBase and to build a table.
Through the first line, a new Connection object is created. This is achieved through
the usage of the configuration created before. Next, a new Admin object is created.
Through this variable it will be possible to execute DDL operations on top of the
database, like table creation, enabling, disabling and deleting. As explained in pre-
vious section, the structure of an HBase table is extremely simple. Only the column
families need to be specified a priori. The format of the rowKey is defined by the
user at every insertion. From line 7 to line 12, this structure is defined. It is evident
how this operation is simple. However, this comes with greater complexity at ap-
plication level in order to manage the data types inserted in the database. Only the

2.2. Implementation 24

two column families are specified, together with the TableName. Subsequently, a
new HTableDescriptor is instantiated, in order to store all this information. Finally,
this object is committed to the database, sending the create request.

1 // Retr iev ing the t a b l e
2 Table t a b l e = conn . getTable (tableName) ;
3

4 // Creat ing the log
5 Log log = . . .
6

7 // I n s e r t i n g i t i n t o the database
8 Put put = new Put (log . getRowKey ()) ;
9 Lis t <byte [] [] > l i s t C o o r d = log . getValues () ;

10 f o r (byte [] [] coord : l i s t C o o r d) {
11 put . addColumn (coord [0] , coord [1] , coord [2]) ;
12 }
13 t a b l e . put (put) ;

Listing 2.3: Putting a log in the database

In 2.3 a new Log is created and inserted in the database. For simplicity reasons,
the whole code will be uploaded to a git repository, while in these example we
are only keeping the HBase related information. Through the Connection instance
we are able to retrieve the effective table present in the database. Next, we create
the Log to be inserted and we extract values from it. In order to append some
values in an HBase table, the object Put is instantiated. As constructor parameter
it requires the rowKey it needs to be inserted. It is clear now how all operations
are strictly related to the rowKey value. Subsequently, all data is extracted from
the log over a coordinate representation. Basically, it consists of a column family,
a column qualifier and a value. Through the addColumn method, it is possible to
append all this information to the Put object. Finally, the operation is committed
to the table through the put method. It is clear how it is important to understand
the internal structure of the database in order to communicate with it; all practical
operations map the logical execution flow of the database.

1 Scan s = new Scan () ;
2 ResultScanner r s = t a b l e . getScanner (s) ;
3 f o r (Resul t r : r s) {
4 // E x t r a c t i n g the rowKey
5 S t r i n g rowKey = new S t r i n g (r . getRow ()) ;
6

7 // I t e r a t e over a l l C e l l s of the row
8 C e l l [] c e l l s = r . rawCells () ;
9 f o r (C e l l c : c e l l s) {

10 S t r i n g c f = new S t r i n g (C e l l U t i l . c loneFamily (c)) ;
11 S t r i n g cq = new S t r i n g (C e l l U t i l . c l o n e Q u a l i f i e r (c)) ;
12 S t r i n g value = new S t r i n g (C e l l U t i l . cloneValue (c)) ;
13 }

2.2. Implementation 25

14 }

Listing 2.4: Scan the table

In 2.4 a read operation is performed on the Logs table. As briefly introduced in
the read path section, the basic operation to achieve this goal is the Scan operation.
The Scan object can be defined either on the whole table or on a specific rowKey
range. In the example, a full scan is performed. The result is given as a list of rows,
each of them defined by a rowKey. Moreover, from one row, it is possible to extract
the list of columns, identified as Cells. Thanks to the static methods exposed by
the CellUtil class, it is possible to extract all the info from the Cell object. It is
important to remember that all the values stored in HBase are byte arrays. In order
to read them, they need to be converted to String.

2.2.4 Querying data

In the previous sections we have analyzed the main building blocks of HBase. We
understood how to perform a Put and a Scan operation. In order to validate the
application we need to fulfill the requirements we introduced at the beginning.
The user must be able to aggregate logs according to different attribute values. In
the next examples, we are analyzing how to build a proper rowKey for the Scan
operation, in order to retrieve the desired information.

The first goal of the application is to aggregate logs based on Log Type. This is
the example where the technical manager of the company wants to know all error
logs of its products. This can also be extended to Warning and Info logs. According
to the structure of the rowKey, the first attribute that appears is the Log Type.
Knowing that rowKeys are sorted alphabetically, the user only needs to provide
the system with the first Error log and the last one. The problem is that the user
only knows that he wants Error logs, he knows nothing about product families or
companies. In some ways, the product families and the companies are the answer
to his query, because in the end, he will know in which scenario the error has
occurred. Considering the start rowKey we need to find a way to represent the first
tuple starting with ERR. Since everything is represented as byte array in HBase,
we know that the character with the smallest ASCII encoded value is the space (’
’). If the rowKey has 23 bytes and the first 3 are occupied by the Log Type, it is
certain that there will be no error logs before ’ERR ’. If the
user scans the database with such a rowKey, which clearly is not present, HBase
will return the first non-empty row following the one used as input. This solves
half of the problem, because now the user can use such rowKey as start RowKey.

Considering the end rowKey, we apply the same reasoning. We need to find
the upper bound of the search, looking for a rowKey slightly bigger that the one
we are looking for. In the application scenario, the user is looking for Error logs.
It is known that all logs he wants start with ERR, so he only needs to put as end

2.2. Implementation 26

rowKey ERS. This represents the same prefix of the start rowKey, incremented by
1. In this way, the user is sure to cover all possible logs with Error log type.

1 RowKey startRK = new RowKey . Bui lder ()
2 . setLogType ("ERR")
3 . bui ld () ;
4 RowKey endRK = new RowKey . Bui lder ()
5 . setLogType ("ERS")
6 . bui ld () ;
7 Lis t <Log> logs = Scanner . scan (hbase . getTable () , startRK , endRK) ;

Listing 2.5: Retrieving all error logs

In 2.5, it can be noted how the rowKey is built. Thanks to our software architec-
ture, we are able to build the rowKey with any value and the remaining ones will
be filled with the space character. Other two things need to be specified. Through
the Scanner.scan static function the user can also specify the column families he
wants to retrieve. For example, in the previous scenario, the user may be inter-
ested only in the messages of the error logs. Only after, he will conduct a deeper
analysis for a specific log. The modifcation would be the following:

1 Lis t <byte [] > columnFamilies = new ArrayList < >(1) ;
2 columnFamilies . add (Constants .CF_HUMAN_READABLE) ;
3 Lis t <Log> logs = Scanner . scan (hbase . getTable () , columnFamilies , startRK ,

endRK) ;

Listing 2.6: Retrieving only messages of error logs

Second thing to be noted is the order in which they are displayed. It is already
well known that the order depends first by the Log Type, then by the Product
Family, then by the Company ID and finally, by the Timestamp. The Timestamp
has been inserted in order to distinguish between two logs coming from the same
product family, the same company and with the same type. However, since the
ordering in HBase is ascending, all the logs will be sorted in the opposite logical
way. It could happen that the user requests only for the most recent log of a
certain combination of the previous attributes. In that case, he would specify that
combination as the start rowKey and then he would limit the search to 1 value.
However, if the keys are sorted in ascending order, he would retrieve the oldest
log, not the most recent. In order to solve this problem, the application saves
the timestamps in the rowKey as reverted timestamp. In order to do so, the real
timestamp is subtracted from the maximum timestamp allowed and it is written to
the rowKey. The maximum timestamp allowed is limited by the size allocated for
the timestamp attribute in the rowKey.

revertedTimestamp = String.valueOf(getMaxTSValue() - Long.parseLong(timestamp));

Thanks to this artifact, the system is able to store the logs in reverse order and the
user is now able to get the most recent log. Moreover, in order to retrieve back

2.2. Implementation 27

the real timestamp of a specific log, it is just needed to apply again the previous
formula to the reverted timestamp.

Proceeding forward with the requests of the application, the user may also
want to retrieve all the logs for a specific product family. In this scenario, the user
may be a technical engineer working on a specific product of the company, for
example the DBMS. In this case, he is not interested in the logs produced by the
Drones or by the Cloud-based systems. However, it is not possible to perform such
a query with the maximum performance of the database. In order to understand
the last sentence it could be useful to think of the rowKey as the key of a BTree
index. When the BTree is used for multidimensional indexing, it guarantees only
certain ordering sequences. For example, if the BTree is built on attributes A,B,C
of a certain relation, only these sequences are guaranteed to be sorted:

A,B,C
A,B
A

In our example, A can be associated to the Log Type and B to the Product Family.
In the scenario we proposed, the user wants to retrieve all the logs for a specific
product family (B). In order to perform efficiently such a query, we would need to
have the data sorted on that attribute. However, the structure we defined before
does not allow for this particular sorting. This problem has been faced in the
design of the rowKey, where we tried to give an importance to each attribute.
However, that is not enough. Even if the sorting is not guaranteed on Product
Family, we may solve the problem specifying three different types of query. In
the first one, we look for the Error logs of that specific product family, knowing
that this combination will have sorted data and therefore, the operation will be
efficient. In the second one we repeat the process with the Warning log type and
in the third, we use Info Log Type. Proceeding with this method, we will execute
three queries instead of one in order to retrieve the desired information.

1 S t r i n g [] logTypes = { " INF " , "WAR" , "ERR" } ;
2 f o r (S t r i n g logType : logTypes) {
3 startRK = new RowKey . Bui lder ()
4 . setLogType (logType)
5 . setProductFamily ("DBMS")
6 . bui ld () ;
7 endRK = new RowKey . Bui lder ()
8 . setLogType (logType)
9 . setProductFamily ("DBMT")

10 . bui ld () ;
11 logs = Scanner . scan (hbase . getTable () , startRK , endRK) ;
12 Scanner . p r i n t (logs) ;
13 }

Listing 2.7: Retrieving all logs for DBMS product family.

2.2. Implementation 28

While this method allows us to maintain a certain level of performance, it re-
quires that the user knows a priori the list of all possible values for the preceding
attributes. For example, if the user wants to know all the logs related to a spe-
cific company, he needs to know all possible log types and all possible product
families installed in such a company. We believe that such information is available
for this kind of application, but maybe in other scenario, this would compromise
the effectiveness of HBase. However, while the information of previous values
can be retrieved, performances need to be taken into account. We said that for
2.7 the system will execute 3 queries instead of 1. The explanation of the HBase
architecture will make clear the following performance analysis. According to the
indexing structure of Hbase, the client has to perform three request every time he
wants to access to some information. First is toward the .ROOT. table, then to the
META table and then to the region itself. Following these three steps the client
is able to get or to insert some data. We can conclude that, independently of the
size of the database, the user will always perform 3 network I/Os (.ROOT. table
never splits). In our analysis we are considering the network I/Os as the main
factor influencing performances. Considering again 2.7, if the client requests for
3 scan operations instead of 1, this implies that the operation executes 9 network
I/Os in the worst case (no caching applied). Considering this growing factor, if
we put as first parameter in the rowKey one attribute with a high cardinality, in
order to retrieve a specific value following the first one we need to perform a big
number of scan request. This can be generalized as: Given a sequence of attributes
in the rowKey, in order to retrieve a specific value for one of those, the client will
perform a number of scan requests which is equal to the cartesian product of all
the previous attribute values. In other words, in our example, if we keep the Log
Type as first attribute, in order to retrieve information related to a product family,
we need to perform 3 scans, which is the cardinality of Log Type. Instead, if the
user wants to look for a specific company, the number of requests is equal to all
the possible combinations of Log Type and Product Family values. We can define
this combination as the cartesian product of the two attributes.

Concluding this section, we can say that HBase provides a really efficient way
to query data. However, it is limited to the possible queries that can be executed.
Even though the user can ask for any particular information inside the database,
in order to retrieve the data quickly, some artifacts must be designed. It is not al-
ways possible in a real application to abandon query flexibility. However, for large
size databases, that can accept this tradeoff, HBase presents itself as an optimal
solution.

Conclusion

This report presented a general introduction to column-oriented databases. We
discovered that they physically store tables according to their columns. Through
this architecture, considering only a subset of attributes results to be more per-
forming than in a row-oriented architecture. However, when the the user wants
to reconstruct an entire row, this is certainly more expensive. Moreover, through a
columnar disposition of data, a more efficient compression can be applied.

Subsequently, we analyzed the structure of HBase, understanding why it is a
random Read/Write access database and which are its limits. One of the most
evident is the complexity needed for secondary indexes implementation. Since
HBase does not support them, the user needs to implement them through some
custom schemas. We also learned how to exploit the rowKey as efficiently as
possible, being the only indexing criterion available in the database.

In the last chapter we discussed about a possible application on top of HBase.
We chose a Logs store in order to exploit the schema-less feature of the database
and the possibility to divide the information in Human Readable and Program
Data. Moreover, the application allows a user to efficiently query the database for
a certain set of queries. According to our reasoning, they will be the most frequent
ways of interaction with the system. It can be noted how the database limits the
complexity allowed by the application and how its schema needs to be defined
according to the final queries the user needs to execute.

According to its structure we can conclude that HBase and, more generally,
column-oriented databases are well suited for large amount of data, which needs
to be queried often and on some specific attributes. Moreover, HBase is an opti-
mal solution for frequent updates, since, internally, they are the same as insertions.
Scalabilty and efficiency come with a complexity reduction cost. Moreover, the
absence of a SQL-like language makes the management of applications more cum-
bersome.

29

Bibliography

[1] Nicholas Dimiduk and Amandeep Khurana. HBase in Action. Manning Publi-
cations, 2012.

[2] Lars George. HBase: The definite guide. O’Reilly Media, 2011.

30

	Front page
	English title page
	Contents
	Introduction
	1 Technologies Fundamentals
	1.1 Column-based Database Management Systems
	1.1.1 Logical and physical data model: HBase
	1.1.2 Benefits

	1.2 HBase Fundamentals: Distributing Data
	1.2.1 Apache Hadoop
	1.2.2 HBase architecture
	1.2.3 Transaction Flow
	1.2.4 Indexing, retrieving the right region
	1.2.5 Write Path
	1.2.6 Read Path
	1.2.7 Compactions

	1.3 HBase and MapReduce

	2 Logs Stores Application
	2.1 Analysis of the Problem
	2.1.1 Building the schema

	2.2 Implementation
	2.2.1 Technology specification
	2.2.2 Implementation details
	2.2.3 Operations in HBase
	2.2.4 Querying data

	Conclusion
	Bibliography

