

Distributed Database Systems and DynamoDB

Submitted by

Jose Carlos Badillo
Elena Ouro Paz

for partial fulfillment of the course

Advanced Databases (INFO-H-415)

professor

Esteban Zimányi

Brussels, December 2018

Table of contents

Introduction 3
Promises of Distributed Database Systems 4
Design of a Distributed Database System 4

Fragmentation 5
Horizontal Fragmentation 5
Vertical Fragmentation 5
Fragmentation on DynamoDB 5

Allocation 6
Allocation on DynamoDB 6

Data Integration 6
Data Integration on DynamoDB 7

Access Control ​7
Virtual Views 7
Materialized Views 7
Data Security 8

Query Processing 8
Query Processing in DynamoDB 9

Transaction Management 9
NoSQL Databases 10
Case of Study 10

Database design on dynamoDB 11
Creating a table 16
Loading data into a table 18
Removing items from a table 20
Updating items 21
Query the database 23

References 29

1. Introduction
The concept of database systems has been reinvented throughout history from the initial

data records kept in paper to current state-of-the-art databases capable of storing and
providing easy access to petabytes of data.

This evolution, like most technological advances, is motivated by need. The need to

store increasing amounts of data, provide access to the data to users located all over the
world or decrease the necessary time to obtain certain data, for example. Many technologies
have been researched and developed in order to tackle these challenges and many others.
These technologies co-exist nowadays to satisfy the many different needs a system can
have, leaving it up to the designer of the system to identify the most suitable technology.

This paper focuses on one of these technologies, the distributed databases. We define a

distributed database as a collection of multiple, logically interrelated databases distributed
over a computer network. Therefore, a Distributed database system is based on the union of
a database system and computer network technologies.​[1]

Early versions of distributed database management systems appear as early as the

mid-1970s. The early versions often consisted of a centralized database and replicas of the
data in several other locations. Changes to the data happened locally and then they were
synchronized periodically. An example of such a type of Distributed DBMS is the one used
by the Australian Department of Defence at the time.​[2]

The motivation to mix databases and network has come from the need of large-scale

applications that tend to have millions of requests from all around the world in short times
and need certain modularization in order to serve such charges in an efficient way.
Moreover, nowadays the monolithic approach of building software is being abandoned due
to the strict consequences that doing even small changes on code or scale require.

In contrast, we have the quick adoption of the microservices architecture which

conceives the idea of an application as a collection of loosely coupled services handling
different business capabilities. Therefore, if we mapped this architecture to the database
domain we may end up with a distributed database composed of different simpler and
smaller databases handled for each microservice or business domain. The challenge now
would be to guarantee the choreography of the different services and databases in our
system.

Within this document, we are going to show a simple case of study implemented with

Java and Amazon ​DynamoDB which nowadays is one of the commercial databases that
handles the challenges of distributing data in a transparent way for the developers.

2. Promises of Distributed Database Systems
Some of the most common reasons for partitioning and distributing data come from the

natural divisions that we can abstract from the real world. For instance, a customer's
database of a multinational firm. It could be for security, performance or analytical reasons
that this database needs to be divided into geographical regions like continents, countries or
maybe states depending on the granularity the business is looking for.

It also happens that certain organizations within the company still require to write or read

such distributed database doing operations that involve the full content of the data. In such
cases, it is necessary to satisfy the partitioning and distribution needs over different places
but also in order to favorize the global operations we would have to replicate the data
needed at other sites for performance and reliability reasons. In the worst case, we might
end up with a clone of the full database in every site so we still give the performance
expected.

Partitioning and Replication are tasks that every Distributed Database should manage in

a transparent way, meaning that user can still pose a query and trust that the transaction
requested will retrieve a correct result without caring about replicas or location of the data
and always keep the consistency without penalizing the performance.

Moreover in the case that one of the sites managing the data falls down unexpectedly, it

should be transparent to the user and should not bring the entire system down. In the best of
the cases, the full system keeps working with an alternative site that substitutes the node
that went down.

In the worst case, only a small fraction of our system will be down losing availability, but

all the other modules will be able to operate normally and notify their updates to the fallen
node once it comes online again. In that way, the system will automatically be updated and
recover its consistency status.

3. Design of a Distributed Database System
This section deals with the fundamentals of designing a distributed DBMS. Knowing the

definition of a DDBMS we can intuitively identify that the main question to be answered
during the design process is how the data will be distributed, identifying which data is
relevant to each of the locations and how should it be stored there.

There are two basic design patterns that can be followed to place the data: “​partitioned”​,

where the data is divided in several fragments each of which is placed at a different site, and
“​replicated” where all or some of the partitions of the data are stored in each or some of the
sites.

For partitioned data, there are two fundamental issues: ​fragmentation and ​allocation​.

These two issues are explained in depth in sections 3.1 and 3.2.

3.1. Fragmentation

Fragmentation refers to the division of data into partitions or fragments. There are two
types of fragmentation of data: "vertical" and "horizontal". The former is intended to have full
rows in different blocks and the later will divide the columns. Whatever the case is, the
fragmentation must accomplish the following 3 rules:

● Completeness: Each data item must be included in one of the partitions.
● Reconstruction: There must be an operator that will put all the data together again

without adding or losing items.
● Disjointness: Each data items is in one and only one of the partitions created.

The type of fragmenting the database is an important decision as it affects the

performance of query execution.

3.1.1. Horizontal Fragmentation
We can horizontally partition each Relation in a database following two distinct

behaviors.

● Primary horizontal fragmentation of a relation is performed using predicates that

are defined on that relation.
● Derived horizontal fragmentation​​, is the partitioning of a relation that results from

predicates being defined on another relation.

However, In order to take a decision, it is important to note how the database relations
are connected to one another, especially with joins. We must use the predicates used in
user queries. If it is not possible to analyze all of the user applications to determine these
predicates, one should at least investigate the most “important” ones.

3.1.2. Vertical Fragmentation
This type of partitioning is also known as column fragmentation. each partition will have

a subset of the attributes of R and the primary key of R. Vertical Fragmentation allows the
user queries to deal with smaller relations which can be translated to a lower number of
page accesses. This type of partitioning also places in one fragment those attributes usually
accessed together.

3.1.3. Fragmentation on DynamoDB

DynamoDB was designed in a way that stores data in horizontal partitions. Partition

management is handled entirely by DynamoDB, therefore you never have to manage
partitions yourself.

To write an item to the table, DynamoDB uses the value of the partition key as input to
an internal hash function. The output value from the hash function determines the partition in
which the item will be stored.

To read an item from the table, you must specify the partition key value for the item.

DynamoDB uses this value as input to its hash function, yielding the partition in which the
item can be found.​[3]

3.2. Allocation
Once we have the correct set of fragments of the data, we need to decide where will be

located each fragment. The allocation problem involves finding the “optimal” distribution of
fragments in a set of Sites. Then we must analyze the cost of query the Fragments from
each site.

It is also important to define whether replicas of them are needed in a certain site or the

fragment will be maintained as a single copy. In the case of replication, we might have a fully
replicated database or only certain fragments could be distributed to certain sites which
means it is a partially replicated database. Then we need to think about the cost of updating
the fragment at all sites where it is stored.

In order to determine the allocation, we need to know the quantitative data about the

database, the applications that run on it, the communication network, the processing
capabilities, and storage limitations of each site on the network.

3.2.1. Allocation on DynamoDB

DynamoDB is automatically replicated across multiple Availability Zones within an AWS
Region. Therefore every fragment is allocated in each of the Amazon sites available so we
consider this a fully replicated database. Again all this replication behavior is managed by
dynamoDB and you don't have to handle it by yourself. As a developer, the most probable is
that you will never notice from which site your requests have been served.

4. Data Integration
Data Integration is the combination of technical and business processes used to

combine data from disparate sources into meaningful and valuable information.​[5] ​This kind of
integration process is necessary on the scenario when there are already some existing
databases and we need to integrate them in order to form only one single database or a
distributed database. In order to integrate them, we first need to define a mediation schema
or better know as global concept schema, which is going to be the one governing the
common information about the different sources.

The data integration can be divided into two types: "physical" or "logical" depending on

the implementation and the needs that we must satisfy with such implementation.

● Physical integration refers to the materialization of integrated data into data
warehouses and it is usually used for OLAP analysis.

● Logical integration is more suitable for OLTP databases where the GCS is only the
mediator to make operations between the different databases.

In both cases, the objective is to find the correct GCS and to execute the correct

transformation of the data in order to be manipulated from one side to another.

4.1. Data Integration on DynamoDB

DynamoDB is a flexible NoSQL database supporting document and key-value data
models. Within DynamoDB apart of the Partition key Type and Sorted Key type, you don't
have to define the database schema upfront and even better each of the tuples inside the
database could have a totally different structure which facilitates the data integration but also
obligate the applications consuming data to be more careful when retrieving it.

5. Access Control
One of the most common alternatives to protect data is the use of Views. THe main

purpose of this tool is to hide information and to provide an indirect way to manipulate
information without going straight to the base relations.

5.1. Virtual Views
A view is a virtual relation, defined as the result of a query on base relations. It is

considered a dynamic window in the sense that it reflects all the updates to the database. It
can be used as a media of access control because views hide some data. Therefore if we
assume that users can only see information of the database through views then all the
hidden data would be safe from access and manipulation.

In context of a Distributed Database a view could be derived from distributed relations

allocated in different sites. The access to a view requires the execution of a distributed query
corresponding to the view definition. The view definitions can be centralized at one site,
partially duplicated, or fully duplicated.

5.2. Materialized Views
A materialized view stores the tuples of a view in a database relation, like the other

database tuples, possibly with indices. This means that we are physically writing the tuples
that answer the query involved in the view, therefore, it is faster to retrieve the data of the
query but this improvements has a price to pay which is the maintenance of the materialized
views.

The maintenance of the view is the process to update or refresh the materialized view in

order to reflect the changes done in the based relations. A view can be refreshed
immediately or deferred the former will update the view as part of the transaction that

updates the base relations in such way the materialized view will be always consistent.
However, the cost of the transaction is higher and this could become very difficult if the
materialized view is in a different site than the base data leaving us with the need of a
distributed transaction.

In practice the most common approach is the deferred mode, meaning that we are going

to use a different transaction in order to refresh the view. This refresh can be triggered lazily
(before a query is evaluated on the view) or periodically (at predefined times).

5.3. Data Security
Every database management systems must protect the data against unauthorized

access. It means that only authorized users should be able to perform operations they are
allowed to perform on the database. The detail of the ​authorizations must be refined so that
different users have different rights on the same database objects.

The majority of database systems will handle this granularity of access granting or revoking

selecting, inserting, deleting or updating permissions to a user over certain objects. ​In the context of
a distributed database we must deal with ​Remote user authentication since any site may accept
programs initiated, and authorized, at remote sites. The most common way to deal with the remote
authentication information is to keep it at a central site for ​global users ​which can then be
authenticated only once and then provide access to multiple sites based on the global authentication.

DynamoDB​​ handles all the access control using AWS IAM. You can create users with

specific permissions to access and create DynamoDB tables. You can create a special IAM
Condition to restrict user access to only their own records.​[4]

6. Query Processing
The majority of the DBMS use a non-procedural language like SQL that hides the low

level detail about the physical organization of the data. This means that the user doesn't
have to know the procedures needed to access the data in order to construct the answer of
a query. Instead it is the query processor the one in charge of translating the query into an
algebraic query and then finding the best approach to retrieve the data.

When we involve the distributed behaviour into the game, then the data accessed from

the query needs to be localized and the operations would be translated into fragment based
operations. In other words, the objective of query processing is to transform a high-level
query into an efficient execution strategy expressed in a low-level language on local
databases.

In order to do so, we follow a similar approach than for a centralized databases. The

only difference comes when retrieving the best physical plan as we must consider the
database statistics of the distribution. This means that we are going to rely now on fragments
and its cardinality and size. We might consider as well the communication costs and
therefore if there are existing replicas we should be able to favorize the consumption of

those that will minimize the communication costs when reading data from one site to
another.

In order to provide the best plan to query for a distributed database we start with a

process called Query decomposition which basically maps a distributed query into an
algebraic query on global relations. This is the same analysis that we make for a centralized
database. The next phase is the one that changes as we need to rebuild the global relation
by applying reconstruction rules that produces a relational algebra program whose operands
are the fragments. This is the localization of the information among the different fragments.

6.1. Query Processing in DynamoDB
In general, the design and the architecture expected for a database implemented on

DynamoDB is to have only one single Table where we partition our data based on a
Partition Key and then we could optionally add a Sorted Key that helps to sorts the tuples
within the different partitions.

This kind of design will facilitate the query processing as we don't need to execute any

other operation than retrieving the correct fragment where the data has stored. In order to do
that dynamoDB offers a query based on the partition key which will run a hash function and
simply retrieve all the information on that partition. In case we want to have further selectivity
of the data we are expected to scan the data but having filtered the data with the correct
Partition key, then this shouldn't be a costly task to compute.

7. Transaction Management
A transaction is a basic unit of consistent and reliable computing. We can talk about two

different scenarios of consistency: "database consistency" and "transaction consistency".

We say a database is consistent if it accomplish all the constraints defined over it before

and after a set of insertions or deletion that could occur at certain time. It is expected that a
database never enters in a inconsistent state. The only time when a database could be
temporarily inconsistent is during the execution of transactions, however it should recover its
consistent state once the transactions has finished.

Transaction consistency refers to the actions of concurrent transactions. In the context

of distributed databases the complexity grows if we consider replicas that are expected to be
in mutually consistent state, meaning that all the copies should have the same value in all
their items.

Each transaction has two possible outcomes, if it finished successfully then the

transactions commits. And this is considered a point of no return where the changes are
permanently written in disk.

In the other hand, the transaction can be aborted and all the already executed actions

are undone, going to the last state of the database. This is a rollback.

8. NoSQL Databases
Since its appearance in 1989 the Standard Query Language (SQL) has dominated the

market and it is to this day used in many database systems. However, with the years that
have passed since the birth of SQL much has changed, SQL was designed in a time when
computation was relatively cheap but storage was hard to obtain, the first hard drive to be
able to store 1GB of data in the 1980s weighted 550 pounds and costed 40,000$.​[6]

Nowadays the amount of data we generate and want to store has grown exponentially,
storage space is now relatively cheap compared to the computational costs over such large
quantities of data. This fact, together with the need for better scalability compels research
labs and companies to explore alternatives to the traditional relational databases and SQL.
NoSQL is one of these alternatives. NoSQL, opposite to what the name may suggest, is not
a query language like SQL, it usually refers to many types of databases all of them not
based on SQL.
The main NoSQL database types are:

● Document databases (MongoDB)
● Graph databases (Node4j)
● Wide-column databases (Cassandra)
● Key-value databases (DynamoDB)

DynamoDB is a key-store database, this means that every record in the database is a

pair containing a key and a value. The value may be anything from a simple number or string
to a complex object. Key-value databases are usually implemented as hash tables which
makes accessing a pair by its key very efficient. This is the case for DynamoDB.​[7]

9. Case of Study
We have developed a small application to exemplify and better explain how to build a

simple database system on dynamoDB. In this section of the document, we will go through
some of the peculiarities of database system design on dynamoDB as well as how to
perform some of the basic actions such as creating a table, inserting, updating and deleting
items from the table and how to perform a few queries. All the code found in this section is in
Java and uses the official AWS SDK but dynamoDB can be used for other programming
languages as well.

Our case of study adapts the design of a relational database containing information from

the HR department of a company. A schema of the initial database is illustrated in figure 1.
For simplicity, some of the attributes in the original database have removed since they did
not illustrate any of the special features of DynamoDB. Our case study is based on an
example used by amazon to explain DynamoDB design.​[8]

Figure 1: schema of the relational database in which the study case is based

9.1. Database design on dynamoDB

NoSQL databases promise to improve scalability and increase efficiency when
executing queries. However, the way in which they are implemented means that to
actually accomplish this we have to carefully design our database system.
As mentioned in the previous section, DynamoDB is implemented as a hash table which
makes querying information by its key very efficient but querying the database by a
different attribute may result in very high computational costs since we might have to
scan all items of a table. NoSQL databases can only be queried efficiently in a limited
number of ways.

The key to a good NoSQL database design is to first identify which information our

database needs to provide. This means defining the queries that will be run in the
database. It is essential to understand the business problems of our application and the
user cases before designing the database. ​[9]

Having a list of all queries will allow for a design of the database that optimizes those
queries as much as possible. It is also recommended to estimate how often each of the
queries will be triggered.

 For our case study 5 queries have been identified. These queries can be found on
table 1. Of course, in a real life application the list of queries that we would be interested
in would be much longer.

 1. Get employee details by employee ID

 2. Get employee details by employee name

 3. Get the current job details of an employee

 4. Get details of all employees hired recently

 5. Get all employees with a specific job

Table 1: List of queries for the case of study

Traditional relational databases abstract the data to find patterns and then group

data together by type. Each table contains a list of records of the same type but records
in the same table might not be connected to each other. NoSQL databases like
dynamoDB prefer to store data in a way that tries to resemble how data is represented
in the real world by storing all related data together.
From this we can infer that the best way to design a database in dynamoDB is by having
a limited number of tables. The most efficient designs often consist of a unique table
allowing us to access all necessary information without the need of joining tables.

Taking this best practices into account our case of study implements one unique

table that contains all the information of the HR department.

Once we are set on designing our database with only one table we need to decide
how the data will be organized in this table. DynamoDB uses a primary key to identify
related data. All information that in a relational database would be distributed across
tables and connected through foreign keys will have the same primary key in
dynamoDB.
Although, the idea of the primary key in DynamoDB is similar to the one of it’s relational
database counterpart it has some peculiarities.

DynamoDB supports two types of primary keys: the first is the simple primary key,

composed of only one attribute named ​“partition key”​. This is the most similar to the
primary keys in other database systems. The second is the composite primary key,
composed of two attributes, the ​“partition key”​ and the ​“sort key”​.​[10]

DynamoDB stores data items in 10GB storage units called partitions. In order to

allocate items in a certain partition DynamoDB uses an internal hash function that takes
the partition key as input. Therefore, all items with the same partition key can be found
in the same partition as long as they do not exceed the 10GB available.
Items can be efficiently retrieved using their partition key.

The sort key defines the order in which items are stored in a partition. Additionally, if the
collection of items with a given partition key is larger than the available space of 10GB
DynamoDB splits partitions by sort key.

Using a well designed sort key has two main benefits: the first one is that by having
ordered data we can efficiently retrieve ranges of items using operators such as
starts-with, between, < and > among others. The second benefit is that sort keys allow
definition of hierarchical one-to-many relationships in the data.
Sort keys are often used also for version control, this is achieved by automatically
generating a copy of each item that is inserted into the database, one of the copies
should be updated and always contain the most up-to-date state for the item while the
other one will be used as a historical record. To distinguish them we add prefixes to their
sort keys, typically ​"v0_" for the copy containing the latest version of the item and a
version code for the others.​[11]

In the study case we have not used the sort key for version control although doing it

could make the system more efficient to show more varied queries to the database.
To define our primary key we have identified a series of entities from the original
relational database schema. Each entity is a type of object that will be stored in our
table. For each of the entities we have defined a partition and a sort key that can be
found in table 2.
Table 3 illustrates what our table will look like once some items have been added.

Entity name Partition key Sort key

HR-Employee “HR-”+Employee ID Employee ID

HR-Job “HR-JOB”+Job number Job ID

HR-Country “HR-COUNTRY”+country number Country name

HR-Region “HR-REGION”+region number Region name

HR-Location “HR-LOCATION”+Location number Country name

HR-Department “HR-DEPARTMENT”+Department Department ID

Table 2: partition and sort key per type of item

Primary key

Attributes
PK SK

HR-EMPLOYEE1

EMPLOYEE1

Data (full name) Phone no. ... City

John Smith 665438592 ... Seattle

HR-CONFIDENTIAL

Data (Hire date) Date of birth ... Passport

2015-11-08 1977-02-20 ... ABC100000

J-AM3

Data (Job title) Department ID ... End date

Account Manager COMMERCIAL ... 9999-12-31

HR-JOB1

J-AM3

Data(Job title)

Account Manage

HR-DEPARTMENT1

COMMERCIAL

Data (Dpt. name) Address ... Location

Commercial sales 12 Spring rd. ... WA|SEATTLE

Table 3: schema of the table after loading a few items

Having chosen this partition and sort keys we can now efficiently retrieve the

employee details by ID as asked in query number one as well as retrieving the
employee details by name, finding all items with an ID starting with “HR-EMPLOYEE”
filtered by the employee name. In case of using the sort key for version control we would
also be able to find very efficiently the current job details of an employee.
To improve the performance of the other two queries in dynamoDB we can use a
secondary index, a data structure that contains a subset or all attributes from a table.
The table to which a secondary index is known as a base table.
Secondary indexes work in a similar manner to tables: when the user creates one a
primary key is selected as well as a list of attributes from the base table that we would
like to project into the index. This list of attributes can be comprised of just the primary
key, all attributes from the base table or a subset of them.

DynamoDB supports the use of two different secondary indexes: ​Global Secondary
Index (GSI) and ​Local Secondary Index ​(LSI).​[12] There are many aspects in which GSIs
and LSIs differ, the main ones are:

● Key Schema: GSIs primary key can be either simple or composite and it does

not need to be the same as the one of its base table. LSIs always have a
composite key, the partition key has to be the same as the one from the base
table but the sort key can be different.

● Size restrictions: GSIs have no size restrictions while for LSIs the total size of
indexed items of each partition key cannot be more than 10GB.

● Online Index partitions: LSIs have to created at the same time as the base
table while GSIs can be created at any time.

● Queries and Partitions: GSIs allow queries over the entire table while LSIs
only allow for queries inside the partition indicated by the partition key.

● Projected attributes: When querying a GSIs only attributes that are projected
into the index can be requested. When querying a LSI any attribute can be
requested, if it has not been projected into the index it will be automatically
fetched from the base table.

If we look at the queries we want to optimize we can see that we would like to query

the database by using an attribute that its not the partition key. Therefore, we should use
a GSI over the table previously designed, for every type of item we have selected a
partition key and a sort key, the partition key of the GSI will be the sort key of the table
base while the sort key will be the data attribute, along with the primary key all attributes
from the base table will be projected into the GSI.​[13]​ Table 4 illustrates the GSI design.

This design optimizes queries four and five. Query number 4 requires that we fetch
all employees that have have been hired recently, in this case que can query the GSI to
obtain all items with “HR-CONFIDENTIAL” as their partition key, sorted by hire date.
For query number 5 we can retrieve all job items with the given job title.

Primary key
Attributes

PK SK

EMPLOYEE1

Full name ID ... City

John Smith HR-EMPLOYEE1 ... Seattle

HR-CONFIDENTIAL

Hire date ID ... Passport

2015-11-08 HR-EMPLOYEE1 ... ABC100000

J-AM3

Job title ID ... End date

Account Manager HR-EMPLOYEE1 ... 9999-12-31

COMMERCIAL

Dpt. name ID ... Location

Commercial sales HR-DEPARTMENT1 ... WA|SEATTLE

Table 4: Schema of the table after loading a few items in the GSI

9.2. Creating a table

Having a finalised design for our database we can start with the implementation
of the system. The next few sections of this document will show pieces of the code
that we have used to implement the database. The first thing that we will focus on is
how to create the table designed in the previous section as well as the GSI.

The first thing we need to build our table is to connect to dynamoDB, the code

to do so can be found in code 1. For our example we are using dynamoDB locally
but the client can be built in a similar manner but changing the endpoint.

 AmazonDynamoDB ​client​ = AmazonDynamoDBClientBuilder

 .standard()

 .withEndpointConfiguration(​new​​ AwsClientBuilder

 .EndpointConfiguration(​"http://localhost:8000"​,

"local"​))

 .build();

 DynamoDB ​dynamoDB​ = new DynamoDB(​client​);

Code 1: Connection to dynamoDB.

The code 2 contains a snippet of the code that we used to create the table. The

first thing that we see in the code is a ​CreateTableRequest, ​this instance stores all
the information necessary to build the table. first we add the table name to the
request, in our case the name is “HR”, followed by a provisioned throughput. The
provisioned throughput capacity specifies the number of reads and writes per
second that the application needs for that table. Each read unit allows for a strongly
consistent read per second or two eventually consistent reads for a 4KB item while
each write unit allows for one write per second for an item up to 1KB in size. For the
purpose of our study case we have not dwelled too much into this since the
database will be very smaller compared to a real life one.
The following attribute to be added to the create table request is a list of attributes,
we have only defined three since this are the three attributes that will be present in
every item of the table, “ID”, “Name” and “Data”, all of them of type String. After that
we indicate that “ID” will be out partition key and “Name” the sort key. Finally, we
add the global secondary index to the table, the code defining the GSI can be find in
code 3. After that we only need to invoke the createTable method with the request
and wait for the table to become active before we can perform any other operations
on the table.​[14]

To generate the GSI we create a new instance of the class

GlobalSecondaryIndex, ​the attributes required for this are the name of the GSI, the
provisioned throughput, the key schema indicating that “Name” is the partition key
(KeyType.HASH) and “Data” is the sort key (KeyType.RANGE) and the projection of
attributes. Projection can take as values ​KEY_ONLY​, ​ALL or ​INCLUDE​, indicating if
the GSI should project only the key values, all values from the base table or a
subset. In case of using INCLUDE it needs to be followed by a list of the
attributes.​[15]

 public static final​​ String ​PK​​ = ​"ID"​;

 ​public static final​​ String ​SK​​ = ​"Name"​;

 ​public static final​​ String ​GSI_1_SK​​ = ​"Data"​;

 [...]

 CreateTableRequest ​createTableRequest​ = ​new​​ CreateTableRequest()

.withTableName(​tableName​)

.withProvisionedThroughput(​new​​ ProvisionedThroughput()

.withReadCapacityUnits(10L)

.withWriteCapacityUnits(10L))

 .withAttributeDefinitions(Arrays.asList(

new​​ AttributeDefinition(​PK​​, ScalarAttributeType.​S​​),

 ​new​​ AttributeDefinition(​SK​​, ScalarAttributeType.​S​​),

 ​new​​ AttributeDefinition(​GSI_1_SK​​, ScalarAttributeType.​S​​)))

 .withKeySchema(Arrays.asList(

 ​new​​ KeySchemaElement(​PK​​, KeyType.​HASH​​),

 ​new​​ KeySchemaElement(​ ​​SK​​, KeyType.​RANGE​​)))

 .withGlobalSecondaryIndexes(​GSI​);

 Table ​table​ = ​dynamoDB​.createTable(​createTableRequest​);

 table.waitForActive();

Code 2: Snippet of the table creation step.

 ProvisionedThroughput ​ptIndex​ = ​new​​ ProvisionedThroughput()

 .withReadCapacityUnits(1L)

 .withWriteCapacityUnits(1L);

 GlobalSecondaryIndex ​GSI1​ = ​new​​ GlobalSecondaryIndex()

 .withIndexName(​GSI_1_NAME​​)

 .withProvisionedThroughput(​ptIndex​)

 .withKeySchema(

 ​new​​ KeySchemaElement()

.withAttributeName(​SK​​)

 .withKeyType(KeyType.​HASH​​),

 ​new​​ KeySchemaElement()

 .withAttributeName(​GSI_1_SK​​)

 .withKeyType(KeyType.​RANGE​​)

)

 .withProjection(​new​​ Projection()

 .withProjectionType(​"ALL"​));

Code 3: Generation code for a GSI.

9.3. Loading data into a table
The easiest and fastest method to load data into the database with DynamoDB is

to read the data items from a JSON file. Code 4 shows how the items are loaded in
our system. We have used the JSON simple library in order to parse the JSON file
but many other libraries can be used for this purpose.
We start by retrieving the table to which we wish to load the data from the DynamoDB
client, then, we proceed to parsing the JSON file, the file contains an array of JSON
objects, each one an item to be loaded into the database. For each of the items in the
file we initialize an instance of the ​Item class, to it we every attribute that can be
found inside the file by means of the ​withInt​, withLong​, ​withString and ​withDouble
methods depending on the type of the attribute being the primary key an exception to
this, regardless of its type we add the primary key with the method ​withPrimaryKey.
Methods for other types of data exist but they are not used in our database.
Once the item instance has all its attributes we load it into the table by invoking the
method ​putItem​.​[16]

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 JSONParser ​parser​ = ​new​​ JSONParser();

 JSONArray ​items​ =​ ​null​​;

 ​ items ​= (JSONArray)parser.parse(​new​​ FileReader(path));

 ​if​​(​items​ != ​null​​) {

 int i = 0;

 ​for​​ (Object o : items) {

 JSONObject ​current​ = (JSONObject) o;

 Iterator ​it​ = ​current​.entrySet().iterator();

 Item ​DBItem​ = ​new​​ Item();

 String ​id​ = ​current​.get(CreateTable.​PK​​).toString();

 String ​name​ = ​current​.get(CreateTable.​SK​​).toString();

 DBItem.withPrimaryKey(CreateTable.​PK​​, ​id​, CreateTable.​SK​​,​ name​);

 ​for​​(Object ​key​ : ​current​.keySet()) {

 if​​(!​key​.toString().equals(CreateTable.​PK​​)

 && !​key​.toString().equals(CreateTable.​SK​​)) {

 if​​(​current​.get(​key​) ​instanceof​​ String) {

 DBItem​.withString(​key​.toString(),

 ​current​.get(​key​).toString());

 } ​else if​​ (current.get(​key​) ​instanceof​​ Long){

 DBItem​.withLong(​key​.toString(),

 (Long)​current​.get(​key​));

 } ​else if​​ (​current​.get(​key​) ​instanceof

Integer){

 DBItem​.withInt(​key​.toString(),

 (Integer)​current​.get(​key​));

 } ​else if​​ (​current​.get(​key​) ​instanceof​​ Double){

 DBItem​.withDouble(​key​.toString(),

 (Double)​current​.get(​key​));

 }

 }

 }

 ​table​.putItem(​DBItem​);

 }

 }

Code 4: Code to load data from a JSON into a table.

The data generated can be visualized very easily from the AWS Console within
the DynamoDB service. The Figure 2 shows the information contained in DynamoDB
after the execution of code 4.

Figure 2: data content of the table populated with code 4

9.4. Removing items from a table

Removing an item is a simple task on dynamoDB if we have it’s primary key, the

code to do this can be found on code 5, we simply need to retrieve the table and
invoke ​deleteItem over it. ​deleteItem takes an instance of ​DeleteItemSpec as sole
parameter, it contains the primary key to identify the item to be deleted.
In some instances we might need to delete an item in case it satisfies a given
condition, to do so a condition expression can be added to the ​DeleteItemSpec​, an
example of this can be found on code 6.. This method of deletion can only remove
one item from the database while in circumstances we might want to remove several
items.​[17] To solve this, DynamoDB also supports batch deletion of items, through the
operation ​BatchWriteItem ​can comprise as many as 25 operations but it does not
support conditions.​[18]

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 DeleteItemSpec ​deleteItemSpec​ = ​new​​ DeleteItemSpec();

 ​deleteItemSpec​.withPrimaryKey(​new​​ PrimaryKey(​"ID"​, ​PK​, ​"Name"​, ​SK​));

 ​table​.deleteItem(​deleteItemSpec​);

Code 5: Delete process of an item from a table given its primary key.

Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 DeleteItemSpec ​deleteItemSpec​ = ​new​​ DeleteItemSpec();

 ​deleteItemSpec​.withPrimaryKey(​new​​ PrimaryKey(​"ID"​, ​PK​, ​"Name"​, ​SK​))

 .withConditionExpression(​"City = :c"​)

 .withValueMap(new

ValueMap().withString(​":c"​,​"Seattle"​));

 ​table​.deleteItem(​deleteItemSpec​);

Code 6: Conditional delete of an item.

9.5. Updating items

The update process works very similarly to loading data. For our study case we

take the updated information of an item from a JSON file, the process we follow can
be found in code 7. We start as in previous occasions by retrieving the table and
parsing the JSON file, we need an instance of ​updateItemSpec ​that will keep all the
information necessary for the item update: the primary key is added through the
withPrimaryKey method, an update expression needs to be built and added through
the method ​withUpdateExpression, ​the expression indicates how each attribute
needs to be updated, in this example we are substituting the values in the database
for the ones in the JSON.
If we want to update, for example, the attributes “City” and “Phone number” of an
employee and give them the values: “NY” and “678362743” respectively, the update
expression would be of the form: ​“City = :a1, PhoneNumber= :a2”​. We, then, need a
map to connect the labels “:a1” and ​“:a2” with the new values, for this purpose we
initialize an instance of the class Value map, we identify the type of data of every
attribute and we use the methods ​withNumber and ​withString to add entries into the
map.
Once our update expression is built we use the ​updateItem method of the class
Table.
As it happened with the delete method, it is possible to add a condition to ​updateItem​,
that way the update will only happen if the condition is satisfied.

 ​ Table ​table​ = ​dynamodb​.getTable(​tableName​);

 UpdateItemSpec ​updateItemSpec​ = ​new​​ UpdateItemSpec();

 JSONParser ​parser​ = ​new​​ JSONParser();

 JSONObject ​item​ = ​null​​;

 ​item​ = (JSONObject)​parser​.parse(​new​​ FileReader(​path​));

 String ​PK​, ​SK​;

 ​if​​(​item​!=​null​​) {

 ​PK ​= ​item​.get(​"ID"​).toString();

 ​SK ​= ​item​.get(​"Name"​).toString();

 int ​numKeys ​= 1;

 ​updateItemSpec​.withPrimaryKey(​"ID"​,​PK​,​"Name"​,​SK​);

 ++​numKeys​;

 String ​updateExpression​ = ​"set "​;

 String ​attributeKey​ = ​":a"​;

 Integer ​attributeIndex​ = ​1​;

 ValueMap ​map​ = ​new​​ ValueMap();

 ​for​​(Object ​key​ : ​item​.keySet()) {

 ​if​​(!​key​.toString().equals(​"ID"​)

 &&!​key​.toString().equals(​"Name"​)) {

 updateExpression​ += ​key​.toString()+​" ="

 +​attributeKey​+​attributeIndex​.toString();

 if​​(​attributeIndex​<(​item​.keySet().size()​-numKeys​))

 ​updateExpression​+=​", "​;

 if​​(​item​.get(​key​) ​instanceof​​ String) {

 ​map​.withString(​attributeKey

 +​attributeIndex​.toString(),

 ​item​.get(​key​).toString());

 } ​else if​​ (​item​.get(​key​) ​instanceof​​ Long) {

 ​map​.withNumber(​attributeKey

 +​attributeIndex​.toString(),

 (Long)​item​.get(​key​));

 } ​else if​​ (​item​.get(​key​) ​instanceof​​ Integer){

 map​.withNumber(​attributeKey

 +​attributeIndex​.toString(),

 (Long)​item​.get(​key​));

 }​ else if​​ (​item​.get(​key​) ​instanceof​​ Double) {

 map​.withString(​attributeKey

 +​attributeIndex​.toString(),

 ​item​.get(​key​).toString());

 }

 ++​attributeIndex​;

 }

 }

 ​updateItemSpec​.withUpdateExpression(​updateExpression​).withValueMap(​map​)

 .withReturnValues(ReturnValue.​UPDATED_NEW​​);

 UpdateItemOutcome ​outcome​ = ​table​.updateItem(​updateItemSpec​);

 }

Code 7: Update of an item from a JSON file.

9.6. Query the database
For the last section covering our case of study we will show explain the

implementation of the five queries that we identified on section 10.1.

First query: Get employee details by employee ID

Our first query is the most straightforward of all five since we can find the

employee by using the primary key of our table. The implementation can be found in
code 8. We retrieve the table and then use the ​query method that takes as input the
partition key of the item we try to retrieve. The query method returns a collection of
items, we iterate through them and display them.​[19]

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 ItemCollection<QueryOutcome> ​items​ = ​table​.query(

 ​new​​ KeyAttribute(CreateTable.​PK​​, ​"HR-"​+​employeeId​));

 Iterator<Item> ​iter​ = ​items​.iterator();

 ​while​​ (iter.hasNext()) {

 Item ​item​ = ​iter​.next();

 System.​out​​.println(​item​.toJSON());

 }

Code 8: implementation of the first query: get employee by ID

Figure 3: Result of first query on AWS console

Second query: Get employee details by employee name

For the second ​query instead of using the query method that we have seen before we
use the method ​scan​. This is due to the fact that to use query we need to know the
partition key of the item to be retrieved, in this case what we know is the Data field,
which contains the employee name.

The ​scan method filters through all the items in the table to return only the ones that
follow the conditions specified in the ​ScanFilter​. As you can see in code 9, the filter
condition in this case is for the primary key of the table to begin with
“HR-EMPLOYEE” and for the Data attribute to be equal to the given employee name.

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 ItemCollection<ScanOutcome> ​items​ = ​table​.scan(

 ​new​​ ScanFilter(CreateTable.​PK​​)

 .beginsWith("​HR-EMPLOYEE"​), ​new

ScanFilter(​"Data"​).eq(​employeeName​));

 Iterator<Item> ​iter​ = ​items​.iterator();

 ​while​​ (​iter​.hasNext()) {

 Item ​item​ = ​iter​.next();

 System.​out​​.println(​item​.toJSON());

 }

Code 9: implementation of the second query: Get employee details by employee name

Let's forget for a minute about the employee name asked for this scenario and focus
only in a case where we would like to see all the employee details for all the existing
employees within the database. Then the first scan filter mentioned above would be
enough like shown in the Figure 4. The full process of the second query is achieved
thanks to the second filter mentioned above an example of the results is shown in
Figure 5.

Figure 4: Intermediate step of the second query visualized on AWS console.

Figure 5: Result of second query on AWS console.

Third query: Get the current job details of an employee

For the third query let’s assume we need all information regarding the current job

of an employee and that among the employee details we can find the current jobID.
We have implemented this query in two parts the first one, which can be found on
code 10, retrieves the employee information to retrieve its current jobID and the
second one, found in code 11, shows how we retrieve the job details once we have
the jobID.

To find the job ID we query the table to find items that have ​“HR-”+employeeID
as partition key and ​employeeID as sort key, once we have the result we can take the
JobId by means of the method ​get(“JobID”).

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 QuerySpec ​spec​ = ​new​​ QuerySpec()

 .withKeyConditionExpression(​"#id = :v_id and #name = :v_emp_id"​)

 .withNameMap(​new​​ NameMap().with(​"#id"​, CreateTable.​PK​​)

 .with(​"#name"​, CreateTable.​SK​​))

 .withValueMap(​new​​ ValueMap()

 .withString(​":v_id"​, ​"HR-"​+​employeeId​)

 .withString(​":v_emp_id"​, ​employeeId​))

 .withConsistentRead(​true​​);

 ItemCollection<QueryOutcome> ​items​ = table.query(​spec​);

 Iterator<Item> ​iter​ = ​items​.iterator();

 ​while​​ (​iter​.hasNext()) {

 Item ​item​ = ​iter​.next();

 String ​jobId​ = (String) ​item​.get(​"JobId"​);

 queryJobId(​dynamoDB​, ​tableName​, ​employeeId​, ​jobId​);

}

Code 10: Implementation of the first part of the third query, obtaining an employee’s JobID

Figure 6: Result of first step for third query on AWS console.

 ​public static void​​ queryJobId(DynamoDB ​dynamoDB​, String ​tableName​,

 String ​employeeId​, String ​jobId​) {

Table ​table​ = dynamoDB.getTable(​tableName​);

QuerySpec ​spec​ = ​new​​ QuerySpec()

 .withKeyConditionExpression(​"#id = :v_id and #name =

:v_job_id"​)

 .withNameMap(​new​​ NameMap().with(​"#id"​, CreateTable.​PK​​)

 .with(​"#name"​, CreateTable.​SK​​))

 .withValueMap(​new​​ ValueMap()

 .withString(​":v_id"​,​"HR-"​+employeeId)

 .withString(​":v_job_id"​, jobId))

 .withFilterExpression(​"#endDate = 9999-12-31"​)

 .withValueMap(​new​​ ValueMap().with(​"endDate_"​, ​"EndDate"​));

ItemCollection<QueryOutcome> ​items​ = ​table​.query(​spec​);

 Iterator<Item> ​iter​ = ​items​.iterator();

 ​while​​ (​iter​.hasNext()) {

 Item ​item​ = ​iter​.next();

 System.​out​​.println(​item​.toJSON());

 }

 }

Code 11: Implementation of the second part of the third query: getting job details by
jobID

Figure 7: Result of second step for third query on AWS console.

Fourth query: Get details of all employees hired recently

For the fourth query instead of the table, we query the GSI since it has the hire
date as sort key for items containing confidential details about an employee. The
implementation starts by retrieving the table and, from it, the GSI. Then we create
an instance of the class QuerySpec and we add to it the necessary attributes for
the query. We know that all confidential information items have as their partition
key in the GSI “HR-CONFIDENTIAL”, therefore, we want to retrieve all items with
that partition key whose hire date is posterior to the given date. This is indicated in
the condition expression for de query. Since we know the partition key of the items
we use the method ​query​ to execute our query.

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 Index ​index​ = ​table​.getIndex(CreateTable.​GSI_1_NAME​​);

 QuerySpec ​spec​ = ​new​​ QuerySpec()

 .withKeyConditionExpression(​"#name = :v_id and #data >

 :v_hired_date"​)

 .withNameMap(​new​​ NameMap().with(​"#name"​, CreateTable.​SK​​)

 .with(​"#data"​, CreateTable.​GSI_1_SK​​))

 .withValueMap(​new​​ ValueMap().withString(​":v_id"​,

"HR-CONFIDENTIAL"​)

 .withLong(​":v_hired_date"​, ​date​.getTime()))

 .withConsistentRead(​true​​);

 ItemCollection<QueryOutcome> ​items​ = ​index​.query(​spec​);

 Iterator<Item> ​iter​ = ​items​.iterator();

 ​while​​ (​iter​.hasNext()) {

 Item ​item​ = ​iter​.next();

 System.​out​​.println(​item​.toJSON());

 }

Code 12: implementation of the fourth query: Get details of all employees hired recently

Figure 8: Result of fourth step for third query on AWS console.

Fifth query: Get all employees who have had a specific job

We run the last query over the GSI instead of the table. We know that the
partition key for job items is the job ID so we only need to retrieve all items whose
partition key in GSI is the job ID we are given. We do so by once again building a
condition expression, in this case ​“#name = :v_jobID” where “#name” is ​“Name” in
the GSI and ​“v_jobID” ​is the given ID.

Once more, since we know the partition key for the job we can use the ​query
method. The full implementation can be found on code 13.

 Table ​table​ = ​dynamoDB​.getTable(​tableName​);

 Index ​index​ = ​table​.getIndex(CreateTable.​GSI_1_NAME​​);

 QuerySpec ​spec​ = ​new​​ QuerySpec()

 .withKeyConditionExpression(​"#name = :v_jobID "​)

 .withNameMap(​new​​ NameMap().with(​"#name"​, CreateTable.​SK​​))

 .withValueMap(​new​​ ValueMap().withString(​":v_jobId"​, ​jobID​))

 .withConsistentRead(​true​​);

 ItemCollection<QueryOutcome> ​items​ = ​index​.query(​spec​);

 Iterator<Item> ​iter​ = ​items​.iterator();

 ​while​​ (​iter​.hasNext()) {

 Item ​item​ = ​iter​.next();

 System.​out​​.println(​item​.toJSON());

 }

Code 13: Implementation of the fifth query: Get all employees who have had a specific job

Figure 8: Result of fifth step for third query on AWS console.

10. References
[1] Oszu Tamer M, Valduriez Patrick. ​Principles of Distributed Database System​. Springer
[2] Lake, P. Crowther, P.(2013)​. Concise Guide to Databases​. Springer
[3] Amazon. DynamoDB. Partitions and Data Distribution.
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitio
ns.html​] Accessed Nov 30, 2018.
[4] Ryan Kroonenburg. AWS Certified Developer - Associate 2018
[​https://www.udemy.com/share/1000vABUoceVdaRHw=/​] Accessed Nov 30, 2018
[5] IBM. Data integration [​https://www.ibm.com/analytics/data-integration​] Accessed Dec 1,
2018.
[6] Timeline 50 years of Hard Drives: [​https://www.pcworld.com/article/127105/article.html​]
Accessed Dec 1, 2018.
[7] Stonebraker S. SQL Databases v. NpSQL Databases
[​https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/stonebraker-sql-2010.pdf​]
Accessed Dec 1, 2018.
[8] Example of modeling relational data on DynamoDB
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-modeling-nosql-
B.html​] Accessed Dec 2, 2018.
[9] NoSQL Design for DynamoDB
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-general-nosql-de
sign.html​] Accessed Dec 2, 2018.
[10] Choosing the right DynamoDB partition key
[​https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/​]
Accessed Dec 2, 2018.
[11] Best Practices for Using Sort Keys to Organize Data
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-sort-keys.html​]A
ccessed Dec 2, 2018.
[12] Improving Data Access with Secondary Indexes
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.
html​] Accessed Dec 3, 2018.
[13] Global Secondary Indexes
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html​] Accessed
Dec 3, 2018.
[14] Step:1 Create a table
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java
.01.html​] Accessed Dec 3, 2018.
[15] Create, Update, and Delete Global Secondary Indexes Using the Amazon DynamoDB
Document API
[​https://aws.amazon.com/blogs/developer/create-update-and-delete-global-secondary-index
es-using-the-amazon-dynamodb-document-api/​] Accessed Dec 3, 2018.
[16] Step 2: Load sample data
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java
.02.html​] Accessed Dec 4, 2018.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
https://www.udemy.com/share/1000vABUoceVdaRHw=/
https://www.ibm.com/analytics/data-integration
https://www.pcworld.com/article/127105/article.html
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/stonebraker-sql-2010.pdf
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-modeling-nosql-B.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-modeling-nosql-B.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-general-nosql-design.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-general-nosql-design.html
https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-sort-keys.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.01.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.01.html
https://aws.amazon.com/blogs/developer/create-update-and-delete-global-secondary-indexes-using-the-amazon-dynamodb-document-api/
https://aws.amazon.com/blogs/developer/create-update-and-delete-global-secondary-indexes-using-the-amazon-dynamodb-document-api/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.02.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.02.html

[17] Step 3: Create, Read, Update, and Delete an item
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java
.03.html​] Accessed Dec 4, 2018.
[18] BatchWriteItem
[​https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.
html​] Accessed Dec 4, 2018.

[19] Step 4: Query and Scan the data
[​https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java
.04.html​] Accessed Dec 5, 2018.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.03.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.03.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.04.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Java.04.html

