

Object-oriented Databases
&

db4o

by

Annemarie Burger (479207)
&

Pinar Turkyilmaz (476728)

INFO-H-415: Advanced Databases
prof. Esteban Zimányi

December 17, 2018

Object-oriented Databases & db4o

Table of Contents

Introduction 2
Object-oriented Databases 2

History 2
db4o 4

How it works 4
How to Build db4o 5
Object Manager Enterprise (OME) 6
Queries 10

Applications 11
Pros & Cons 12
Comparison 13

Query syntax 13
Opening the database 14
Storing an object 15
Displaying the database/result 15
Query by Example (QBE) 15

SELECT statement with WHERE clause 16
UPDATE an object 16
DELETE an object 17

SODA Queries 17
SELECT all 18
SELECT with WHERE 18
SELECT with WHERE NOT 18
SELECT wiıth OR 18
SELECT with AND 19

Native Queries 19
SELECT statement with WHERE clause 19
SELECT statement with range 20
SELECT with AND 20
SORTING 20

Multiple classes 21
Query time / Performance 23

Conclusion 25
Bibliography 27

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

1

Object-oriented Databases & db4o

Introduction
Object-oriented databases have been in use for quite some time, but only when db4o -

database for objects - was developed, it became a more used database management

system choice. In this report we will discuss the history and applications of an

object-oriented database management system (OODBMS), how they compare to relational

databases (RDB) and we will deal extensively with db4o; how it works, pros and cons, and

we will compare its queries to SQL queries.

Object-oriented Databases
Object-oriented databases have been in and out of fashion. The development of db4o had a

big influence on this, but also the history and popularity of relational (object-oriented)

databases has to be considered.

History
In 1995, Malcolm Atkinson, François Bancilhon, David DeWitt, Klaus Dittrich, David Maier,

and Stanley Zdonik publish an paper called ‘The Object-Oriented Database System

Manifesto’ in which they define what an OODBMS should be like. They describe the main

features and characteristics which they have split in three groups.

The first group is made up from thirteen mandatory features: five to define the system as a

database management system, and eight additional ones to also define it as an

object-oriented system. In the paper they wrote commandments and a brief explanation to

each of the features, the first five commandments respectively are:

- Persistence: Thou shalt remember thy data

- Secondary storage management: Thou shalt manage very large databases

- Concurrency: Thou shalt accept concurrent users

- Recovery: Thou shalt recover from hardware and software failures:

- Ad Hoc Query Facility: Thou shalt have a simple way of querying data

Especially the last of these requirements has been problematic for OODBMSs, since there is

no standardized query language for them as SQL is for relational database management

systems. The Object Data Management Group (ODMG) created the Object Query Language

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

2

Object-oriented Databases & db4o

(OQL), which was very close related to SQL-92, but they disbanded the group and

abandoned their efforts in 2001. (ODBMS.org II., retrieved 2018)

The eight mandatory features named to define the system as an object-oriented system are:

- Complex objects: Thou shalt support complex objects

- Object identity: Thou shalt support object identity

- Encapsulation: Thou shalt encapsulate thine objects

- Types and Classes: Thou shalt support types or classes

- Class or Type Hierarchies: Thine classes or types shalt inherit from their ancestors

- Overriding, overloading and late binding: Thou shalt not bind prematurely

- Computational completeness: Thou shalt be computationally complete

- Extensibility: Thou shalt be extensible

All of which are pretty straight-forward.

The paper also gives suggestions on optional features, which they call ‘the goodies’, since

they “clearly improve the system, but (...) are not mandatory to make it an object-oriented

database system.” (Atkinson et al., 1995). Among these are multiple inheritance, type

checking, and design transaction management. The final group of features the paper

discusses are the open choices the system designer has to make. They include the type and

representation of the system, and the uniformity.

This paper was very important in defining OODBMS, but not many ended up being made or

widely used. Relational databases were and are far more popular, even though OODBMS

are a better fit for object-oriented programming languages. ODBMS.org (Retrieved 2018)

names a few reasons for this: “high switching cost, the inclusion of object-oriented features

in RDBMS to make them ORDBMS, and the emergence of object-relational mappers

(ORMs)”. They are still in use though, but mostly as a complement, not a replacement for

RDBMS, and they are currently enjoying a boost in popularity fueled by the open-source

community. They “found their place as embeddable persistence solutions in devices, on

clients, in packaged software, in real-time control systems, and to power websites.”

(ODBMS.org I., retrieved 2018)

Relational databases are what we call second-generation databases, and by far the most

popular ones. However, with the increasing dominance of object-oriented languages as Java

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

3

Object-oriented Databases & db4o

it becomes more important to avoid the impedance mismatch. OODBMS make data more

easily accessible, which results in greater developer productivity. They are third-generation

databases, sometimes referred to as post-relational models. Because of the strong

dominance of relational databases, it's been very hard for third-generation systems to gain

market share, but they are still growing steadily. (Paterson et al., 2006).

Moreover, RDBMS are not performing very well when it comes to processing large amounts

of complex data, such as image collections, video stream collections etc.. The increased

number of the applications which require to handle these complex data motivates developers

to use object-oriented databases systems. Nowadays they are being used in areas such as

Computer Integrated Manufacturing (CIM), Computer Aided Design (CAD), Computer Aided

Manufacturing (CAM), Computer Aided Software Engineering (CASE) (Saxena & Pratap,

2013). These applications use object-oriented databases to handle complex graphical data.

On the other hand, as Bagui, S. (2003) puts it, there are some cons of OODBMS, such as

lack of standard query algebra which effects the query optimization. Also, most OODB do

not support authorization and this increases the security concerns with OOBDs. Some other

features such as constraints with UNIQUE and NULL, and triggers, are not supported by

OODBMS.

db4o
Development for db4o started in 2000 by the company Actian, which started shipping it in

2001 and promoting it commercially in 2004. It was by no means the first OODBMS, since

they “have been available commercially since the early 1990s, but have not had a great deal

of impact outside niche markets.” (Paterson et al., 2006). This is partly because they did not

have a standardized query language or data definition, and partly because they were

non-native, which means that objects were not stored as the original objects. The latter is the

reason why db4o was such a game changer, since it worked with a native interface.

How it works
db4o is a non-relational embedded DB specifically focused on persistence. It is not

string-based - as for example SQL -, but stores and queries natively, which in this case

means by just using Java or .NET. There is no context switch between programming and

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

4

Object-oriented Databases & db4o

API language. This is mainly what makes it so different from RDB and older OODBMS; it is

pure native. Objects are stored directly as the object, without chopping them up or changing

their characteristics. This is intuitively more logical because if you are using SQL for objects,

you basically need to disassemble them to fit them into tables. “Digital technology consultant

Esther Dyson put it another way:

Using tables to store objects is like driving your car home and then disassembling it

to put it in the garage. It can be assembled again in the morning, but one eventually

asks whether this is the most efficient way to park a car.

“ (Paterson et al., 2006). This disassembling brings all kinds of problems, most importantly

the increased chance on impedance mismatch, since you have to correctly map all parts to

each other. In the image below the difference between a native object database as db4o and

relational database gets further explained. The impedance mismatch can occur during the

mapping step, which can be completely skipped thanks to db4o’s native interface.

Source: https://medium.com/@gp_pulipaka/db4o-object-oriented-database-479934899b86

How to Build db4o
The version that we used is db4o 7.4-java. The Java version we use is Java 8. db4o can be

downloaded from the internet very easily.

To be able to use db4o in Eclipse, simply add the appropriate .jar file under /lib/ folder of the

project which you work with db4o and add db4o to your project as a library.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

5

https://medium.com/@gp_pulipaka/db4o-object-oriented-database-479934899b86

Object-oriented Databases & db4o

Object Manager Enterprise (OME)

Object Manager Enterprise is a very simple graphical interface of the database. It is possible

to download it on the internet. Note that it should be in the same version with db4o.

It is downloaded in zip file. To build it, just unzip the file in any location you want and run the

.jar file.

When you run objectmanager.jar file, first an empty command line will appear.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

6

Object-oriented Databases & db4o

There is no need to interact with this screen. Just wait for the main window to be opened.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

7

Object-oriented Databases & db4o

When the main screen appears, just click “Browse” button, and select the location of your

database.

When you click on the db4o.ClassName it is possible to see the data in it. OME also gives

an opportunity to create queries automatically. In the following example, when“_name”

attribute is clicked, in the Query section “WHERE _name ?” will appear. Just write what you

want to retrieve and the result will appear in the result section.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

8

Object-oriented Databases & db4o

Also it is possible to expand the queries in the same way with the previous example.Just

double click the attribute and it will be added to the query.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

9

Object-oriented Databases & db4o

Queries
db4o queries are quite different from SQL queries. For example, if you want to get a specific

manager and all employees it is associated with, you need two queries in SQL; one for the

manager and one for its employees. In an object oriented database you only need one query

since it can also right away return all the associated objects, even if they are only connected

through traversing relationships. This is a very powerful tool and should be handled with

care, especially when we are using very deep structures or circular references. Another way

of handling it is by controlling the activation depth, that limits the amount of objects that can

be returned. One should also mind the fact that queries are only used in db4o to return data.

Separate methods are used for inserting, updating and deleting objects in the database. We

will talk about those as well in the comparison part of this code.

db4o has three different options for queries: Query By Example (QBE), Native Queries (NQ)

and SODA Query API. We will discuss them here in theory and in a more practical way in the

comparison part of this report.

1: Query by example

This is the most basic way of querying and does not come close to the power of SQL since it

is so simple. The idea is that you create an object with the search field value you want

specified while the others are left with null or zero values, and ask the database to give you

all matching objects. The query returns a collection with all the objects that match the

attribute pattern you provided. The disadvantages of this method of querying is that you can

only use if for very basic queries, and can not use it for ranges or more complex queries.

(Paterson et al., 2006).

2: SODA Query API

SODA stands for Simple Object Data Access, and is based on the notion of a query graph.

In this graph you can specify the type of objects you want and use method calls to “descend”

- as db4o calls it - to objects with certain constraints. These types of queries are very fast,

but quite foreign if you are very used to for example SQL, since it is based on a totally

different way of thinking about queries. Because of this, it is probably the least used query

method in db4o, and it is also possible as a developer to get by with just the other two

options. The native queries are most recommended for db4o and while executing them

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

10

Object-oriented Databases & db4o

queries db4o tries to convert them into SODA queries since this is the most efficient method.

(Paterson et al., 2006)

3: Native Queries

The thing that made people so excited about db4o, it’s the new, cool thing, if you will, and

the primary query mechanism of db4o. By using native queries, the query mechanism is

completely integrated in the programming language, since it does not use declarative code.

As Paterson et al., (2006) put it: “you write your application, and then you can plug in a

different kind of database by changing only one line of code.(...) Native queries offer the

potential to (...) provide type-safe querying of any kind of database and also of in-memory

objects. This integration of querying and language offers great potential for the future.” db4o

will always try to optimize a query, which sometimes means a native query will get translated

into a SODA query for faster results. You can express a native query in any C# or Java code

that returns a Boolean. The system applies your method to all objects stored and the

collection of matching objects is returned. The great advantage is that errors can be

detected by your compiler because the query is native with the rest of the code. This avoids

runtime errors. (Paterson et al., 2006)

Applications
As Paterson et al., (2006) puts it: “db4o is most likely to be used in applications where there

is no legacy data, which is to say no existing data architectures to integrate. This is primarily

the case with applications that run on clients or on middleware. Unlike most other DBMS,

db4o is not built as a server system but as a library.” This is one of the main things that

make db4o very useful, because it makes db4o to have very small memory footprint. This

feature makes db4o to be used in the applications that need to store data, but are more

focused on the functionality of the application then on having full stand-alone flexibility with

the data. This does not mean that data is not important, rather that data will be used in a

predefined way and not afterwards for dynamic data analysis etc. With this characteristic

db4o becomes very ideal for mobile, disconnected or embedded devices. This is the case for

mobile handheld applications or for industrial device solutions. Also, it is possible to use

db4o as database where ‘heavy’ DBMS are not usable, and even in some cases where

(R)DBMS were considered as traditional, db4o might be an alternative choice. (Hauser,

P.(n.d.))

Below some of the projects that were developed using db4o.(Paterson et al., 2006)

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

11

Object-oriented Databases & db4o

● Used within a high-speed train control system, developed by Indra Sistemas, in

Spain’s AVE rail network. No other system was able to handle the incredible load of

processing over 200,000 heterogeneous objects per second.

● Used to control complex, high-speed packaging robots built by Bosch Packaging

Technology Group. db4o can facilitate the complex object models required by their

high-performance packaging robots with ease.

● Used to improve eye health for babies in Clarity Medical Systems’ Retcam II product,

which provides state-of-the-art wide-field pediatric retinal imaging for infant eye

screening.

● Selected by Boeing for the P-8A Multi-Mission Maritime Aircraft, a long-range

anti-submarine warfare, anti-surface warfare, intelligence, surveillance, and

reconnaissance aircraft for the U.S. Navy.

● Used to replace legacy databases in LoanMaster (hand-held software designed for

the home credit industry) and Mobilize Van (a route accounting distribution

management system) redeveloped by Eastern Data Systems.

● Used by Mandala IT in consumer software products for mass-market cell phones.

● Indian Postal Services has been developed by using db4o and Db4o solves the

problem of impedance mismatch and making the development of database model

much simpler. (Saxena & Pratap (2012))

Pros & Cons
As Paterson et al., (2006) puts it: “[db4o’s] key features are performance, compactness, zero

administration, simplicity, and the unique ability to store native Java or .NET objects,

providing cross-platform portability. Objects are stored exactly as they are—there is no need

for a data definition language. Zero administration is a rather atypical characteristic for most

DBMSs. Typical database administration tasks like installing and configuring the database

server software, creating and optimizing tables, and creating views and stored procedures

are simply not necessary with db4o. Adding a single small archive file (JAR or DLL) to your

classpath gives access to the db4o API, which has all the classes you need to store and

retrieve objects. db4o is incredibly simple to use, and its small footprint means that it opens

up the use of object databases to a whole range of embedded applications.”

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

12

Object-oriented Databases & db4o

All this makes it more suitable for big workloads and complex objects. As we will later

discuss in our comparison the native queries are very intuitively, as are the queries by

example.

Furthermore, db4o is not meant to be a stand alone database management system, as

Paterson et al., (2006) puts it: “ A key strength is its ability to be seamlessly embedded into a

.NET or Java application, using a data model that is the same as the application’s object

model and without the need for database administration. There is no need to map objects to

tables, and complex object models are easily supported.” This can both be a pro and a con,

but is mostly a given fact that should be considered when finding the proper DBMS for your

situation.

Since db4o is not a string-based, it is not very suitable for full text indexing. This basically

just means you should not use it when you are searching through texts, but then again, why

would you; far better alternatives are available for that. More pros and cons for the three

different types of queries that db4o supports will be given later on when we explain and

compare these types.

Comparison
We are explaining db4o query syntax and comparing it to equivalents in SQL. We also take

a look at the performance of db4o by discussing the results from a paper by Saxena and

Pratap (2013).

Query syntax
db4o provides three different querying systems which are Query by Example(QBE), SODA,

and Native Queries. In this part we going to explain how to store, retrieve, update, delete an

object from the database also how to join two objects by using each type of queries.

First we should create a class to keep our data.

It looks like this:

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

13

Object-oriented Databases & db4o

Opening the database

To access the db4o database or create a new one call Db4o.openFile() and send the path of

the database as parameter to obtain a ObjectContainer instance. ObjectContainer simply

represents the database. So, our code looks like following:

This code will open the database if the path exists, if not the database will be opened

automatically.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

14

Object-oriented Databases & db4o

Storing an object

To store an object we shall call store() function. We should first create an object and pass

this object as parameter to store() function. It looks like following:

For the previous version of db4o it is possible to use set() function as well. The version of the

database which is used here is 7.4 and JDK is 1.6.

Displaying the database/result

In our code we wrote a function called listResult() to see the database.

This function is usable when the result you want to see is in ObjectSet type. In other word

while the queries are written using by query by example. For displaying the result which

typed by using Native queries, we have another function which is called listResultNQ(). This

function receiving parameter in List<> type. It looks like this:

Query by Example (QBE)
When using Query-By-Example, you create a prototypical object for db4o to use as an

example of what you wish to retrieve. db4o will retrieve all objects of the given type that

contain the same (non default) field values as the example. The results will be returned as

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

15

Object-oriented Databases & db4o

an ObjectSet instance. We will use a convenience method listResult() to display the contents

of our result ObjectSet.

Advantages:

-It is easy to use and very suitable for beginners. Most of the time it is recommended to use

Native Queries only after getting more familiar with db4o.

Disadvantages:

-Not useful for complex queries

SELECT statement with WHERE clause

db4o query using QBE:

[Pinar;24]

SQL query:

QBE is limited in its power. It can only provide an equivalent for queries with criteria that

are matched exactly, and it isn’t very flexible when it comes to compound criteria (Paterson

et al., 2006).

UPDATE an object

db4o query using QBE:

SQL query:

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

16

Object-oriented Databases & db4o

DELETE an object

db4o query using QBE:

SQL query:

SODA Queries
SODA Queries were the first query method to be included in db4o, and internally, native

queries still get translated to SODA queries. They are string-based graph queries, “where

nodes represent classes or fields of classes, and edges represent relationships that can be

traversed to reach nodes.” (Paterson et al., 2006)

In the image next to this you can see a SODA query

graph representation from the book by Paterson et

al. (2006) for retrieving all objects from the class

Person that have an attribute _name that is equal to

“Lincoln”. As you can see the field of the class

‘descends’ from the class node itself.

Advantages:

- Very fast

- Quite logical and efficient once you get the hang of it

- Good for dynamic query generation

Disadvantages:

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

17

Object-oriented Databases & db4o

- Harder to get used to, since it is such a different way of querying than SQL.

- String-based, so not type safe and not compile time checked

SELECT all

[Gandhi;79]
[Pinar;24]
[AnneMarie;23]

SELECT with WHERE

[Gandhi;79]

SELECT with WHERE NOT

[Pinar;24]
[AnneMarie;23]

SELECT wiıth OR

[Pinar;24]

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

18

Object-oriented Databases & db4o

SELECT with AND

[Pinar;24]

Native Queries
NQs basically use the functionality the programming language gives you. It uses a method

that returns a boolean value (true or false) depending on the result.

Advantages:

- Better for more complex queries in db4o.

- Subqueries are arguably easier to write and more readable in db4o than in SQL

since the sequence of operations is more obvious (Paterson et al., 2006)

- No need to edit mappings or query strings when the model changes.

- Sorting is easier

Disadvantages:

- It is possible to miss some well-known SQL functions which you need to implement

but probably be integrated into db4o with more effort than SQL. The functions could

be aggregate ones like AVG, SUM, COUNT.

SELECT statement with WHERE clause

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

19

Object-oriented Databases & db4o

SELECT statement with range

[Gandhi;79]
[AnneMarie;23]

SELECT with AND

[Pinar;24]

SORTING

[AnneMarie;23]
[Gandhi;79]
[Pinar;24]

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

20

Object-oriented Databases & db4o

Multiple classes
Let’s look at how to do make joins in db4o, for which we replicate the example in Paterson et

al. (2006). To make join, we should have 2 different classes. First, we can create another

class called “Pilot”.

package db4o;

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

21

Object-oriented Databases & db4o

And we can assign a vehicle to a Pilot. To do that, let’s create another class called “Car”.

To store object:

And our second object could be stored like this:

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

22

Object-oriented Databases & db4o

To retrieve a car which is used by a specific Pilot, with other words to see a car by pilot

name:

By QBE:

By using Native Queries:

By SODA Queries

Query time / Performance
Vipin Saxena and Ajay Pratap wrote an article on ‘Performance Comparison between

Relational and Object-Oriented Databases’ (2013) in which they compare the response

times of db4o and SQL Server 2008 for writing, updating and retrieving objects. Since their

research looks very well argumented, we decided not to replicate these results, but just

report them. They build a database consisting of 40000 Users having fields UID, Name,

Address and MobNumber. The field UID is the primary key and different objects of the User

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

23

Object-oriented Databases & db4o

class must have different IDs. The different customer objects were first inserted into the

database, and then the objects were queried back by their IDs.

They found db4o took a bit more time when writing the objects, but was faster when

updating or retrieving them, especially when dealing with a large database. This makes

sense since objects do not have to be reassembled before updating or returning them. This

gets further illustrated in the pictures below all from Saxena & Pratap (2013).

The above figure shows how SQL Server is performing compared to db4o when updating

objects. As you can see is db4o always faster, but especially once the data set gets bigger.

This makes sense because SQL Server needs to reassemble the object before being able to

update it, and after the update it needs to disassemble it again. db4o however can directly

access and alter the objects, which saves a lot of time.

The above figure compares the response time of DB4O and SQL Server depending on the

number of data, when retrieving an attribute value. The response time gets higher for SQL

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

24

Object-oriented Databases & db4o

when the number of objects is increased. However, db4o stays virtually the same for all the

period.

Writing objects is the only method tested by Saxena & Pratap (2013) on which db4o

sometimes preformed worse than SQL Server. As gets illustrated by the picture above, is the

writing time quite equal, just a millisecond slower in some of the tests they performed.

Conclusion
db4o was quite a breakthrough when it was released. It is part of the third-generation of

databases and work significantly different than eg SQL, mostly by storing objects as they are

and working natively. This is also the main reason it is way faster than SQL when updating

or retrieving objects, especially on large databases. The native query and SODA query API’s

take a little bit of time getting used to, but are fast, smart and convenient. The native queries

in particular are very intuitive and easy to work with. It is also very helpful that it works using

Java or .NET, which prevents the impedance mismatch and is simply nice for programmers

who prefer these languages over SQL.

However, db4o is not the proper choice for you if you want to do full text searches. Also,

even though it is possible to link different classes, db4o is no relational database

management system. Because of this, the system is still only used for quite specific

applications.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

25

Object-oriented Databases & db4o

On a more personal note: we were quite impressed by db4o. It is a very smart system, and

the native queries are really intuitive and enjoyable if you like coding in Java. In regular

databases you usually work with strings, which is not what this database system is designed

for, but if you have a special case, and are looking for a DBMS to store objects, db4o is a

great choice, especially when you’re working with a big amount of complex objects.

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

26

Object-oriented Databases & db4o

Bibliography
Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D. and Zdonik, S. (1995).

The Object-Oriented Database System Manifesto. [online] Available at:
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/clamen/OODBMS/Manifesto/htManifesto/Manife
sto.html [Accessed 4 Dec. 2018].

Bagui, S. (2003). Achievements and Weaknesses of Object-Oriented Databases. The
Journal of Object Technology, 2(4), 29. doi:10.5381/jot.2003.2.4.c2. Available at:
http://www.jot.fm/issues/issue_2003_07/column2.pdf [Accessed 16 Dec. 2018]

Hauser, P.(n.d.). Review of db4o from db4o objects. Available at:
http://cis.bentley.edu/LWaguespack/CS630_Site/Downloads_files/OODBMS-db4o-Review.p
df [Accessed 14 Dec. 2018]

N.N. (n.d.) db4o-7.8-tutorial.[PDF File]. Retrieved from
http://www-users.mat.umk.pl/~stencel/obd/db4o-7.8-tutorial.pdf [Accessed 14 Dec. 2018]

Odbms.org. I. (2018). Definition - ODBMS.org. [online] Available at:
http://www.odbms.org/introduction-to-odbms/definition/ [Accessed 4 Dec. 2018].

Odbms.org. II. (2018). ODMG Standard - ODBMS.org. [online] Available at:
http://www.odbms.org/odmg-standard/ [Accessed 4 Dec. 2018].

Paterson, J., Edlich, S., Hörning, H., & Hörning, R. (2006). Definitive guide to db4o.
New York: Apress. Available at:
https://www.researchgate.net/publication/229686866_The_Definitive_Guide_to_db4o
[Accessed 14 Dec. 2018]

Saxena, V., & Pratap, A. (2012). Representation of Object-Oriented Database for the
Development of Web Based Application Using Db4o. Journal of Software Engineering and
Applications, 05(09), 687-694. doi: 10.4236/jsea.2012.59082. Available at:
https://www.researchgate.net/publication/267940588_Representation_of_Object-Oriented_D
atabase_for_the_Development_of_Web_Based_Application_Using_Db4o [Accessed 14
Dec. 2018]

Saxena, V., & Pratap, A. (2013). Performance Comparison between Relational and
Object-Oriented Databases. International Journal of Computer Applications, 71(22). doi:
10.4236/jsea.2012.59082. Available at:
https://pdfs.semanticscholar.org/bdeb/d4678cbbcd0d8d42a777e3921a9d5b7f531f.pdf
[Accessed 14 Dec. 2018]

Annemarie Burger (479207), Pinar Turkyilmaz (476728)

27

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/clamen/OODBMS/Manifesto/htManifesto/Manifesto.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/clamen/OODBMS/Manifesto/htManifesto/Manifesto.html
http://www.jot.fm/issues/issue_2003_07/column2.pdf
http://cis.bentley.edu/LWaguespack/CS630_Site/Downloads_files/OODBMS-db4o-Review.pdf
http://cis.bentley.edu/LWaguespack/CS630_Site/Downloads_files/OODBMS-db4o-Review.pdf
http://www-users.mat.umk.pl/~stencel/obd/db4o-7.8-tutorial.pdf
http://www.odbms.org/introduction-to-odbms/definition/
http://www.odbms.org/odmg-standard/
https://www.researchgate.net/publication/229686866_The_Definitive_Guide_to_db4o
https://www.researchgate.net/publication/267940588_Representation_of_Object-Oriented_Database_for_the_Development_of_Web_Based_Application_Using_Db4o
https://www.researchgate.net/publication/267940588_Representation_of_Object-Oriented_Database_for_the_Development_of_Web_Based_Application_Using_Db4o
https://pdfs.semanticscholar.org/bdeb/d4678cbbcd0d8d42a777e3921a9d5b7f531f.pdf

