

 ULB

Couchbase
Document Store

Carlos Martínez Lorezno
Pablo Molina Mata

1

Content
1) Document Store .. 2

a) Chronological... 2

b) Characteristics ... 3

c) Differences between document store databases and relational databases 4

d) Main uses for document store databases ... 5

e) Examples ... 5

2) Couchbase ... 6

a) What is Couchbase? .. 6

b) What is a JSON document? ... 7

c) What should you know about Couchbase? ... 9

d) Learning N1QL ... 12

e) Why should you use Couchbase instead of MongoDB? .. 14

Performance at scale ... 14

Mobile ... 14

High availability and disaster recovery ... 14

Queries .. 15

f) How install Couchbase .. 17

3) Playing with Couchbase... 20

a) Couchbase console .. 20

b) Working with Couchbase and Nodejs ... 23

a. Connection to Couchbase ... 23

b. Crud ... 24

c) Executing Queries .. 25

d) Performance of Couchbase ... 29

4) Bibliography .. 31

2

1) Document Store
a) Chronological

In the early 70s, relational databases were introduced and for that time data schemas were quite

simple, and it was suitable to think about objects as sets of relationships between them.

Structured Query Language, or SQL, was used and developed because those relationships

between the different types of data were specified in the Database schema. But as time passed,

the environment for data and programming has changed in different aspects:

• The emergence of cloud computing has brought deployment and storage costs

down dramatically, but only if data can be spread across multiple servers easily

without disruption. Executing distributed joints is a quite complex problem in

relational databases.

• The need to store unstructured data, such as post in social websites or multimedia,

has grown rapidly, and in SQL databases workarounds or compromises have to be

made for storing and querying unstructured data.

• As demands evolve, the database schema needs to change rapidly and easily, and in

SQL databases the structured needs to be specified in advanced.

As way of responding to these changes, new manners of storing data have emerged in which

data can be grouped together more easily and logically. One of this new way of storing data is

Document Store Databases, and it’s going to be discussed in the following paragraphs.

3

b) Characteristics

A Document Store Database (DSDB), also named as “Document-oriented Database”, “Aggregate

Database” or simply as “Document Database”, is a database that uses a document-oriented

model to store data.

A DSDB is used for storing, retrieving and managing semi-structured data, but unlike traditional

relational databases, the data model is no longer structured in a table format of rows and

columns. In this case, the schema can vary, providing a major degree of flexibility for data

modelling than relational databases.

Regarding of the way that DSDB works, it is usually used as the “document”, a block of XML and

JSON, YAML or BSON among others. As it is mentioned before, instead of columns with names

and data types used in relational databases, the document contains a description of the data

type and the correspondent value for that description.

Furthermore, there is no need for each document to have the same structure, it can be different.

For adding extra types of data to a DSDB, it is no longer needed to modify the entire database

schema, as it is necessary with a relational database. It is possible to add the object directly to

the database.

In DSDB, documents are grouped into “collections” or “groups”, which mission is similar to

relational tables. The database provides a query mechanism to search into these groups, for

documents with attributes.

4

c) Differences between document store databases and relational databases

Some of them are mentioned briefly in previous paragraphs, but here is a closer look at them:

Relational databases way of storing data is by using tables, columns and rows (representing each

record). The only manner of establishing an association between two or more tables is by

creating a relationship between them.

In the other hand, DSDBs store data on a provided entity within a single document, and any

associated data is stored inside that one document

With traditional relational databases, before loading any data, it is mandatory to create a

schema. But, with DSDBs it is no longer compulsory, so data can just be loaded without any

predefined schema. Therefore, any two documents can contain a different structure and data

type.

In terms of scalability, document databases can scale horizontally quite well, meaning data can

be stored over several thousand of computers and the performance of the systems is good.

Meanwhile, relational databases are more capable of scaling vertically. Although, there is a limit

to how many resources can be stored inside one machine, there would be a point where

horizontal scaling has become the only option.

Traditional relational databases establish relationships between tables by using foreign keys.

DSDBs, on the other side, don’t have implemented this option so if a relationship needs to be

done, it would be compulsory to be implemented at the application level. But, as the whole idea

in document model is that any data associated with a record is stored within the same

document, the need of establishing a relationship should not be as prevalent.

Document store databases are quite like key-value databases, but the main difference lies within

the “value” of the DSDB. The “value” contains structured or semi-structured data, and can be

encoded using a widely number of methods, including XML, JSON, BSON, YAML, etc. And the

main benefit is that, with the key-value database you can’t query within the value, meaning you

get the whole value no matter how big it might be. In contrast, with DSDB, you can query against

the structure of the document as well as the elements within that structure. Therefore, you can

return only those parts of the document that you required.

5

d) Main uses for document store databases

Thanks to their characteristics, document-oriented databases are well suited for a wide variety

of use situations:

They are used for web applications, such as content management system, blogging platforms,

Web analytics, user preferences data, etc, due to their capability of making changes easily

through different sources, at the same time without duplicating the content.

Also used in Used generated content, like chat sessions, tweets, blog posts, ratings, comments,

etc, thanks to their schema-less design, their highly flexible data model and their quickness.

In Catalog Data aspects, for example user accounts, product catalogues, devices registries for

Internet of Things, it’s necessary to access a region of the information (so you have to query the

value of the document) and you need to do it quickly. Due to these reasons, document store

database is the correct choice.

Very used in Gaming aspects, like in-game stats, social media integration, high score leader

boards, in-game chat messages, challenges completed, etc, thanks again to their quickness in

getting the information and the availability of the information itself (by using more servers to

scale out).

e) Examples

MongoDB development begun in 2007 and was launched in 2009. The main features of this

database are: Ad hoc queries, indexing, replication, load balancing, file storage, aggregation,

server-side JavaScript execution, Capped collections and Transactions.

Amazon DynamoDB was released in 2012 and it has a particularity that Dynamo had a multi-

master design requiring the client to resolve version conflicts and uses synchronous replication

across multiple datacenters for high durability and availability.

Couchbase is the database chosen for this particular project and in the next paragraphs it is

going to be explained more deeply.

6

2) Couchbase
a) What is Couchbase?

Couchbase is one of the most powerful NoSQL technology, it is the first NoSQL Database to

enable you to develop with agility and operate at any scale. Couchbase database emerges from

the merge of two products; several leaders of the Memcached project (a distributed memory

caching system) founded Membase, and some of these leaders merge with people of CouchDB

(a distributed memory caching system of Apache) in order to create Couchbase Server.

Couchbase is a memory first solution (distributed cache and the backend are the same), each

time that you interact with Couchbase you write or read directly from memory. From CouchDB,

Couchbase has inherited the key-value architecture and each value has a maximum size of 20

MB, so you can use Couchbase like a Key-Value store. However, the most typical way is to use

Couchbase like a document store (a document is a JSON file), in this way you can access to the

documents with key-value, with index access or with N1QL (It is an implementation of SQL in

JSON).

Couchbase has two main product, Couchbase server and Couchbase mobile (an implementation

of Couchbase server for embedded systems). Moreover, Couchbase can work as a distributed

database as well, but in this topic, we are going to be focus on Couchbase Server and this

behaviour as a document store.

1 Picture 1. Main Couchbase Characteristics.

1 Couchbase Server. Distributed Data Management. Consulted on 2/11/2018, in
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-
management.html.

7

b) What is a JSON document?

JSON is the de facto standard in the frontend word, therefor Couchbase stores JSON documents

instead of relational table. With JSON files, you do not need to access to different table to get

the information, you have all the information that you need in the same document.

In a JSON document you do not have a specific structure. For example, in a relational database

you have structure specify in the tables, all the tuples from a table have the same attributes and

when some tuple do not have an attribute you are going to put this attribute to null. In a

document store you do not have a structure so for each tuple of one type of document you can

have different attributes, you can have missing or null attributes.

Moreover, you do not have relationships, if you want to relate two different documents, you

are going to create an attribute in the document to refer to the primary key or another attribute

of the other document.

2 Picture 2. Relational Table vs JSON Document

In the previous picture we can see how in relational tables you are going to repeat a lot of time

the same information. In “USER SKILLS” you have 3 tuples to express skills of the same user and

other 2 tuple to express the “USER EXPERIENCE”, while in the a JSON document you can write

inside the document of the USER all this information like a simple array of strings or an array of

complex object. You are not going to repeat the User ID 5 times.

2 Couchbase Server. Couchbase. Consulted on 20/11/2018, in https://www.couchbase.com.

https://www.couchbase.com/

8

Each document has three important things:

• Document ID or key, that is like primary keys in relational databases. Documents are

portioned based on the document ID. ID based document lookup is extremely fast and

this document ID must be unique, and you can generate it automatically.

• Value is the information that you want to store.

• Metadata, this is all the metainformation relate to the document so that the database

administrator system can read and understand the document.

3Picture 3. Parts of JSON document

JSON is the most typical way to share information in the web, currently most of the calls share

JSON files, so it is better to have a document store database based on JSON files, since it is very

simple to communicate with web technologies.

3 Couchbase Server. Couchbase. Consulted on 20/11/2018, in https://www.couchbase.com

https://www.couchbase.com/

9

c) What should you know about Couchbase?

Buckets are one of the most important things in CouchDB, it is the keyspace, what would be a

scheme in the relational databases. In a bucket, you are going to store all the different object

that you need. All the documents that you are going to store in a bucket do not have to have the

same structure, you can have a lot of different types of document. However, you might be

interested in have some different buckets in order to reduce the number of objects of a bucket

and improve the searching in the bucket. Buckets are very important since you can replicate all

the information to other buckets with a single instruction, so from a scalability view, this is very

powerful.

Then, the bucket is going to be in a specific server, that a group of these servers are going to

form a cluster. With Couchbase is very simple to scale, since you only need to create a new

server and if you need some bucket here, with a simple query you can replicate all you want.

Moreover, the scalability is very good as well because Couchbase is a distributed database too,

but we are not going to speak here about Distributed Databases since this report is focus on

Document Store Databases, there will be other reports explaining the Distributed Databases.

4 Picture 4. Couchbase Architecture.

4 Couchbase Server. Distributed Data Management. Consulted on 2/11/2018, in
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-
management.html.

https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html

10

Couchbase allow you to access to all their documents in some different ways. The simplest and

faster way is the key-value access like in all the database systems, since a Document store is a

special case of key-value. Then, there are the views, that provide aggregation and real-time

analytics through incremental map-reduce. Nevertheless, the most important access ways are

the Global Secondary Indexes or N1QL, this provide low latency and high throughput indexes.

N1QL is a language that provides a powerful and expressive way of accessing documents, that is

an SQL for native JSON. The learning curve of this language is very small since almost everyone

knows SQL.

5Picture 5. Couchbase Searching Document

The most important use cases of Couchbase are profile management, personalization, internet

of Things, mobile Applications, content management, product catalogues, real time big data,

digital communication or high availability caching.

6Picture 6. Couchbase most typical use cases

5 Couchbase Server. Couchbase. Consulted on 02/11/2018, in https://www.couchbase.com.
6 Couchbase Server. Couchbase. Consulted on 24/11/2018, in https://www.couchbase.com.

https://www.couchbase.com/
https://www.couchbase.com/

11

Couchbase is quite good in these different use cases because is a Document Store (we have

explained it why in the previous chapter). However, there are some different use cases that

Couchbase is good unlike the other Document Store like MongoDB. For example, Couchbase is

good in the use cases related with internet of things or Real Time Big Data because Couchbase

has a Distributed Architecture and has a good performance in scalability, you only need to add

new served pressing a single bottom.

Moreover, Couchbase is better than the other Document Store in mobile system, since most of

the Document Store Databases do not have implement any solution for mobile device, so if you

are going to create an application, you do not have a lite database in the device, you need

internet connection all the time. In Couchbase, you have a mobile device solution, so you have

your lite database in the mobile phone that you do not need to be all the time connected to

interned and this is going to perform so much the application since the application has the data

in the same device.

12

d) Learning N1QL

N1QL is a native SQL for JSON, so you are going to get the advantages of SQL (general query

functionality and queries across relationships) with advantages of JSON document (rich

structure with a flexible schema that is easy to change). So N1QL has the standard SELECT

syntaxis of SQL; select, from, where, order by, group by, limit or offset are the same that in SQL.

EXAMPLE:

 SELECT ***** FROM ***** WHERE *****

Moreover, N1QL allows to do:

• JOINs: this is important since there are some document store databases that

not allow you to do it, for example MongoDB.

• Subqueries.

• Aggregations.

• UNION, INTERSECT or EXCEPT.

• Etc.

In the write syntaxis, there are UPDATE, DELETE, INSERT and MERGE (Same in SQL).

We are not going to explain these standard SQL things, since if you are reading this report is

because you know SQL, so we are going to talk only about the particularities of N1QL. One of

the particularities is that has expression only for JSON, in JSON you can get null values for one

document, but you can have missing values as well, so N1SQL differentiate it with “IS MISSING”

and “IS NULL”. You can try all the examples in https://query-tutorial.couchbase.com/tutorial.

SELECT name

FROM person

WHERE children IS NULL

OR

SELECT name

FROM person

WHERE children IS MISSING

If you want to filter based on arrays nested inside the document you can use ANY or EVERY,

depending on if you need that all the elements of an array or at least one satisfies any conditions.

SELECT name

FROM person

WHERE ANY/EVERY child IN person.children SATISFIES child.age > 15 END

https://query-tutorial.couchbase.com/tutorial

13

Specific primary keys within a bucket can be queried using the USE KEYS clause.

SELECT name

FROM person

USE KEYS ["John", "Ross"]

Slicing an array.

SELECT children[0:2]

FROM person

WHERE children[0:2] IS NOT MISSING

Array comprehensions, if you do not want to show everything of an array.

SELECT

name,

ARRAY child.name FOR child IN person.children END AS nameOfChild

FROM person

WHERE children IS NOT NULL

JOINs.

SELECT A.accountID, A2.accountID

FROM Account A

INNER JOIN Account A2

ON A1.ownerID=A2.ownerID;

INSERT.

INSERT INTO person (KEY, VALUE)

VALUES ("1234", {"name":"Pedrito", "age":"31"})

DELETE.

DELETE FROM person p

USE KEYS "1234" RETURNING p

UPDATE.

UPDATE person

USE KEYS "1234 "

SET age = 32 RETURNING person.name

14

e) Why should you use Couchbase instead of MongoDB?

Now, we are going to compare Couchbase with MongoDB since MongoDB is the most used

document store database. In this way we are going to understand the advantages of using

Couchbase.

Performance at scale

The performance of MongoDB quickly degrades as increase the number of user or clusters. It is

due to its master-slave architecture, that limits its ability to perform a lot of concurrent users in

the same node. Moreover, Increase the hardware resources is not the solution because the

database is going to be more complex and it does not improve so much the performance.

With Couchbase everything is different, its distributed architecture without master is simple and

deliver consistent performance at any scale, Couchbase support so many concurrent users in

the same node and scales horizontally across multiple nodes. Setting up more cluster do not

take so much time and you can add or remove node pressing a simple button.

Mobile

MongoDB does not have a solution to support mobile phone applications. In MongoDB you have

to create your own code to synchronise data on the mobile device with the data in the remote

server, so a MongoDB application has to have always a good internet con in order to works

properly, this is not good for the performance. However, Couchbase has a complete mobile

solution (Couchbase Mobile), this solution has an embedded JSON database and a

synchronization solution, so the application does not need internet connection all the time, it

can store the data in the JSON database and then, when it has connection, synchronize with the

server.

High availability and disaster recovery

with MongoDB, if you are developing an application with multiple data centers, MongoDB is only

going to perform writes in the main data center, other data centers have to perform writes to

remote locations. Therefore, MongoDB cannot perform locally all writes and can suffer from

data loss and inconsistency.

On the other hand, Couchbase has a distributed architecture without master, you can perform

locally all writes, so it is going to reduce the latency and to improve the performance of the

application. Moreover, Couchbase has different replication routines that reduce data loss and

inconsistency problems.

15

Queries

We have explained in this report N1QL, the database query language of Couchbase, so if we

compare Couchbase queries with MongoDB queries, we are going to see that Couchbase queries

are simplest and faster to do.

In this part of the comparison with MongoDB, we prefer to show the differences with an

example. Database schema:

Orders:

• Name: String

• Category: String

• Value: Integer

• Quantity: Integer

N1QL

SELECT category, SUM(value * quantity) AS total,

FROM orders

WHERE category IN ("1", "2" "3","4") AND value > 100

GROUP BY category

ORDER BY category ASC, SUM(value * quantity) DESC

MongoDB

database.order.aggregate([

 { "$match": {

 "$and": [

 {"category": {

 "$in": [

 "1",

 "2"]}},

 { "value": {

 "$gt": 0 }}]}},

 { "$group": {

 "_id": {

 "symbol": "$category" },

 "sum(value * quantity)": {

 "$sum": {

 "$multiply": [

 "$value",

 "$quantity"]}}}},

 { "$project": {

 "_id": 0,

 "sum(value * quantity)": "$sum(value * quantity)",

 "symbol": "$_id.symbol"}}

 { "$sort": {

 "category": 1,

 "sum(value * quantity)": -1 }}]})

16

From our point of view this is the best advantage of using Couchbase in front of MongoDB, the

learning curve of Couchbase is very soft in comparison with MongoDB learning curve. You can

start to do queries without learning anything since it is very similar to SQL. Moreover, with

Couchbase you can some SQL thing that you cannot do in MongoDB, like JOINs.

Overall, with Couchbase you are going to avoid scale problems, you do not need to be always

connected to the server, you are not going to lose data and the most important thing, you can

use N1QL.

17

f) How install Couchbase

Installing Couchbase is very simple and you do not need to install anything more since

Couchbase has integrated their own management console. So, you only must follow the next

steps.

1. Download the latest version of Couchbase from

https://www.couchbase.com/downloads. We have installed Couchbase Server

6.0.0 Community for Windows.

2. Execute the installer (accept all the terms).

https://www.couchbase.com/downloads

18

3. Open the management console in your browser, http://localhost:8091, and setup a

new cluster.

4. Create a new cluster and an admin user.

5. Accept terms without reading anything.

http://localhost:8091/

19

6. Then configure all the parameters and think carefully how much memory you want

to use!

7. Everything is installed!

20

3) Playing with Couchbase

a) Couchbase console

Now we are going to learn to use Couchbase with its console. When you access and log to the

console (http://localhost:8091) you are in the dash board (it is the last picture of the previous

page), here you can see the general information of the database like the total quota that

occupied in memory or in the disk. In the left, there is a control panel.

After dashboard, the second option is “Servers”, here you can create new server and to see a lot

of different statistics. Moreover, if you want to replicate the server, you can do it here as well.

 Then, in Buckets you can manage all your different bucket in your database, you can add a new

one and delete or edit your current buckets.

Other important tab is log, where you can see all the different actions that happen in the

database.

http://localhost:8091/

21

In Document you are going to find all the different document in your buckets. So, you must

select a specific bucket and retrieve all their documents. You have different option here since

you can limit the number of documents that you want to show per page, the offset is the number

of the first page that you want to skip and the you can filter by document ID that it is fast or

filter by the typical SQL where. Moreover, you can add new documents and edit in a very simple

way all the documents without using any complex query.

However, you can execute queries as well in Query tab, here you are going to write the query

with N1QL, if you do not know N1QL you must read the part d of the chapter 2 of this report or

if you want to know more complex things you can access to https://query-

tutorial.couchbase.com/tutorial/#1. The console is going to show you the query result as a JSON

file, but you can change this view.

https://query-tutorial.couchbase.com/tutorial/#1
https://query-tutorial.couchbase.com/tutorial/#1

22

The console is going to show you the query result as a JSON file, but you can change this view.

You can show the information in tables or in a tree as well.

23

b) Working with Couchbase and Nodejs

a. Connection to Couchbase
You can use Couchbase with a lot of different technologies like Java or Nodejs and the

connection is always very simple to do. In this repost we are going to suppose that you have

knowledge of JavaScript. We are going to explain how connect Nodejs with Couchbase, if you

need to know how connect with other technology, you can find all the information in the official

web site of Couchbase. If you want to connect to Couchbase you must connect to the cluster

and authenticate yourself.

var couchbaseConnection = require('couchbase');

var cluster = new couchbaseConnection.Cluster('couchbase://10.0.0.1');

cluster.authenticate('admin', 'admin');

After that, you have to connect to the bucket that have your documents using the function

openBucket of the bucket.

var beersBucket = cluster.openBucket('beers-sample', function(err) {

 if (err) {

 console.error('Got error: %j', err);

 }

 });

If you want to disconnect to bucket you have to use only the function disconnect.

beersBucket.disconnect();

24

b. Crud

For inserting a new document in the bucket, you only must use insert function of the bucket and

write the name of the document and then you have to write in JSON the document.

 beersBucket.insert('kaiser', {'avg': '7.4'}, function(err, result) {

 if (!err) {

 console.log("Stored");

 } else {

 console.error("Error: %j", err);

 }

});

You can use the function “get()” of bucket to get the document using its primary key. If you want

to delete the document you are going to use Bucket.remove() function with the primary key of

the document.

 beersBucket.get('key-of-the-documment', function(err, result) {

 if (err) {

 console.log('Error: %j', err);

 } else {

 console.log(result.value);

 }

});

In Couchbase you can use N1QL language, that we have explained it before, you can create the

queries in a simple way:

var N1qlQuery = couchbase.N1qlQuery;

 query = N1qlQuery.fromString('SELECT * FROM beers-sample');

 beersBucket.query(query, function(err, rows, meta) {

 for (row in rows) {

 console.log(row);

 }

 });

The result of the query is inside the variable rows, and inside the function you can use this row,

in the previous example, we are showing all the document of the beer-sample bucket.

25

c) Executing Queries

In a previous chapter we have shown the syntax of N1QL, now we are going to execute different

queries and analyse the results. Couchbase gives us 3 different set of data which we can use to

learn N1QL and to analyse the performance of Couchbase. Beer-sample is a data set of 7.303

items, gamesim-sample is a data set of 586 items and travel-sample is a data set of 31.591 items.

So first of all, we are going to execute some queries of beers-sample and analyse it and the we

are going to execute some queries for the other data set in order to compare the performance

with different number of items. The beer-sample only have two different type of items, the

beers and the breweries.

We are going to start with a simple query, that have to find the brewery named “Aass Brewery”.

SELECT address, city, country

FROM `beer-sample`

WHERE type="brewery" and name = 'Aass Brewery';

This query has spent 204.54 milliseconds and the result is:

[

 {

 "address": [

 "Ole Steensgt. 10 Postboks 1530"

],

 "city": "Drammen",

 "country": "Norway"

 }

]

The next query we are going to filter with a range condition and with a string condition.

26

SELECT name, address, city, country

FROM `beer-sample`

WHERE type="brewery"

 AND geo.lat > 59.0

 AND name LIKE '%Brew%'

ORDER BY name;

It has found 8 items and it has spent 204.51 milliseconds, we are going to show only the first result.

{

 "address": [

 "Ole Steensgt. 10 Postboks 1530"

],

 "city": "Drammen",

 "country": "Norway",

 "name": "Aass Brewery"

 },

In the next query we are going to do a join between beers document with their breweries. It is

very simple since beers documents keep the id of the brewery document, so you only have to

do the join in brewery_id. You do not need to specify what type of document is it because only

the beer documents have the attribute brewery_id.

SELECT bw.name AS brewer, br.name AS beer

FROM `beer-sample` br join `beer-sample` bw

 on keys br.brewery_id

ORDER BY bw.name, br.name

LIMIT 3;

The execution time is 240 milliseconds.

 {

 "beer": "(512) ALT",

 "brewer": "(512) Brewing Company"

 },

 {

 "beer": "(512) Bruin",

 "brewer": "(512) Brewing Company"

 },

 {

 "beer": "(512) IPA",

 "brewer": "(512) Brewing Company"

 }

]

27

Now we are going to use a subquery, we want to know the number of different beers that are

made in whatever City of Belgium. So, we are going to select all the name of breweries in

Belgium and then filter by these names.

SELECT count(DISTINCT br.name) AS numberOfBeers FROM `beer-sample` br

INNER JOIN `beer-sample` bw ON KEYS br.brewery_id

WHERE bw.name WITHIN

 (SELECT name FROM `beer-sample`

 WHERE type = "brewery" AND

 country="Belgium");

This is not the best way to do it, since is faster filtering in the whereby “brewery.country =

Belgium”, but we want to analyse here the execution time with a subquery.

The execution time is 1.31 seconds.

[

 {

 "NumberOfBeers": 321

 }

]

Now we are going to insert a new document in the database. We are going to introduce a new

Spanish beer, “Alhambra verde” that is made by cervezas_alhambra.

INSERT INTO `beer-sample` (KEY, VALUE)

 VALUES

 (

 "Cerveza_alhambra-verde",

 {"name": "Victoria", "abv": 4.0, "ibu": 0.0, "srm": 0.0, "upc": 0,

 "type": "beer", "brewery_id": "cervezas_alhambra",

 "updated": "2010-07-22 20:00:20", "description": "Delicious Spanish

beer",

 "style": "Light Beer", "category": "Spanish Pilsner"}

)

RETURNING META().id as docid, *;

Execution time is 125 milliseconds.

[

 {

 "beer-sample": {

 "abv": 4,

 "brewery_id": "cervezas_alhambra",

 "category": "Spanish Pilsner",

 "description": "Delicious Spanish beer",

 "ibu": 0,

 "name": "Victoria",

 "srm": 0,

28

 "style": "Light Beer",

 "type": "beer",

 "upc": 0,

 "updated": "2010-07-22 20:00:20"

 },

 "docid": "Cerveza_alhambra-verde"

 }

]

Update a document is very easy, it is the same that in SQL. The execution time is 768

milliseconds.

UPDATE `beer-sample`

SET country = "Spain"

WHERE website="http://www.3fonteinen.be/index.htm";

Delete is like update, it is like SQL. The execution time is 690 milliseconds.

DELETE

FROM `beer-sample`

WHERE website="http://www.3fonteinen.be/index.htm";

29

d) Performance of Couchbase

Now, we are going to analyse how is the performance of Couchbase with data set of different

size. We have “beer-sample” data set with 7.303 items, “gamesim-sample” data set with 586

items and “travel-sample” data set with 31.591 items.

All data set are different, but we are going to is similar queries for all of them, the query is going

to select 3 values of each item and then filter.

“Gamesim-sample”

Select name, itemProbability, experienceWhenKilled

from `gamesim-sample`

where jsonType="monster" and itemProbability> 0.5

Number of items: 586.

Execution time: 85 milliseconds.

“Beer-sample”

Select name, category, brewery_id

from `beer-sample`

where type="beer" and abv>4.9

Number of items: 7303.

Execution time: 679 milliseconds.

“Travel-sample”

Select airline, type, distance

from `travel-sample`

where type="route" and distance > 2881

Number of items: 31591.

Execution time: 1920 milliseconds.

30

In the following graph we can see the result. There is a linear correlation between the size and

the execution time, so if you increment the size of the data set, the execution time is going to

increment linearly.

Picture 7. Time/Size performance of Couchbase

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000 25000 30000 35000

Time(ms)/Size

31

4) Bibliography

• Couchbase Server. Key-value or document database? Couchbase 2.0 bridges the
gap. Consulted on 5/11/2018, in https://blog.couchbase.com/key-value-or-

document-database-couchbase-2-dot-0-bridges-gap/.

• DB-ENGINES. Document Stores. Consulted on 5/11/2018, in https://db-

engines.com/en/article/Document+Stores.

• Basho. Document Databases Explained. Consulted on 25/11/2018, in

http://basho.com/resources/document-databases/.

• IAN. What is a Document Store Database?. Consulted on 23/11/2018, in

https://database.guide/what-is-a-document-store-database/.

• MongoDB. Document Databases. Consulted on 25/11/2018, in

https://www.mongodb.com/document-databases.

• Couchbase Server. N1QL Language Reference. Consulted on 5/11/2018, in

https://docs.couchbase.com/server/5.0/n1ql/n1ql-language-reference/index.html.

• Couchbase Server. Distributed Data Management. Consulted on 2/11/2018, in

https://developer.couchbase.com/documentation/server/5.0/concepts/distrib
uted-data-management.html.

• Couchbase Server. Couchbase. Consulted on 2/11/2018, in

https://www.couchbase.com/.

• Couchbase Server. Why Couchbase?. Consulted on 5/11/2018, in

https://docs.couchbase.com/server/6.0/introduction/intro.html.

• Couchbase Server. Do a Quick Install. Consulted on 5/11/2018, in

https://docs.couchbase.com/server/6.0/getting-started/do-a-quick-install.html.

• Couchbase Server. Run Your First N1QL Query. Consulted on 5/11/2018, in

https://docs.couchbase.com/server/5.0/getting-started/try-a-query.html.

https://blog.couchbase.com/key-value-or-document-database-couchbase-2-dot-0-bridges-gap/
https://blog.couchbase.com/key-value-or-document-database-couchbase-2-dot-0-bridges-gap/
https://db-engines.com/en/article/Document+Stores
https://db-engines.com/en/article/Document+Stores
http://basho.com/resources/document-databases/
https://database.guide/what-is-a-document-store-database/
https://www.mongodb.com/document-databases
https://docs.couchbase.com/server/5.0/n1ql/n1ql-language-reference/index.html
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html
https://www.couchbase.com/
https://docs.couchbase.com/server/6.0/introduction/intro.html
https://docs.couchbase.com/server/6.0/getting-started/do-a-quick-install.html
https://docs.couchbase.com/server/5.0/getting-started/try-a-query.html

