
Northwind Database

Extraction Transformation Load

Products

ProductID

ProductName

SupplierID

CategoryID

QuantityPerUnit

UnitPrice

UnitsInStock

UnitsOnOrder

ReorderLevel

Discontinued

Orders

OrderID

CustomerID

EmployeeID

OrderDate

RequiredDate

ShippedDate

ShipVia

Freight

ShipName

ShipAddress

ShipCity

ShipRegion

ShipPostalCode

ShipCountry

Customers

CustomerID

CompanyName

ContactName

ContactTitle

Address

City

Region

PostalCode

Country

Phone

Fax

Shippers

ShipperID

CompanyName

Phone

Employees

EmployeeID

FirstName

LastName

Title

TitleOfCourtesy

BirthDate

HireDate

Address

City

Region

PostalCode

Country

HomePhone

Extension

Photo

Notes

ReportsTo

PhotoPath

Employee
Territories

EmployeeID

TerritoryID

Regions

RegionID

RegionDescription

Territories

TerritoryID

TerritoryDescription

RegionID

OrderID

ProductID

UnitPrice

Quantity

Discount

Order Details

Suppliers

SupplierID

CompanyName

ContactName

ContactTitle

Address

City

Region

PostalCode

Country

Phone

Fax

Homepage

Categories

CategoryID

CategoryName

Description

Picture

Customer
CustomerDemo

CustomerID

CustomerTypeID

Customer
Demographics

CustomerTypeID

CustomerDesc

Figure 1: Schema of the Northwind operational database

Figures 1 and 2 represent, respectively, the schema of an operational database and
the schema of its associated data warehouse. Implement in Integration Services 2005 the
ETL process that allows to load the data warehouse.

For the dimension DimTime, create an Excel file that will contain the data. The time
interval of this dimension must cover the dates contained in the table Orders of the
operational database.

The data for the hierarchy DimState, DimCountry, DimArea is input from an XML
file called Territories.xml that begins as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<Areas>

<Area>

<AreaName>Europe</AreaName>

<Country>

<CountryName>Austria</CountryName>

<CountryCode>AT</CountryCode>

<CountryCapital>Vienna</CountryCapital>

1



DimProduct

ProductKey

ProductName

CategoryKey

QuantityPerUnit

UnitPrice

Discontinued

FactSales

CustomerKey

EmployeeKey

OrderDateKey

RequiredDateKey

ShippedDateKey

ShipperKey

ProductKey

SupplierKey

OrderNo

OrderLineNo

UnitPrice

Quantity

Discount

SalesAmount

Freight

DimTime

TimeKey

DateAlternateKey

DayNumberOfWeek

DayNameOfWeek

DayNumberOfMonth

DayNumberOfYear

WeekNumberOfYear

MonthNumber

MonthName

Quarter

Semester

Year

DimSupplier

SupplierKey

GeographyKey

CompanyName

Address

Phone

Fax

Homepage

DimCategory

CategoryKey

CategoryName

Description

DimCustomer

CustomerKey

CustomerAlternateKey

CompanyName

Address

Phone

Fax

GeographyKey

DimShipper

ShipperKey

CompanyName

Phone

DimEmployee

EmployeeKey

FirstName

LastName

Title

TitleOfCourtesy

BirthDate

HireDate

Address

City

Region

PostalCode

Country

HomePhone

Extension

SupervisorKey

FactEmployee
Territory

EmployeeKey

TerritoryKey

DimArea

AreaKey

AreaName

DimTerritory

TerritoryKey

TerritoryAlternateKey

TerritoryDescription

StateKey

AK: (OrderNo,

OrderLineNo)

AK:

TerritoryAlternateKey

AK:

CustomerAlternateKey

AK: DateAlternateKey

DimGeography

GeographyKey

City

StateKey

PostalCode

DimState

StateKey

StateName

EnglishStateName

StateType

StateCode

StateCapital

RegionName

RegionCode

CountryKey

DimCountry

CountryKey

CountryName

CountryCode

CountryCapital

Population

Subdivision

Figure 2: Schema of the Northwind data warehouse

<Population>8316487</Population>

<Subdivision>Austria is divided into nine Bundesländer,

or simply Länder (states; sing. Land).</Subdivision>

<State type="state">

<StateName>Burgenland</StateName>

<StateCode>BU</StateCode>

<StateCapital>Eisenstadt</StateCapital>

</State>

<State type="state">

<StateName>Kärnten</StateName>

<StateCode>KA</StateCode>

<EnglishStateName>Carinthia</EnglishStateName>

<StateCapital>Klagenfurt</StateCapital>

</State>

...

The schema of the XML file is shown in Figure 3. Notice that type is an attribute of

2



Areas Area
1..n

1..1
AreaName

Country
1..n

1..1
CountryName

1..1
CountryCode

1..1
CountryCapital

1..1
Population

1..1
Subdivision

1..n
State

1..1
type

1..1
StateName

1..1
StateCode

0..1
EnglishStateName

1..1
StateCapital

0..1
RegionName

0..1
RegionCode

Figure 3: XML Schema of the file Territories.xml

State and that EnglishStateName, RegionName, and RegionCode are optional.
The DimGeography dimension is obtained from the City, Region, PostalCode, and

Country from both Customers and Suppliers. Notice that the attribute Region contains
in fact a state name (e.g., Québec) or a state code (e.g., CA); similarly, the attribute
Country contains a country name (e.g., Canada) or a country code (e.g., USA). To identify
to which state corresponds a city the file cities.txt is used. The file contains three
fields separated by tabs and begins as follows:

Atlanta Ý Georgia Ý USA

Austin Ý Texas Ý USA

Beachwood Ý Ohio Ý USA

Bedford Ý Indiana Ý USA

Bellevue Ý Kentucky Ý USA

...

This file is also used to identify to which state correspond the attribute TerritoryDescription
in DimTerritory, which in fact contains city names from the United States.

For the FactSales table, the following transformations are needed.

• The OrderLineNo must be generated in ascending order of ProductID.
• The SalesAmount must be calculated taking into account the unit price, the dis-
count, and the quantity.

• The Freight, which in the operational database is related to the whole order, must
be equally distributed among the lines of the order.

3



Integration Services 2005
Solution

Figure 4: Overall view of the ETL process

Figure 4 shows the overall ETL process. It is composed of ten data flow tasks and two
sequence container tasks connected by precedence constraints.

Figure 5: Loading of the DimCategory dimension

Most data flow tasks are simple, an example for loading the DimCategory is given
in Figure 5. These data flow tasks are composed of an OLE DB Source task that reads
the entire table from the operational database and an SQL Server Destination task that
receives the output from the previous task.

In these simple data flow tasks it is necessary to determine whether the operational
database already contains a key that can be reused in the data warehouse. This is the case
for all dimensions that do not have an alternate key. Depending on whether the key can
be reused in the data warehouse, the mapping of colums in the SQL Server Destination
tasks should be done as shown in Figure 6 (a) or (b).

4



(a)

(b)

Figure 6: Mappings of the source and destination columns, depending on whether the key
in the operational database is reused in the data warehouse

The data flow task that loads the DimTime dimension is shown in Figure 7 (a). After
loading the source Excel file, a data conversion transformation is needed to convert the
data types from the Excel file into the data types of the database. Figure 7 (b) shows the
data flow task that loads the hierarchy composed of DimArea, DimCountry and DimState.
A Sequence Container is used for the three data flows that load the tables of the hierarchy.
The data composed for loading the table DimArea is given in Figure 7 (c). Conversion

5



(a) (b) (c)

Figure 7: (a) Loading of the DimTime dimension; (b) Loading of the hierarchy composed
of DimArea, DimCountry, and DimState; (c) Loading of the DimArea dimension

(a)

TempCities

City

State

Country

TempGeography
Full

City

State

PostalCode

Country

StateKey

CountryKey

TempGeography

City

State

PostalCode

Country

(b) (c)

Figure 8: (a) Loading of the temporary tables needed for the DimGeography dimension;
(b) Structure of the temporary tables; (c) Loading of the TempCities table

6



transformations are needed to convert the data types from the XML file into the data
types of the database.

Figure 8 (a) shows the Sequence Container used for loading the temporary tables
needed for the DimGeography dimension. Figure 8 (b) shows the structure of the tem-
porary tables. The first task in the sequence executes an SQL script that creates the
temporary tables. Figure 8 (c) shows the data flow used for loading the TempCities table
from the text file cities.txt. A data conversion transformation is needed to convert the
default types obtained from the text file into the database types.

Figure 9: Loading of the TempGeography table

Figure 9 shows the data flow for loading of the TempGeography table. The source data
is obtained from the following SQL query.

select distinct City, Region as State, PostalCode, Country

from Suppliers

union

select distinct City, Region as State, PostalCode, Country

from Customers

Since some of the rows obtained have a null valued in the State attribute a lookup is
needed to complete them using the data from the TempCities table.

Figure 10 shows the data flow for loading the TempGeographyFull table. This data
flow completes the the TempGeography table with the corresponding StateKey and CountyKey.
For this, four look up tasks are needed as follows.

1. The first look up process records from TempGeographyFull where State appears in
DimState.StateName. An example of such a state is Loire-Atlantique.

2. The second look up process records from TempGeographyFull where State appears
in DimState.EnglishStateName. An example of such a state is Lower Saxony

whose German name is Niedersachsen.
3. The third look up process records from TempGeographyFull where State and

Country correspond, respectively, to StateCode and CountryCode of the lookup
table defined by the following query

7



Figure 10: Loading of the TempGeographyFull table

select S.*, CountryName, CountryCode

from DimState S join DimCountry C

on S.CountryKey = C.CountryKey

An example of State and Country values captured in this look up are AK and USA

that correspond to Arkansas and United States of America.
4. Finally, the fourth look up process records from TempGeographyFull where State

and Country correspond, respectively, to StateCode and CountryName of the lookup
table defined above. An example of State and Country values captured in this look
up are BC and Canada that correspond to British Columbia and Canada.

As result, the following two records are rejected

Singapore,NULL,0512,Singapore

Cork,Co. Cork,NULL,Ireland

that correspond to supplier ’Leka Trading’ and customer ’Hungry Owl All-Night Grocers’,
respectively.

The data flow task that loads the DimCustomer dimension is shown in Figure 11. It
includes a lookup transformation that starting from the following SQL query

select T.City, T.PostalCode, T.Country, GeographyKey

from TempGeographyFull T join DimGeography G

on T.City=G.City and T.StateKey=G.StateKey

and T.PostalCode=G.PostalCode

transforms the City, PostalCode, and Country of a customer into its corresponding
GeographyKey of the DimGeography. A similar data flow task is used for loading the
DimSupplier dimension.

8



Figure 11: Loading of the DimCustomer dimension

Figure 12: Loading of the FactEmployeeTerritory fact table

The data flow task that loads the FactEmployeeTerritory fact table is shown in
Figure 12. It includes a Lookup transformation that transforms the TerritoryID of the
operational database into the TerritoryKey of the DimTerritory.

Finally, the data flow task that loads the FactSales fact table is shown in Figure
13. The first OLE DB Source task includes an SQL query that combines data from the
operational database and the data warehouse. This SQL query is given next.

select

(select [CustomerKey] from [dbo].[DimCustomer] DC

where DC.[CustomerAlternateKey] = O.[CustomerID]) as [CustomerKey],

EmployeeID as EmployeeKey,

(select [TimeKey] from [dbo].[DimTime] DT

where DT.[DateAlternateKey] = O.[OrderDate]) as [OrderDateKey],

(select [TimeKey] from [dbo].[DimTime] DT

where DT.[DateAlternateKey] = O.[RequiredDate]) as [RequiredDateKey],

(select [TimeKey] from [dbo].[DimTime] DT

where DT.[DateAlternateKey] = O.[ShippedDate]) as [ShippedDateKey],

ShipVia as ShipperKey, P.ProductID as ProductKey,

(select [SupplierKey] from [dbo].[DimSupplier] DS

9



Figure 13: Loading of the FactSales fact table

where DS.[SupplierKey] = P.[SupplierID]) as [SupplierKey],

O.OrderID as OrderNo,

convert(int, ROW_NUMBER() over

(partition by D.OrderID order by D.ProductID)) as OrderLineNo,

D.UnitPrice, Quantity, Discount,

convert(money, D.UnitPrice * (1-Discount) * Quantity) as SalesAmount,

convert(money, O.Freight/Count(*) over (partition by D.OrderID)) as Freight

from Northwind.dbo.Orders O, Northwind.dbo.[Order Details] D,

Northwind.dbo.Products P

where O.OrderID=D.OrderID and D.ProductID=P.ProductID

order by supplierKey

A conditional split transformation task is then used to select the records obtained from
the previous query that have a null value in the columns CustomerKey, SupplierKey,
or ShippedDateKey and store them in a flat file. These are 206 records that corre-
spond to order details from the rejected supplier ’Leka Trading’, the rejected customer
’Hungry Owl All-Night Grocers’ or that have a null value in ShippedDate. The cor-
rect records are inserted in the data warehouse.

10


