Introduction to Graph Databases

Fundamentals & Implementations

Alejandro Vaisman
avaisman@itba.edu.ar

10/10/22 Introducton to Graph Databases

Agenda

* 10.10.22. Introduction — Graph data models

* 13.10.22. Graph DB internals. Introduction to Neo4j

e 17.10.22. Querying Neo4j databases

e 20.10.22. Assignment 1. Graphs in relational databases
e 24.10.22. Assignment 2. Basic Cypher queries

e 27.10.22. Assignment 3. Advanced Cypher queries

10/10/22 Ciencia de Datos

Graph database models

* Types of relationships supported by graph data models

Attributes

» Properties,
» Mono- or mulii-
valued.

Standard
abstractions

« Part-of,
composed-by,
n-ary
associations.

10/10/22

Neighborhood
Entities relations
g ~
« Groups of real- « Structures to
world objects. represent
neighborhoods
\ J of an entity.
Derivation and Nested
inheritance relations
» Subclasses and * Recursively
superclasses, specified
» Relations of relations.

instantiations.

Introducton to Graph Databases

The abstract data type Graph (w/properties)

G=(V, E, 2 L)is a graph:

= Vs afinite set of nodes or vertices,
e.g. V={Term, forOffice, Organization, ..]

» E is a set of edges representing bin&ﬂ“‘ ['mm} e }w'| b

I i i £ -~ LI
relationship between elements in V, - \\ |
e.q. E={(forOffice, Term) - e oy |
(forOffice,Organization),(Office, Organization). ..} | T
» Yisa set of labels, ST LN

e.g., £ ={domain, range, sc, type, ...}

= Lisafunction:VxV= 2.

e.q., L={((forOffice, Term),domain), ((forOffice, Organization),range)... }

10/10/22 Introducton to Graph Databases

The abstract data type Multigraph

G=(V, E, 2 L) is a multi-graph:

= Vs a finite set of nodes or vertices,

e.g. V={Term, forOffice, Organization,..} — f"“"’”"‘"'“"‘"‘w.
R R . | "'"-H ﬂdrﬂlm r.:nnt
» Eis a set of edges representing bin e | s

relationship between elements inV, | ﬂ
e.g. E={(forOffice, Term) I".I type o | | Country

(forOffice,Organization),(Office, Organization). ..} |

1 foroffice |

= 2 isasetof labels, lL: s

ferOrganizabion

e.g., £ =|{domain, range, sc, type, ...}

* Lisa functi&@ PowerSet(Z),
e.g., L={((forOffice, Term),[domain}), ((forOffice, Organization),{range}).
((_id0,AZ) {forOffice, forOrganization})... }

10/10/22 Introducton to Graph Databases

Basic operations

10/10/22

Given a graph G, the following are operations over G:

AddNMNode(G x): adds node x to the graph G.
DeleteMNode(G,x): deletes the node x from graph G.
Adjacent(G,x,y): tests if there is an edge from x to y.
Neighbors(G,x): nodes y s.t. there i®" ®%€ e from x to y.
AdjacentEdges(G,x,y): set of labels of edges from x to y.
Add(G,x.y,|): adds an edge between x and y with label I.
Delete(G,x,y,l): deletes an edge between x and y with label |.
Reach(G,x,y): tests if there a path from x to y.

Fath(G,x,y): a (shortest) path from x to y.

2-hop(G,x): set of nodes y s.t. there is a path of length 2 from x to y, or from
y 10 X.

n-hop(G,x): set of nodes y s.t. there is a path of length n from x to vy, or from
y 10 X

Introducton to Graph Databases

Graph generalization: (multi)Hypergraphs

= (X, E), where Xis a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E CSP(X), whereP (X)isthe power set of X.

Let X = (v1,...,vn), E =(el,...,em).

& Every hypergraph has an m x n incidence
: Q matrix A =
Undirected

— (a,-,-) where

{ 1 ifwy; € €;
aj; =
Y 0 otherwise.
e1 ﬂﬂﬂﬂﬂﬂﬂ

.V-;

e2 O 0 O
Xz{vlav23v3av4av5’v6av7} e3 0 0 1 0 1 1 0
E = {61 y€2,€3, 64} — {{’Ul, v2,v3},{V2?V3}) {V?)? V57V6}7 {'U.i}} e4 0 0 0 1 0 0 0

10/10/22 Introducton to Graph Databases Vi v2 v3 v4 Vv5 v6 Vv7 7

Graph generalization: (multi)Hypergraphs

= (X, E), where Xis a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E is a subbag of P (X) x P(X), where P (X) is the power set of X.

Graphically, S,T € X; A hyperedge is denoted S->T

In the example:

X=1{1,2,3,4}
E={{1}->{2,4}, {2} -> {3}, 3} ->{2,3}}

10/10/22 Introducton to Graph Databases

Implementation

' Adjacency
List

/

| For each node a list
of neighbors.

If the graph i
directed,

| | adjacency list of i
contains only the
outgoing nodes of
I

Cheaper for
obtaining the
neighbors of a
node.

N\

-

Not suitable for
checking if there
— s an edge
between two
nodes.

10/10/22 Introducton to Graph Databases

Implementation: adjacency list

Adjacency L2 L3 Vi1
List

'FO(each node a list | V2

[ofroighborn. | L1 3 (V1.{L2}) | (V3,{L3})

7 N V3

If the graph i
directed,
dj list of i
| | adjacency list of i Va

contains only the ——ﬁ (Vi.{L1})
putgoing nodes of
I

Y,

s Y

Cheaper for
obtaining the
neighbors of a
node.

. >y

Not suitable for
checking if there

— s an edge
between two
nodes.

J
| \ s

10/10/22 Introducton to Graph Databases

Implementation

Adjacency Incldence
List List
_' For each node a list Vertices and edges
of neighbors. — are stored as records
) s . of objects.
gfe'gtgﬁfph ® || Eac;h vertex stores
| | adjacency list of i incident edges.
contains only the)
putgoing nodes of .
- 1 | Each edge stores
incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
Not suitable for
checking if there
— 13 an edge
between two

nedes.

10/10/22 Introducton to Graph Databases

Implementatlon incidence list

| Incldence |
List

— are stored as records

of objects.

| Each vertex stores
incident edges.

| Each edge stores
incident nodes.

”Vertioes and edges \

10/10/22

Properties:

Storage: O(|V|+|E|+|L|)
Adjacent(G,x,y): O(|E|)
Neighbors(G,x): O(|E|)

Vi ~—t-N\destination,_L2) | (detination,L 1)
Vv
£ (source,L2) | (source,l3)
V3
_@natlon L3) >
v | (SOUurce,L1)
- » (V4,V1) .
- » (V2,V1) i
|
= > (V2,V3) b

Introducton to Graph Databases

AdjacentEdges(G,x,y): O(|E|)
Add(G,x,y,l): O(|E|)
Delete(G,x,y,1): O(|E|)

Implementation

 Adjacency

Matrix

J

Adjacency Incldence
List List
_' For each node a list | Vertices and edges
of neighbors. — are stored as records
) . of objects.
P .
g.ﬁ?&g&wh ° | Each vertex stores
| | adjacency list of i incident edges.
containg only the -
putgoing nodes of .
- | Each edge stores
- - incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
'Not suitable for |
checking if there
— ig an edge
between two

e8.

\
I\

10/10/22

Bidimensional
graph
representation.

~ J

| Rows represent

source vertioes.

Columng represent
destination vertices.

Each non-null

entry represents
that there is an

— edge from the

source node to
the destination
node.

\ ¥
. /

Introducton wo arapn valavases

"~

13

" Adjacency
- Matrix

Bidimensional

graph .

representation.
J

|| Rows represent
source vertices.

Columns represent

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

10/10/22

destination vertices.

Vi

V2

V3

V4

V1 V2 V3 V4
(L2} (L3}
(L1}

Introducton to Graph Databases

mplementation: adjacency matrix

L1

14

Implementation: adjacency matrix

e Complexity

* Storage

Answer : |V| X |V|

* Isthere an edge from X to Z?
Answer : O(1)

* Compute the out-degree of Z
Answer: O(|V])

* Compute the in-degree of Z
Answer: O(|V])

* Add an edge between two nodes
Answer: O(1)

* Compute all paths of length 4 between any pair of nodes (4-hop)
Answer: O(|V]*).

10/10/22 Introducton to Graph Databases

Implementation

' Adjacency
List

/

_'FOf each node a list |
of neighbors.

p
If the graph i
directed,

| | adjacency list of i

contains only the

outgoing nodes of

I

Cheaper for
obtaining the
neighbors of a
node.

Not suitable for
checking if there
— ig an edge
between two
es.

\
I\

10/10/22

{ Incidence

List

/

Vertices and edges
— are stored as records

of objects.

Each vertex stores

incident edges.

~

| Each edge stores
incident nodes.

. w_— »
Matrix

J

Bidimensional
graph
representation.

\ J

| Rows represent
source vertices.

Columns represent
destination vertices.

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

\ J
N .y

Introducton wo arapn valavases

-

Bidimensional
- graph _
representation.

\
.

'Rows
— represent
vertices.

l/V \

Columns
— represent
edges

\ ¥
\ o

A non-null entry reprasents

- that the source vertex is
incident to the edge.

\

16

L

Incidence
Matrix

' 4
f

Bidimensional

- graph

representation.

'Rows
— represent
vertices. |

7/7 \

Columns
— represent
edges

\ 7

V1

V2

V3

V4

7

\

A non-null entry represents
— that the source vertex is
incident to the edge.

10/10/22

L1 L2 L3
destination | destination
source source
destination
source

Introducton to Graph Databases

mplementation: incidence matrix

L1

17

mplementation: incidence matrix

Incidence L1 L2 L3
L v{ | destination | destination ° L2 @ L3 @

Bidimensional V2 source source

i tati
representation.
_ ' V3 destination B
'Rows "
vertices.
— Properties:

— ropresent
edges = Storage: O(|V|x|E|)
\ = Adjacent(G,x,y): O(|E|)
A non-null entry represents 1 -

L that the souroe vertex i = Neighbors(G,x): O(|V|x|E|)
[neidenttothe edge. = AdjacentEdges(G,x,y): O(|E|)

= Add(G,x,y.l): O(|V])
= Delete(G,x,y,1): O(|V])

10/10/22 Introducton to Graph Databases

Implementation

' Adjacency
List

FOt each node a I:st
of neighbors.

p
If the graph i
directed,
| adjacency list of i
| contains only the
outgoing nodes of
I

Cheaper for
obtaining the
neighbors of a
node.

Not suitable for
checking if there

— ig an edge
between two
nodes.

\ J
| L. >y

10/10/22

|

Incldence |
List

/

: Adjacency “

Matrix

Vertices and edges
— are stored as records

of objects.

| Each vertex stores
incident edges.

~

| Each edge stores
mo«dent nodes.

Bidimensional
graph
representation.

\ J

Rows represent
souroe vertices.

Columne reprecent

destination vertices.

Each non-null

entry represents
that there is an

— edge from the
source node to
the destination
node.

|\~

Introducton wo arapn valavases

-

Ineldenoe cm
Matrix Matrix
Bidimensional Differential

- graph | encoding
representation. ' between two
. - conseoutive
- nodes
'Rows “

— represent
vertices.
s \
Columns

— represent
edges

\ ¥
\ o

A non-null entry reprasents

- that the source vertex is
incident to the edge.

\

19

10/10/22

Implementations

Introducton to Graph Databases

20

Graph databases — Representative approaches

Neo4j Reference Card

*Sparksee

http://www_neodj.org

hitp:/fwww. sparsity-technologies.com/

10/10/22 Introducton to Graph Databases 21

Some graph databases

e Some graph db implement an API rather than a query language

10/10/22

Sparksee

Java library for
rmanagement of
— perzigtent and
temporary
graphs.

Implementation
relies on

|_| bitmaps and

geoondary
structures (B+-
tres)

‘ HyperGraphDB Neodj

-

L Implements the Metwork
hyper graph oriented model

data model — where relationa
' are firat-class
objecta.

Mative dizk-
|| based storage
manager for
grapha.

Framewaork for
raph trave

Introducton to Graph Databases

22

Neo4j (Robinson et al., 2013)

* Labelled attributed multigraph

 Nodes and edges can have properties (property graphs)
 No restrictions on the # of edges between nodes

* Loops allowed

* Different types of traversal strategies

* APIs for Java and Python

* Embeddable and server

* Full ACID transactions

10/10/22 Introducton to Graph Databases 23

Neo4j (Robinson et al., 2013)

* Native graph processing and storage
* Characterized by index-free adjacency:
 Node keeps direct reference to adjacent nodes
e Acts like a micro-index (or local index)

 Makes query time independent from graph size for many queries
e Joins are “precomputed” and stored as relationships
* |n non-native graph DBs, joins must be computed

10/10/22 Introducton to Graph Databases 24

Neo4j (Robinson et al., 2013)

* Native graph storage

e Storing graphs in files
 Loading graphs into main memory
* Caching graphs for fast querying

10/10/22 Introducton to Graph Databases

25

Neo4j - architecture

Robinson et al., 2013

Traverser API

Core AP

Cypher

Object Cache

File System Cache

Transaction Management

Recard Files

Transaction Log

Disks

10/10/22

Introducton to Graph Databases

26

File storage

inUse
nextRelld nextPropld
1 5 9
Relationship (33 bytes)
inUse firstPrevRelld secondNextRelld
firstNode secondNode relationshipType firstNextRelld secondPrevRelld nextPropld
1 5 9 13 17 21 25 29 33

 Graphs stored in store files

* Nodes (neostore.nodestore.db)
* Relationships (neostore.relationshipstore.db)
* Properties (neostore.propertystore.db)

10/10/22 Introducton to Graph Databases

File storage: nodes

inUse
nextRelld nextPropld

 Storedin node records
* Fixed length (9 bytes) to make search performant (find records with an offset from the node id)
* Finding a node is O(1)
First byte: in-use flag
* 4 bytes for the address of the first relationship
4 bytes for the first property

10/10/22 Introducton to Graph Databases 28

File storage: relationships

inUse firstPrevRelld secondNextRelld
firstNode secondNode relationshipType fistNextRelld secondPrevRelld nextPropld

1 5 9 13 17 21 25 29 33

e Stored in relationship records
 Fixed length (33 bytes)
First byte: in-use flag
 Organized as a double-linked list
 Each record contains the IDs of the two nodes in a relationship (start and end nodes)
A pointer to the relationship type
 For each node, there is a pointer to the previous and next relationship records
 E.g.: firstPrevRellD: previous relationship of the start node; firstNextRellD: next relationship of
the start node (the one after the current relationship)
« These form the relationship chain

10/10/22 Introducton to Graph Databases 29

File storage: properties

Stored in property records
* Fixed length
 Each record consists of 32 bytes divided in blocks of 8 bytes
* Include the ID of the next property in the property chain
* Property chains: single-linked list
Each property record holds:
* Property type
 Pointer to the property index file, holding the property name
 Avalue, or a pointer to a dynamic structure (string or array store) — for long strings or arrays

10/10/22 Introducton to Graph Databases 30

Properties

NN
p3 v6 NIL

File storage: example

Relationship P3
Types npl pl vl np2
:R1{p3:v6}
L1{p1:v1,p2:v2} L1{p1:v3,p4:v4} L1{p1:v3,pa:va} np2 p2 V2
ID1 R1 np7 pl v7 NIL
ID2 R2

D
L2{p8:v9}

I relationships
10| Fst | snd | RT | FPrev| FNext | SPrev | SNext| NP_
1 A B ID1 NIL r3 NIL r2 NIL

1 A npl . ri
o
In a DFS, start from r1, o1 = 5
. .. r

thenr2, r4, r3 (see table I S | B C ID1 NIL r4 NIL NIL rp3

“ . s 3 C . .. Nil
Relatlgnshlps ?.We have 31 A E ID1 (1 NIL NIL NIL NIL

all the information. 4 D . - Nil
4 1 B D ID2 r2 NIL NIL NIL NIL

5 E np7 . Nil

10/10/22 Introducton to Graph Databases 31

Caching

File system cache (writing)

 Cache divides each store into regions (pages)

e Stores a fixed number of pages per file

 Pages are replaced using Least Frequently Used pages

Object cache

Optimized for reading

 Stores object representations of nodes, relationships, and properties for fast path traversal

* Node objects: contain properties and references to relationships

 Relationship objects: contain only their properties

 This is opposite to what happens in disk storage, where most information is in the relationship
records

10/10/22 Introducton to Graph Databases 32

Object cache

:R1{p3:v6}
r2

C
L1{p1:v3,p4:v4}

B
‘L1{p1:v3,p4:v4}

A
‘L1{p1:v1,p2:v2}

10/10/22

Introducton to Graph Databases

D
e X in R R; R, D
e :L2{p8:v9}
TR TR |~ [®
=
= in R R R R
typeY
out R R.
e ‘Node Type ~ REL REL Stat End Type
n2 B IN: r1 rl A B R1
B OUT: r2 r2 B R1
é- ID | start | end | type B OUT: r4 (p3,6)
[—
-§ n3 C IN: r2 r3 A R1
& key key, key; key, rd B R2
N & & S
= — — p |
[[[[
33

Some graph databases

‘ Sparksee ‘ HyperGraphDB ‘ Neodj
sec Lo L Implements the Network
management of hyper graph ariented model

— perzigtent and data model — where relations
temporary ' are firot-class
graphs. objecta.
Implemeantation Mative disk-
relies on | based storage
bitmapz and manager for

~ | secondary grapha.
structures (B
tree]

|| Framewark for

graph traversal.

e Some graph db implement an API rather than a query language

10/10/22 Introducton to Graph Databases

Sparksee -
. :y Sofia Coppola
* Logical model P J
* Labeled B o, em
 alabel for each vertex and edge -
* Directed *
. fixed direction edges, from tail to head ™~ e
 Attributed
e variable # for each vertex)
 Multigraph
e possibly more than one edge between nodes

10/10/22

Embedded graph dbms

*

Diane Keaton

=
* =
Woody Allen ISAAC Manhattan

DIRECTS

Penélope Cruz

= CAS ‘
Vicky Cristina X
Barcelona

* tightly integrated with the application at code level

Introducton to Graph Databases

35

Sparksee

Nodes and edges have a sparksee-generated OID

Node, edge and global attributes

 Not restricted to an edge or node type (e.g., NAME can belong to all node objects)
* Global attributes belong to the graph

Attributes can have different indexes

e Basic attributes

* |ndexed attributes
 Unique attributes

* Neighborhood index

Persistent database in a single file
Can manage very large graphs

Sparksee
 Agraph G=(V,E,L,TH, AL,....... ,An) is defined as:

 LabelsL={(o,/)| 0 € (VuUE)Alestring}

* HeadsH={(e,h)| e€E A heV}

 TailsT={(e,t)| e€ E A teV}

* Attributes Ai={(o,c)| o € (V U E) A c € (int,string,...}

* The graph is split into multiple lists of pairs
 The first element in a pair is always an edge or a vertex

Sparksee - architecture

@ @ m =

[sparkseePhyton |(SparkseeJava | SparkseeNet | N/
—— , LN

*SWIG = Simplified Wrapper and Interface Generator. Open source tool used to connect programs/libraries written in C/C++ with other
languages.

10/10/22 Introducton to Graph Databases

38

Sparksee —internal representation

Asralighin

o -ﬂﬂl‘t (e]
- ey
et y L'“ k DAMA-UIPE. DATA MAKAGENERT

* Each vertex/edge is identified with an immutable oid.

e Links: bidirectional
e Value - > set of OIDs.

e Given an OID -> a value.
« Two maps: (a) from a value to a vertex or edge set; (b) from a vertex or edge to an oid.

* Maps are B-trees.

10/10/22 Introducton to Graph Databases 39

Sparksee —internal representation

Asralighin

e A Sparksee Graph is a combination of Bitmaps:

* Bitmap for each node or edge set (type).

* Each position in the bitmap corresponds to the oid.

* One link for each attribute.

* Two links for each type: Outgoing and in-going edges.
* Maps are B+trees

* A compressed UTF-8 storage for UNICODE string.

10/10/22 Introducton to Graph Databases

40

Sparksee — example

BABEL e[1]

ABEL BABEL e[2]
nic="‘en
>

nic=‘en’

Article [v1]
id=1

title = ‘Europa’
tic =‘ca’

Article [v3]
id=3

title = ‘Europa
tic =‘en’

Article [v2]
id=2

title = ‘Europa
tic = fr’

contains ¢[5]

Image [v5]
id=1
file="europe.png’

REF e[4]

tag="‘contin REF e[3]

contains e[6]
contains e[7] Image [v6]
id= 2
file="bcn.png’

id=4
title = ‘Barcelona
tic = ‘en’

10/10/22 Introducton to Graph Databases

41

Sparksee — example

BABEL e[1]

BABEL e[2]
nic=‘en’

Article [v1]
id=1

title = ‘Europa’
tic =‘ca’

Article [v3]
id=3

title = ‘Europa’
tic = ‘en’

Article [v2]
id=2

title = ‘Europa’
tic=fr’

contains e[5]

| Image [v5]
id=1
file="europe.png

REF e[4]

tag="‘contin REF e[3]

contains €[6]

cintains e[7] Imnge [v6]

id=2
file="bcn.png’

Value sets: group all pairs of the original set with the
same value, as a pair between the value and the set of
objects with that value

10/10/22

Aid

Atitle

Anlc

Afilena
me

Atag

Introducton to Graph Databases

v1, ARTICLE), (v2, ARTICLE),
(v3, ARTICLE),
(va, ARTICLE), (vs, IMAGE),

(ve, IMAGE), (e1, BABEL), (e2,

BABEL), (e3, REF), (e+, REF),
(es, CONTAINS),

(es, CONTAINS), (e7,
CONTAINS)

(e1, v1), (e2, v2), (es, va), (e4,
va), (es, v3), (es, v3), (e7, v4)

(e1, v3), (e2, v3), (e3, v3), (es,
v3), (es, vs), (es, ve), (€7, ve)

(v1, 1), (v2, 2), (v3, 3), (v4, 4),
(vs, 1), (vs, 2)

(v1, Europa), (v2, Europe), (vs,
Europe), (v4, Barcelona)

(v1, ca), (vz, fr), (v3, en), (va,
en), (e1, en),(e2, en)

(vs, europe.png), (ve, ben.jpg)

(es, continent)

(ARTICLE, {v1, v2, v3, v4}),
(BABEL, {e1, ez2}),
(CONTAINS, {es, es, er}),
(IMAGE, {vs, ve}), (REF, {es,
ea})

(v1, {e1}), (vz, {e2}), (v3, {es,
es}), (v4, {e3, e4, er})

(va, {e1, e2, es, e4}), (vs, {es}),
(ve, {es, e7})

(1, {v1, vs}), (2, {v2, vs}), (3,
{va}), (4, {v4})

(Barcelona, {v4}), (Europa,
{v1}), (Europe, {vz, v3})

(ca, {v1}), (en, {v3, v4, e1, e2}),

(fr, {v2})

(ben.jpg, {vs}), (europe.png,
{vs})

(continent, {e4})

42

Sparksee — example

Article [v1]
id=1
title = ‘Europa’

REF ef4]

BABEL e[1]
nic=‘en’

title = ‘Europa’

tag="conting

BABEL e[2]
nic="en’

Article [v2]
id=2

title = ‘Europa’
ic="r

contains e[5]

Image [v5]
id=1
file="europe.png’

contains e[6]

Imi
id=
file=‘bcn.png’

Ee [vé]

0011

CO0a0 L
Q0o 1

QBJECTS I RELATIONSHIPS I
LABELS
>
3 eds
2 | [OO0000 | '
) D000
4 jococoaoooo 11 |
3 ke i | Q000000 11001 | |
ARTELF 3
- MAG © %
- BARLL cocoool 1]
- ONTANS] DOO0A0O000 11 1 ' '
- REF 00000001 1|
— | eus l
— 0000001 11 1
13 O0O00000)
| [anaonononac 11 | I
I |
10/10/22 Introducton to Graph Databases

o le vle i le e} |

43

