
Introduction to Graph Databases

Fundamentals & Implementations

Alejandro Vaisman
avaisman@itba.edu.ar

10/10/22 Introducton to Graph Databases 1

Agenda

10/10/22 Ciencia de Datos 2

• 10.10.22. Introduction – Graph data models
• 13.10.22. Graph DB internals. Introduction to Neo4j
• 17.10.22. Querying Neo4j databases
• 20.10.22. Assignment 1. Graphs in relational databases
• 24.10.22. Assignment 2. Basic Cypher queries
• 27.10.22. Assignment 3. Advanced Cypher queries

Graph database models

10/10/22 Introducton to Graph Databases 3

• Types of relationships supported by graph data models

The abstract data type Graph (w/properties)

10/10/22 Introducton to Graph Databases 4

The abstract data type Multigraph

10/10/22 Introducton to Graph Databases 5

Basic operations

10/10/22 Introducton to Graph Databases 6

an edge

Graph generalization: (multi)Hypergraphs

10/10/22 Introducton to Graph Databases 7

Undirected

H = (X , E), where X is a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E ⊆ P (X), where P (X) is the power set of X.

Let X = (v1,…,vn), E = (e1,...,em).
Every hypergraph has an m x n incidence
matrix where

1 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 0 0{v2,v3}, {v3, v5,v6},

e1

e2

e3

e4

V1 v2 v3 v4 v5 v6 v7

Graph generalization: (multi)Hypergraphs

10/10/22 Introducton to Graph Databases 8

Directed
1 2 3

4

In the example:

X = {1,2,3,4}
E = {{1}->{2,4}, {2} -> {3}, {3} -> {2,3}}

H = (X , E), where X is a set of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E is a subbag of P (X) x P(X), where P (X) is the power set of X.

Graphically, S,T ⊆ X; A hyperedge is denoted S -> T

Implementation

10/10/22 Introducton to Graph Databases 9

Implementation: adjacency list

10/10/22 Introducton to Graph Databases 10

Implementation

10/10/22 Introducton to Graph Databases 11

Implementation: incidence list

10/10/22 Introducton to Graph Databases 12

Implementation

10/10/22 Introducton to Graph Databases 13

Implementation: adjacency matrix

10/10/22 Introducton to Graph Databases 14

• Complexity
• Storage

Answer : |V| X |V|

• Is there an edge from X to Z?

Answer : O(1)

• Compute the out-degree of Z

Answer: O(|V|)

• Compute the in-degree of Z

Answer: O(|V|)

• Add an edge between two nodes

Answer: O(1)

• Compute all paths of length 4 between any pair of nodes (4-hop)

Answer: O(|𝑉|!).

10/10/22 Introducton to Graph Databases 15

Implementation: adjacency matrix

Implementation

10/10/22 Introducton to Graph Databases 16

Implementation: incidence matrix

10/10/22 Introducton to Graph Databases 17

Implementation: incidence matrix

10/10/22 Introducton to Graph Databases 18

Properties:

Implementation

10/10/22 Introducton to Graph Databases 19

Implementations

10/10/22 Introducton to Graph Databases 20

Graph databases – Representative approaches

10/10/22 Introducton to Graph Databases 21

Some graph databases

10/10/22 Introducton to Graph Databases 22

• Some graph db implement an API rather than a query language

Neo4j (Robinson et al., 2013)

10/10/22 Introducton to Graph Databases 23

• Labelled attributed multigraph
• Nodes and edges can have properties (property graphs)
• No restrictions on the # of edges between nodes
• Loops allowed
• Different types of traversal strategies
• APIs for Java and Python
• Embeddable and server
• Full ACID transactions

Neo4j (Robinson et al., 2013)

10/10/22 Introducton to Graph Databases 24

• Native graph processing and storage
• Characterized by index-free adjacency:
• Node keeps direct reference to adjacent nodes
• Acts like a micro-index (or local index)
• Makes query time independent from graph size for many queries

• Joins are “precomputed” and stored as relationships
• In non-native graph DBs, joins must be computed

Neo4j (Robinson et al., 2013)

10/10/22 Introducton to Graph Databases 25

• Native graph storage

• Storing graphs in files
• Loading graphs into main memory
• Caching graphs for fast querying

Neo4j - architecture

10/10/22 Introducton to Graph Databases 26

Robinson et al., 2013

File storage

10/10/22 Introducton to Graph Databases 27

• Graphs stored in store files
• Nodes (neostore.nodestore.db)
• Relationships (neostore.relationshipstore.db)
• Properties (neostore.propertystore.db)

File storage: nodes

10/10/22 Introducton to Graph Databases 28

• Stored in node records
• Fixed length (9 bytes) to make search performant (find records with an offset from the node id)

• Finding a node is O(1)
• First byte: in-use flag
• 4 bytes for the address of the first relationship
• 4 bytes for the first property

File storage: relationships

10/10/22 Introducton to Graph Databases 29

• Stored in relationship records
• Fixed length (33 bytes)
• First byte: in-use flag
• Organized as a double-linked list
• Each record contains the IDs of the two nodes in a relationship (start and end nodes)
• A pointer to the relationship type
• For each node, there is a pointer to the previous and next relationship records

• E.g.: firstPrevRelID: previous relationship of the start node; firstNextRelID: next relationship of
the start node (the one after the current relationship)

• These form the relationship chain

File storage: properties

10/10/22 Introducton to Graph Databases 30

• Stored in property records
• Fixed length
• Each record consists of 32 bytes divided in blocks of 8 bytes
• Include the ID of the next property in the property chain
• Property chains: single-linked list
• Each property record holds:

• Property type
• Pointer to the property index file, holding the property name
• A value, or a pointer to a dynamic structure (string or array store) – for long strings or arrays

File storage: example

10/10/22 Introducton to Graph Databases 31

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

IU Fst Snd RT FPrev FNext SPrev SNext NP

1 A B ID1 NIL r3 NIL r2 NIL

1 B C ID1 NIL r4 NIL NIL rp3

1 A E ID1 r1 NIL NIL NIL NIL

1 B D ID2 r2 NIL NIL NIL NIL

ID1 R1

ID2 R2

r1

r2

r3

r4

p3 v6 NIL

p1 v1 np2

p2 v2 NIL

p1 v7 NIL

... … …

… … …

rp3

Start

1 A np1 .. r1

2 B r2

3 C Nil

4 D Nil

5 E np7 .. Nil

np1

np2

np7

Relationship
Types

Relationships

Properties

Nodes

In a DFS, start from r1,
then r2, r4, r3 (see table
“Relationships”). We have
all the information.

Caching

10/10/22 Introducton to Graph Databases 32

• File system cache (writing)
• Cache divides each store into regions (pages)
• Stores a fixed number of pages per file
• Pages are replaced using Least Frequently Used pages

• Object cache
• Optimized for reading
• Stores object representations of nodes, relationships, and properties for fast path traversal
• Node objects: contain properties and references to relationships
• Relationship objects: contain only their properties
• This is opposite to what happens in disk storage, where most information is in the relationship

records

Object cache

10/10/22 Introducton to Graph Databases 33

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

Node Type REL
n2 B IN: r1

B OUT: r2

B OUT: r4

n3 C IN: r2

… … …

REL Start End Type
r1 A B R1

r2 B C R1

(p3,v6)

r3 A E R1

r4 B D R2

Some graph databases

10/10/22 Introducton to Graph Databases 34

• Some graph db implement an API rather than a query language

Sparksee

10/10/22 Introducton to Graph Databases 35

• Logical model
• Labeled

• a label for each vertex and edge
• Directed

• fixed direction edges, from tail to head
• Attributed

• variable # for each vertex)
• Multigraph

• possibly more than one edge between nodes
• Embedded graph dbms

• tightly integrated with the application at code level

Sparksee

10/10/22 Introducton to Graph Databases 36

• Nodes and edges have a sparksee-generated OID
• Node, edge and global attributes
• Not restricted to an edge or node type (e.g., NAME can belong to all node objects)
• Global attributes belong to the graph

• Attributes can have different indexes
• Basic attributes
• Indexed attributes
• Unique attributes
• Neighborhood index

• Persistent database in a single file
• Can manage very large graphs

Sparksee

10/10/22 Introducton to Graph Databases 37

• A graph G= (V,E,L,T,H, A1,…….,An) is defined as:

• Labels L= {(o,l)| o ϵ (V ∪ E) ˄ l ϵ string}
• Heads H= {(e,h)| e ϵ E ˄ h ϵ V}
• Tails T={(e,t)| e ϵ E ˄ t ϵ V}
• Attributes Ai={(o,c)| o ϵ (V ∪ E) ˄ c ϵ (int,string,…}

• The graph is split into multiple lists of pairs
• The first element in a pair is always an edge or a vertex

Sparksee - architecture

10/10/22 Introducton to Graph Databases 38

*SWIG = Simplified Wrapper and Interface Generator. Open source tool used to connect programs/libraries written in C/C++ with other
languages.

Sparksee – internal representation

10/10/22 Introducton to Graph Databases 39

• Each vertex/edge is identified with an immutable oid.
• Links: bidirectional

• Value - > set of OIDs.
• Given an OID -> a value.

• Two maps: (a) from a value to a vertex or edge set; (b) from a vertex or edge to an oid.
• Maps are B-trees.

Sparksee – internal representation

10/10/22 Introducton to Graph Databases 40

• A Sparksee Graph is a combination of Bitmaps:
• Bitmap for each node or edge set (type).
• Each position in the bitmap corresponds to the oid.
• One link for each attribute.
• Two links for each type: Outgoing and in-going edges.

• Maps are B+trees
• A compressed UTF-8 storage for UNICODE string.

Sparksee – example

10/10/22 Introducton to Graph Databases 41

2

Sparksee – example

10/10/22 Introducton to Graph Databases 42

Value sets: group all pairs of the original set with the
same value, as a pair between the value and the set of
objects with that value

2

Sparksee – example

10/10/22 Introducton to Graph Databases 43

2

