
Introduction to Graph Databases

Neo4j

Alejandro Vaisman
avaisman@itba.edu.ar

1Introduction to Graph Databases10/10/22

Agenda

10/10/22 Ciencia de Datos 2

• 10.10.22. Introduction – Graph data models
• 13.10.22. Graph DB internals. Introduction to Neo4j
• 17.10.22. Querying Neo4j databases
• 20.10.22. Assignment 1. Graphs in relational databases
• 24.10.22. Assignment 2. Basic Cypher queries
• 27.10.22. Assignment 3. Advanced Cypher queries

Querying Neo4j Databases

3Introduction to Graph Databases10/10/22

Introduction to Graph Databases 4

V1

V2

V3

manager_of

V4

knows

knows

knows

[
ID: 1112,
Name: Martin,
Salary: 10000

]

[
ID: 6666,
Name: Juan,
Salary: 8000

]

[
ID: 3333,
Name: Uma,
Salary: 3000

]

[
ID: 2323,
Name: Irma,
Salary: 5000

]

[
From: 10/10/2000

]

Property graphs revisited

10/10/22

Introduction to Graph Databases 5

Typical SQL query

10/10/22

Introduction to Graph Databases 6

Same query on graphs

The deepest the navigation, the largest the difference with RDBs

10/10/22

Introduction to Graph Databases 7

• Open Source.

• Versions for Linux, Win, Mac. Implemented in Java.

• High-level query language: Cypher.

• Customers: Lufthansa, Linkedin, InfoJobs, gameSys, eBay,
FiftyThree, Accenture, National Geographic, CISCO, HP, Telenor, etc.

GDBs: Neo4j www.neo4j.com

10/10/22

Introduction to Graph Databases 8

(N, E)

A set of nodes

Directed edges (probably with cycles)

A node has:
1) Zero or + properties: boolean, string, numeric, arrays of the
former.
2) Zero or + Labels: Give a name to a node.

An edge has:
1) Zero or + properties: Sams as with nodes.
2) Exactly one Label: To distinguish a relationship between nodes.

A Neo4j graph

10/10/22

Introduction to Graph Databases 9

To create nodes

To update/delete information

To query graphs

Cypher

10/10/22

Introduction to Graph Databases 10

To create graphs

To update/delete that
information

Cypher

Different from the relational model where:

1) First, the structure is created, to store tuples.
2) FKs are defined at the structural level.
3) Then, tuples are inserted/updated/deleted, and must conform to the structure.

10/10/22

Introduction to Graph Databases 11

To create graphs

To update/delete that
information

Cypher

10/10/22

Nodes and edges are created. Properties, labels, types, are the informational structure, but
no schema is defined.

Topology can be thought as analogous to the FK in the relational model. Defined at the
instance level.

Introduction to Graph Databases 12

A node variable goes between“()”. Identifies a node in an expression.

(v :Label1:Label2…:LabelN { Prop1: Value1, Prop2: Value2, … Propk: Valuek })

A list of N labels (opcional) associated with the node, prefixed by “:”

A list of K propertie (opcional) associated with the node.
Each property has a name and a value, separated by the
symbol “:”

Cypher - nodes

10/10/22

Create another one.

$ CREATE ();
If RETURN is not written, nodes are not displayed

Create a node with no properties/labels:

$ CREATE (v)
RETURN v;

Introduction to Graph Databases 13

ID assigned internally, with a different number
each time. Can be reused by the system. Do
not use it in applications.

<id>: 0

<id>: 0 <id>: 1

Cypher - nodes

10/10/22

Introduction to Graph Databases 14

Create a node with two labels:

$ CREATE (v :Student:ITBA)
RETURN v;

Create a node with one label and 3 properties:

$ CREATE (n :Student {Name: 'Juan Polo',
DateOfBirth: '12/04/2000',
Mails: ['jmpolo@itba.edu.ar', 'juan@yahoo.com'] })

RETURN n;

Student ITBA <id>: 2

Student <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

10/10/22

Introduction to Graph Databases 15

Add labels “English” and “Spanish” to all nodes previously created.
$ MATCH (n)

SET n :English:Spanish
RETURN n;

<id>: 0 <id>: 1

Student ITBA <id>: 2 Student <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

10/10/22

Add labels “English” and “Spanish” to all nodes previously created.
$ MATCH (n)

SET n :English:Spanish
RETURN n;

Introduction to Graph Databases 16

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA English Spanish <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

10/10/22

Introduction to Graph Databases 17

Delete labels English and Spanish from the node labelled “ITBA”
$
MATCH (n :ITBA)
REMOVE n :English:Spanish

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA English Spanish <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

10/10/22

Introduction to Graph Databases 18

Delete labels English and Spanish from the node labelled “ITBA”

$ MATCH (n :ITBA)
REMOVE n :English:Spanish

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

10/10/22

Introduction to Graph Databases 19

Delete properties DateOfBirth, Name and Age from the nodes labelled “Student”.
Properties are referred to as: node.propertyName
$ MATCH (n :Student)

REMOVE n.DateOfBirth, n.Name, n.mails, n.edad
RETURN n

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
• Name: Juan Polo
• DateOfBirth: 12/04/2000
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

10/10/22

Introduction to Graph Databases 20

Delete properties DateOfBirth, Name and Age from the nodes labelled “Student”.
Properties are referred to as: node.propertyName
$ MATCH (n :Student)

REMOVE n.DateOfBirth, n.Name, n.mails, n.edad
RETURN n

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
• Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Cypher - nodes

Undefined properties are ignored, the do
not produce errors when trying to delete
them. The same for labels.

Note that property “mails” was not
deleted, language is case sensitive.

10/10/22

Introduction to Graph Databases 21

An edge is placed between brackets []. It is defined between to nodes (here, n and v). If
the edge goes from n to v, this is indicated as “- [] ->”, conversely, it is indicated as “ <- [
] –”. A variable name, with local scope, must also be included.

(n)- [e :Type { Prop1: Value1, Prop2: Value2, … Propk: Valuek }] -> (v)

Exactly one Type (mandatory) prefixed by “:”

A list of K properties (opcional) associated with the node.
Each property has a name and a value, separated by the symbol “:”

Cypher - Edges

10/10/22

Introduction to Graph Databases 22

Consider a Neo4j database. The nodes already created are:

$ CREATE (n :Employee { Name: 'Ariel Casso',
Salary: 10000,
Mails: ['acasso@itba.edu.ar', 'acasso@yahoo.com'] });

CREATE (n :Employee { Name: 'José Pan',
Salary: 12000,
Mails: ['jpan@itba.edu.ar'] });

CREATE (n :Employee { Name: 'Luna García',
Salary: 16000,
Mails: ['lgarcia@itba.edu.ar'] });

CREATE (n :Employee { Name: 'Vilma Casso',
Salary: 8000,
Mails: ['vcasso@itba.edu.ar'] });

Cypher - Edges

10/10/22

Introduction to Graph Databases 23

$ MATCH (n :Employee {Name: 'José Pan'}), (b :Employee {Name: 'Vilma
Casso'}), (c :Employee {Name: 'Ariel Casso'})

CREATE (b) <- [r1 :manager_of] - (n) - [r2 :manager_of] -> (c)
RETURN r1, r2

Luna
Garcia

manager_of

manager_of

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

Create an edge of type «manager_of» with no properties, from José Pan to Vilma and Ariel Casso:

Cypher - Edges

10/10/22

Introduction to Graph Databases 24

$ MATCH (n :Employee {Name: 'José Pan'}), (b :Employee {Name: 'Vilma
Casso'}), (c :Employee {Name: 'Ariel Casso'})

CREATE (b) <- [r1 :manager_of] - (n) - [r2 :manager_of] -> (c)
RETURN r1, r2

Luna
Garcia

manager_of

manager_of

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

nb

c

Create an edge of type «manager_of» with no properties, from José Pan to Vilma and Ariel Casso:
:

Cypher - Edges

10/10/22

Introduction to Graph Databases 25

$ MATCH (n :Employee {Name: 'José Pan'}),(b :Employee {Name: 'Luna García'})
CREATE (n) <- [r :manager_of {From: '10/10/2000'}] - (b)
RETURN n, r, b

Luna
Garcia

manager_of

manager_of

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

manager_of
<id>: 2
From: 10/10/2000

Cypher - Edges
Create another edge of type «manager_of» with property “from”, from L. García to José Pan

10/10/22

Introduction to Graph Databases 26

$ MATCH (n :Employee {Name: 'José Pan'}),(b :Employee {Name: 'Luna García'})
CREATE (n) <- [r :manager_of {From: '10/10/2000'}] - (b)
RETURN n, r, b

Luna
Garcia

manager_of

manager_of

José
Pan

Ariel
Casso

Vilma
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>: 0
• Name: Ariel Casso
• Salary: 10000
• Mails: acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>: 3
• Name: Vilma Casso
• Salary: 8000
• Mails: vcasso@itba.edu.ar

Employee <id>: 2
• Name: Luna García
• Salary: 16000
• Mails: lgarcia@itba.edu.ar

b

n

manager_of
<id>: 2
From: 10/10/2000

Cypher - Edges
Create another edge of type «manager_of» with property “from”, from L. García to José Pan

10/10/22

Introduction to Graph Databases 27

Query graphs expressing
informational and/or topological

conditions

Cypher – queries

High-level query language based on
pattern matching

10/10/22

MATCH

OPTIONAL MATCH

WHERE

RETURN

ORDER BY

LIMIT

SKIP

Introduction to Graph Databases 28

«Match» expresses a pattern that DBMS will try to match.
OPTIONAL MATCH Works like an «outer join», in SQL, i.e., if
dores not find a match, puts nulls.
The WHERE clause is part of the «MATCH or OPTIONAL
MATCH». No order can be assumed for the evaluation of the
conditions in the WHERE clause, this is decided by the
DBMS.

LIMIT returns only part of the result. SKIP skips the first
results. Unless ORDER BY used, no assumption can be
done for the discarded results.

The evaluation produces subgraphs, and any portion of the match could be returned.
«RETURN DISTINCT» eliminates duplicates.

Cypher – queries

10/10/22

Introduction to Graph Databases 29

In addition to the above:

1) If we don’t need to refer to a node, we can use “()”, with no variable.
2) If we don’t need to refer to an edge, we can omit it, e.g.: (a) --> (b) indicates an edge between a and b.
3) If we don’t need to consider the direction of the edge, just use “- -” (without the arrow end)
4) If a mattern matches more tan one label, write the OR condition as, e.g., [:manager_of | :Student]
5) To express a path of any length, use [*]. For a fixed length, e.g., 3, use [*3]
6) To indicate boundaries to the length of a pathm use [*2..4] . To limit only one end, use : [*2 ..]

Cypher – queries

10/10/22

Introduction to Graph Databases 30

The query:

$ MATCH (p)-[]->(s)-[]->(x)
RETURN Count(p), s.URL, Count(x)

Returns the following. Why???

A

B

C

D

E

F

Cypher – Example

10/10/22

Introduction to Graph Databases 31

The query:

$ MATCH (p)-[]->(s)-[]->(x)
RETURN Count(p), s.URL, Count(x)

Returns the following. Why???

A

B

C

D

E

F

Cypher – Example

10/10/22

«Count(p)» «s» «Count(x)»

9 A 9

3 B 3

4 C 4

2 D 2

4 E 4

8 F 8

Introduction to Graph Databases 32

$ MATCH (p)-[]->(s)-[]->(x)
RETURN Count(p), s, Count(x)

A

B

C

D

E

F

Cypher – Example

The first clause computes paths where a node
(s) has an incoming and an outgoing edge.
E.g., for «c», these paths are:

(a) -- (c) –> (f)
(f) -- (c) --> (f)
(b) -- (c) --> (f)
(e) -- (c) --> (f)
The second clause groups these 4 paths and returm how many
nodes are connected on each side, to node (c)., and we
obtain:
4 c 4

10/10/22

Introduction to Graph Databases 33

A

B

C

D

E

F

A page X gets a score computed as the sum of
all votes given by the pages that references it.

If a page Z references a page X, Z gives X a
normalized vote computed as the inverse of
the number of pages referenced by Z. To
prevent votes of self-referencing pages, if Z
references X and X references Z, Z gives 0
votes to X.

Compute the page rank for each web page.

Cypher – Example

10/10/22

Possible solution:
$ MATCH (p) --> (r)

WITH p, 1.0 / count(r) as vote
MATCH (p) --> (x)
WHERE NOT ((x) --> (p))
RETURN x, SUM(vote) AS Rank
ORDER BY x.URL

Introduction to Graph Databases 34

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

A

B

C

D

E

F

Cypher – Example

The first MATCH - WITH pair computes, for each
node, the inverse of the number of outgoing
edges, and passes this number on to the next
clause.

10/10/22

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

Introduction to Graph Databases 35

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

A

B

C

D

E

F

Possible solution:
$ MATCH (p) --> (r)

WITH p, 1.0 / count(r) as vote
MATCH (p) --> (x)
WHERE NOT ((x) --> (p))
RETURN x, SUM(vote) AS Rank
ORDER BY x.URL

Now, for each of these 6 “p”
nodes, look for the paths of
length 1 where no reciprocity
exists (e.g., delete A ->B and
B -> A)

Cypher – Example

10/10/22

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Introduction to Graph Databases 36

«x» «p»
grouped

A D, E

C A, B, E

D B

E D, F

F A

«x» «Rank»

A ½ + ½

C 1/3 + 1/3
+ 1/2

D 1/3

E ½ + 1/3

F 1/3

A

B

C

D

E

F

Cypher – Example
Possible solution
$ MATCH (p) --> (r)

WITH p, 1.0 / count(r) as vote
MATCH (p) --> (x)
WHERE NOT ((x) --> (p))
RETURN x.URL, COLLECT (p.URL), SUM(vote) AS Rank
ORDER BY x.URL

Finally, groups results by the second
component and sorts.

10/10/22

Neo4j - Practice

37Introduction to Graph Databases10/10/22

Introduction to Graph Databases 38

Neo4j Practice – The Northwind Database

10/10/22

Introduction to Graph Databases 39

Loading the graph

10/10/22

1. Using the LOAD CVS statement

LOAD CSV WITH HEADERS FROM "file:///territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryid,
name: row.territorydescription});

============
LOAD CSV WITH HEADERS FROM "file:///employees.csv" AS row
CREATE (:Employee{employeeID: row.employeeid,
lastName: row.lastname,firstName: row.firstname, city:row.city,region:row.region,country:row.country});

==============

LOAD CSV WITH HEADERS FROM "file:///employeeterritories.csv" AS row
MATCH (t:Territory {territoryID: row.territoryid})
MATCH (e:Employee {employeeID: row.employeeid})
MERGE (e)-[:AssignedTo]->(t)

file:///D:/territories.csv
file:///D:/employees.csv
file:///D:/employeeterritories.csv

Introduction to Graph Databases 4010/10/22

2. Connecting to a Postgres DB
• Copy database driver to the “Plugins” folder
• APOC library must also be copied in the “Plugins” folder
• Check the right APOC version for your Neo4j version!!!
WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

%% NorthwindOLTP: your database in the PostgreSQL instance
%% url: to be used in the procedure call
CALL apoc.load.jdbc(url,"select * from categories") YIELD row
% the query string can also mention just a table
% row: a “row variable” just as before
RETURN row.description,row.categoryname

This lists the table “categories” in Neo4j.
We can use this also for loading data into Neo4j.

Loading the graph

Introduction to Graph Databases 4110/10/22

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

CALL apoc.load.jdbc(url,"select * from products") YIELD row

CREATE (:Product {productID: row.productid,productName:row.productname, supplier: row.supplierid, category:row.categoryid,
qtyperunit:row.quantityperunit})

===================================

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

CALL apoc.load.jdbc(url,"select * from suppliers") YIELD row

CREATE (:Supplier {supplierID: row.supplierid, supplierName:row.companyname, city:row.city, region:row.region, country:row.country})

Loading the graph

Introduction to Graph Databases 4210/10/22

3. With Cypher

MATCH(s:Supplier)

MATCH(p:Product) where p.supplier=s.supplierID

MERGE (s)-[:Supplies]->(p)

Loading the graph

Introduction to Graph Databases 4310/10/22

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/city.csv" AS row
CREATE (:City {cityID:row.citykey,cityName: row.cityname});

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryID, name: row.territoryDescription});

...

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/employee-territories.csv" AS row
MATCH (territory:Territory{territoryID: row.territoryID})
MATCH (employee:Employee {employeeID: row.employeeID})
MERGE (employee)-[:AssignedTo]->(territory);

Loading the graph

Introduction to Graph Databases 4410/10/22

-- Create a view to put together orders and order details

CREATE VIEW order1 AS (SELECT o.orderid AS orderID,o.orderdate AS
orderDate,o.shippeddate AS shippedDate,o.shipname AS shipName, sum(quantity)
AS totqty,sum(unitprice*quantity) AS totAmount FROM orders o,orderdetails o1
WHERE o.orderid=o1.orderid
group by o.orderid,o.orderdate,o.shippeddate,o.shipname
order by orderid asc)
SELECT * INTO ordershg FROM order1

COPY ordershg to 'C:\tmp\ordershg.csv' delimiter ',' CSV header USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:/NWdata/ordershg.csv" AS row
CREATE (:Order {orderID: row.orderid, orderDate: row.orderdate,
ShippedDate: row.shippeddate,shipName:row.shipname,totalQty:row.totqty, totalAmount:row.totamount});

You can also connect to a PostgreSQL database

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from
ordershg') YIELD row
CREATE (:Order {orderID: row.orderid, orderDate: row.orderdate, ShippedDate:
row.shippeddate,shipName:row.shipname,totalQty:row.totqty, totalAmount:row.totamount});

Loading the graph

Introduction to Graph Databases 4510/10/22

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/orders.csv" AS row
MATCH (order:Order {orderID: row.orderID})
MATCH (employee:Employee {employeeID: row.employeeID})
MERGE (employee)-[:Sold]->(order);

LOAD CSV WITH HEADERS FROM "file:/NWdata/order-details.csv" AS row
MATCH (order:Order {orderID: row.orderID})
MATCH (product:Product {productID: row.productID})
MERGE (order)-[:Contains{unitPrice:row.unitPrice,quantity:row.quantity, discount:row.discount}]->(product);

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/products.csv" AS row
MATCH (product:Product {productID: row.productID})
MATCH (supplier:Supplier {supplierID: row.supplierID})
MERGE (supplier)-[:Supplies]->(product);

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from employees') YIELD row
MATCH (employee:Employee {employeeID: row.employeeid})
MATCH (employee1:Employee {employeeID: row.reportsto})
MERGE (employee)-[:ReportsTo]->(employee1);

Loading the graph

Introduction to Graph Databases 46

Schema: Northwindhg database

10/10/22

Introduction to Graph Databases 47

Problem 1. Northwindhg database

10/10/22

• Query 1. List products and their unit price.

MATCH (p:Product)
RETURN p.productName, p.unitPrice
ORDER BY p.unitPrice DESC

• Query 2. List information about products 'Chocolade' & 'Pavlova'.

MATCH (p:Product)
WHERE p.productName IN ['Chocolade','Pavlova']
RETURN p

• Query 3. List information about products with names starting with a "C”, whose unit price is greater than 50.

MATCH (p:Product)
WHERE p.productName STARTS WITH "C" AND tofloat(p.unitPrice) > 50
RETURN p.productName, p.unitPrice;

%% Try without ”tofloat”
• Query 4. Same as 3, but considering the sales price, not the product’s price.

MATCH (p:Product) <- [c:Contains] - (o:Order)
WHERE p.productName STARTS WITH "C" AND tofloat(c.unitPrice) > 50
RETURN distinct p.productName, p.unitPrice, c.unitPrice;

Introduction to Graph Databases 4810/10/22

• Query 5. Total purchased by customer and product.

MATCH (c:Customer)
OPTIONAL MATCH (p:Product)<-[pu:Contains]-(:Order)-[:Purchased]->(c)
RETURN c.customerName, p.productName,tofloat(sum(pu.unitPrice) * pu.quantity) as volume
ORDER BY volume desc

• Query 6. Top 10 employees, considering the number of orders sold.

MATCH (:Order)<-[:Sold]-(e:Employee)
RETURN e.firstName,e.lastName, count(*) AS Ordenes
ORDER BY Ordenes DESC LIMIT 10

• Query 7. For each employee, list the assigned territories.

MATCH (t:Territory)<-[:AssignedTo]-(e:Employee)
RETURN e.lastName, COLLECT(t.name);

• Query 8. For each city, list the companies settled in that city.

MATCH (c:City)<-[:locatedIn]-(c1:Customer)
RETURN c.cityname, COLLECT(c1.customerName);

Problem 1. Northwindhg database

Introduction to Graph Databases 4910/10/22

• Query 10. How many persons an employee reports to, either directly or transitively?

MATCH (report:Employee)
OPTIONAL MATCH (e)<-[rel:ReportsTo*]-(report)
RETURN report.lastName AS e1, COUNT(rel) AS reports

• Query 11. To whom do persons called “Robert” report to?

MATCH (e:Employee)<-[:ReportsTo*]-(sub:Employee)
WHERE sub.firstName = 'Robert'
RETURN e.firstName,e.lastName,sub.lastName

• Query 12. Who does not report to anybody?

MATCH (e:Employee)
WHERE NOT (e)-[:ReportsTo]->()
RETURN e.firstName as TopBossFirst, e.lastName as TopBossLast

• Query 13. Suppliers, number of categories they supply, and a list of such categories

MATCH (s:Supplier)-->(:Product)-->(c:Category)
WITH s.supplierName as Supplier, collect(distinct c.categoryName) as Categories
WITH Supplier, Categories, size(Categories) AS Cantidad ORDER BY Cantidad DESC
RETURN Supplier, Cantidad, Categories;

Problem 1. Northwindhg database

Introduction to Graph Databases 5010/10/22

• Query 14. Suppliers who supply beverages

MATCH (c:Category {categoryName:"Beverages"})<--(:Product)<--(s:Supplier)
RETURN DISTINCT s.supplierName as ProduceSuppliers;

• Query 15. Customer who purchases the largest amount of beverages

MATCH (cust:Customer)<-[:Purchased]-(:Order)-[o:Contains]->(p:Product), (p)-[:hasCategory]->
(c:Category{categoryName:"Beverages"})
RETURN cust.customerName as CustomerName, SUM(o.quantity)
LIMIT 1

• Query 16. List the 5 most popular products (considering the number of orders)

MATCH (c:Customer)<-[:Purchased]-(o:Order)-[o1:Contains]->(p:Product)
RETURN c.customerName, p.productName, count(o1) as orders
ORDER BY orders desc LIMIT 5

Problem 1. Northwindhg database

Introduction to Graph Databases 5110/10/22

• Query 17. Products ordered by customers from the same country than their suppliers

MATCH (c:Customer) -[r:locatedIn]->(cy:City)-[:belongsTo]->(:Region)-[:isIn]->(co:Country)
WITH co, c MATCH (s:Supplier) WHERE co.countryname = s.country
WITH s, co, c MATCH(s)-[su:Supplies]-(p:Product)<-[:Contains]-(o:Order)-[:Purchased]->(c)
RETURN c.customerName,s.supplierName,co.countryname,p.productName

OR

MATCH (c:Customer) -[r:locatedIn]->(cy:City)-[:belongsTo]->(:Region)-[:isIn]->(co:Country)
WITH co, c
MATCH(s:Supplier)-[su:Supplies]-(p:Product)<-[:Contains]-(o:Order)-[:Purchased]->(c) WHERE co.countryname = s.country
RETURN c.customerName,s.supplierName,co.countryname,p.productName

Problem 1. Northwindhg database

Introduction to Graph Databases 5210/10/22

Problem 2 – MusicBrainz database

Introduction to Graph Databases 5310/10/22

Query 1. Compute the number of releases per artist.

MATCH (r:ReleaseFact)-[]->(a:ArtistCredit)-[]->(a1:Artist)
RETURN a1.name, a1.gender

Query 2. Compute the number of releases per artist and per year.

Query 3. Compute the number of events per artist.

MATCH (e:EventFact)-[r:PERFORMED_BY]->(a:Artist)
RETURN a.name, count(*)

Query 4. Compute the number of times the artist performed in each event.

Query 5. For each (event, artist, year) triple, compute the number of times the
artist performed in an event on an year.

Problem 2 – MusicBrainz database

Introduction to Graph Databases 5410/10/22

Query 6. Same as Query 5, for artists in the United Kingdom and events happened after year 2006.

Query 7. Compute the number of releases, per language, in the UK.

Query 8. Compute, for each pair of artists, the number of times they have performed together at least twice in an
event.

Query 9. Compute the triples of artists, and the number of times they have performed together in an event, if this
number is at least 3.

MATCH (a1:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)
WHERE a1.id < a2.id
WITH a1,a2,COLLECT(e) AS events WHERE SIZE(events) > 2
MATCH (a1:Artist)<-[]-(e1:EventFact)-[]->(a2:Artist)
MATCH (a3:Artist)<-[]-(e1) WHERE a2.id < a3.id
WITH a1.name as name1, a2.name as name2,a3.name as name3 ,
COUNT(e1.idEvent) as nbrTimes WHERE nbrTimes > 2
RETURN name1,name2,name3, nbrTimes ORDER BY nbrTimes DESC

Problem 2 – MusicBrainz database

Introduction to Graph Databases 5510/10/22

Query 10. Compute the quadruples of artists, and the number of times they have performed together in an event,
if this number is at least 3.

Query 11. Compute the pairs of artists that have performed together in at least two events and that have worked
together in at least one release, returning the number of events and releases together.

Query 12. Compute the of artists who released a record and performed in at least an event, and the year(s) this
happened.

Problem 2 – MusicBrainz database

Introduction to Graph Databases 5610/10/22

Problem 3 – Rivers

Introduction to Graph Databases 5710/10/22

Problem 3 – Rivers

Introduction to Graph Databases 5810/10/22

Query 6. Find the number of splits in the downstream path of segment 6020612

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p
MATCH (p)-[:flowsTo]->(r:Segment)
WITH p, count(DISTINCT r) as co WHERE co > 1
RETURN count(p)

Problem 3 – Rivers

Introduction to Graph Databases 5910/10/22

Query 10. Find the branches of downstream flow starting at a given position (identifed by a segment's
vhas), together with the length and number of segments of each branch.

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p
MATCH (p)-[:flowsTo]->(r:Segment)
WITH r, count(DISTINCT p) as co WHERE co = 1
WITH collect(r) as pc
MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1,endNodes:pc}) YIELD path AS pp
WITH [p in NODES(pp) |p.vhas] AS nodelist,
reduce(longi= tofloat(0),n IN nodes(pp)|longi+n.lengte) AS segLen,
reduce(longi= 1,n IN nodes(pp)| longi + 1) AS nbrSeg
RETURN nodelist[size(nodelist)-1] as id, nbrSeg, segLen

UNION

……

Problem 3 – Rivers

Introduction to Graph Databases 6010/10/22

Query 10. Find the branches of downstream flow starting at a given position (identifed by a segment's
vhas), together with the length and number of segments of each branch.

…..

UNION

MATCH (n:Segment {vhas:6020612})
CALL apoc.path.spanningTree(n, {relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p
MATCH (p)-[:flowsTo]->(r:Segment)
WITH r, count(DISTINCT p) as co WHERE co > 1
WITH collect(r) as pc
MATCH (n:Segment {vhas:6020612})
CALL apoc.path.expandConfig(n,{relationshipFilter:"flowsTo>", minLevel:1,endNodes:pc}) YIELD path AS pp
WITH [p in NODES(pp) |p.vhas] AS nodelist,
reduce(longi = tofloat(0),n IN nodes(pp)|longi+n.lengte) AS segLen,
reduce(longi = 1,n IN nodes(pp)| longi + 1) AS nbrSeg
RETURN nodelist[size(nodelist)-1] as id, nbrSeg, segLen;

Problem 3 – Rivers

Introduction to Graph Databases 6110/10/22

Query 15. Find all segments reachable from the segment closest to Antwerpen’s Groenplaats

CALL apoc.spatial.geocodeOnce('Groenplaats Antwerpen Flanders Belgium') YIELD location as ini
MATCH (n:Segment)
WITH n, ini,distance(point({longitude:n.source_long, latitude:n.source_lat}),
point({longitude:ini.longitude, latitude:ini.latitude})) as d
WITH n, d order by d asc limit 1
CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path as pp
UNWIND NODES(pp) as p
RETURN p.vhas;

Problem 3 – Rivers

