Introduction to Graph Databases

Neodj

Alejandro Vaisman
avaisman@itba.edu.ar

10/10/22 Introduction to Graph Databases

Agenda

10/10/22

* 10.10.22.
* 13.10.22.
* 17.10.22.
* 20.10.22.
* 24.10.22.
* 27.10.22.

Introduction — Graph data models

Graph DB internals. Introduction to Neo4;j
Querying Neodj databases

Assignment 1. Graphs in relational databases
Assignment 2. Basic Cypher queries
Assignment 3. Advanced Cypher queries

Ciencia de Datos

Querying Neo4j Databases

10/10/22 Introduction to Graph Databases

Property graphs revisited

[
[ID: 6666,

From: 10/10/2000 Name: Juan,
Salary: 8000 [

] ID: 2323,
Name: Irma,
Salary: 5000

[

ID: 1112,
Name: Martin,
Salary: 10000 [
] ID: 3333,
Name: Uma,
Salary: 3000

]

10/10/22 Introduction to Graph Databases

Typical SQL query

Index lookup on Person.id

Index lookup on Companyid Index lookup on Company.name
| Person . !
' Company
I
. | 1d | Name Works In : T
I 7 Id | Name
|1 q. Larry Page Personld | Companyld | Since +
I == T e e ———=a=1 | Google I
i | 2+ JoshuaBloch |~ =+ 1 1) €-14998F--~-""-Z2°7 !
: — == _ : — 2 | Oracle !
: 3 | Brian Goetz =12 11 <€~ 772001 !
1]
I I
N | 3 2! 2010
\ 4 ¥ " |
Y

Select Person.Name

from Person, Company, Worksin

where Company.name=‘Google’

and Worksin.Companyld = Company. Id
and WorkslIn.Personld = Person.Id

10/10/22 Introduction to Graph Databases

Same query on graphs

Index lookup to find root Node

Person 1 < Traverse relation Company 1 /
______________ ;

WORKS m '

_J Vv

Name : Larry Name : Google]

Person 3

QL

Name : Brian
Company 2 W]

Goetz

Name : Oracle]

Name : Joshua
Bloch

The deepest the navigation, the largest the difference with RDBs

10/10/22 Introduction to Graph Databases

GDBS: NEO4J WWWw.neo4j.com

* Open Source.
e Versions for Linux, Win, Mac. Implemented in Java.
 High-level query language: Cypher.

e Customers: Lufthansa, Linkedin, Infolobs, gameSys, eBay,
FiftyThree, Accenture, National Geographic, CISCO, HP, Telenor, etc.

10/10/22 Introduction to Graph Databases

10/10/22

A Neodj graph

A set of nodes

A node has:

1) Zero or + properties: boolean, string, numeric, arrays of the v

« former.

(NI E) : 2) Zero or + Labels: Give a name to a node. u
Directed edges (probably with cycles)

-iiiiEiiiiiEiiiiiEiiiiiEiiiiiEiiiiiiiiiiiiiiEiiiiiiiiiiiiiiiiiii.l

» An edge has: :

l: 1) Zero or + properties: Sams as with nodes.

2) Exactly one Label: To distinguish a relationship between nodes.

Introduction to Graph Databases

Cypher

10/10/22 Introduction to Graph Databases

10/10/22

Cypher /)
To create graphs
4 N

To update/delete that
information

—)

Different from the relational model where:

1) First, the structure is created, to store tuples.

2) FKs are defined at the structural level.
3) Then, tuples are inserted/updated/deleted, and must conform to the structure.

Introduction to Graph Databases

10

Cypher /)

To create graphs
4 N

To update/delete that
information

— J

Nodes and edges are created. Properties, labels, types, are the informational structure, but
no schema is defined.

Topology can be thought as analogous to the FK in the relational model. Defined at the
instance level.

10/10/22 Introduction to Graph Databases

10/10/22

Cypher - nodes

(v :Labelj:Label,...:Labely { Prop;: Value;, Prop,: Value,, ... Prop,: Value, })

A list of K propertie (opcional) associated with the node.

Each property has a name and a value, separated by the
symbol “”

u.n

A list of N labels (opcional) associated with the node, prefixed by “:

A node variable goes between“()”. Identifies a node in an expression.

Introduction to Graph Databases

12

10/10/22

Cypher - nodes

Create a node with no properties/labels:

ID assigned internally, with a different number
each time. Can be reused by the system. Do
not use it in applications.

$ CREATE (v)
RETURN v;

Create another one.

$ CREATE ();
If RETURN is not written, nodes are not displayed

Introduction to Graph Databases

13

10/10/22

Cypher - nodes

Create a node with two labels:

$ CREATE (v :Student:ITBA) ’
RETURN v;

Create a node with one label and 3 properties:

S CREATE (n :Student {Name: 'Juan Polo',
DateOfBirth: '12/04/2000",
Mails: ['jmpolo@itba.edu.ar’, 'juan@yahoo.com'] })

RETURN n;

Introduction to Graph Databases

14

10/10/22

Cypher - nodes

Add labels “English” and

“Spanish” to all nodes previously created.

<id>: 0

~

N

Student ITBA <id>: 2

-

)

<id>: 1

\l

AN

Student <id>: 3

* Name: Juan Polo

e DateOfBirth: 12/04/2000

* Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Introduction to Graph Databases

10/10/22

Cypher - nodes

Add labels “English” and “Spanish” to all nodes previously created.
S MATCH (n)

SET n :English:Spanish

RETURN n;

English Spanish <id>: 0

‘ l English Spanish <id>: 1

Student ITBA English Spanish <id>: 2 Student English Spanish <id>: 3
Name: Juan Polo
DateOfBirth: 12/04/2000
Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Introduction to Graph Databases

16

10/10/22

Cypher - nodes

Delete labels English and Spanish from the node labelled “ITBA”

S
MATCH (n :ITBA)

English Spanish <id>: 0

Student ITBA English Spanish <id>: 2

/

Introduction to Graph Databases

English Spanish <id>: 1

Student English Spanish <id>: 3
Name: Juan Polo
DateOfBirth: 12/04/2000
Mails: jmpolo@itba.edu.ar,juan@yahoo.com

17

Cypher - nodes

Delete labels English and Spanish from the node labelled “ITBA”

S MATCH (n :ITBA)
REMOVE n :English:Spanish

English Spanish <id>: 0

‘ l English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
Name: Juan Polo
* DateOfBirth: 12/04/2000
* Mails: jmpolo@itba.edu.ar,juan@yahoo.com

10/10/22 Introduction to Graph Databases

18

10/10/22

Cypher - nodes

Delete properties DateOfBirth, Name and Age from the nodes labelled “Student”.
Properties are referred to as: node.propertyName

English Spanish <id>: 0 English Spanish <id>: 1

Student ITBA <id>: 2 Student English Spanish <id>: 3
Name: Juan Polo

* DateOfBirth: 12/04/2000
K /K * Mails: jmpolo@itba.edu.ar,juan@yahoo.com

Introduction to Graph Databases

19

10/10/22

Cypher - nodes

Delete properties DateOfBirth, Name and Age from the nodes labelled “Student”.

Properties are referred to as: node.propertyName
S MATCH (n :Student)
REMOVE n.DateOfBirth, n.Name, n.mails, n.edad
RETURN n

Introduction to Graph Databases

Undefined properties are ignored, the do
not produce errors when trying to delete
them. The same for labels.

Note that property “mails” was not
deleted, language is case sensitive.

20

Cypher - Edges

(n)- [e :Type { Prop;: Value,;, Prop,: Value,, ... Prop,: Value, }]-> (v)

A list of K properties (opcional) associated with the node.
Each property has a name and a value, separated by the symbol “:”

Exactly one Type (mandatory) prefixed by “:”

An edge is placed between brackets []. It is defined between to nodes (here, n and v). If
the edge goes from n to v, this is indicated as “-[]->", conversely, itis indicated as “ <- [
] -". A variable name, with local scope, must also be included.

10/10/22 Introduction to Graph Databases

21

10/10/22

Cypher - Edges

Consider a Neo4j database. The nodes already created are:

S CREATE (n :Employee { Name: 'Ariel Casso',
Salary: 10000,
Mails: ['acasso@itba.edu.ar’, 'acasso@yahoo.com'] });

CREATE (n :Employee { Name: 'José Pan’,
Salary: 12000,
Mails: ['jpan@itba.edu.ar'] });

CREATE (n :Employee { Name: 'Luna Garcia',
Salary: 16000,

Mails: ['Igarcia@itba.edu.ar'] });

CREATE (n :Employee { Name: 'Vilma Casso’,
Salary: 8000,
Mails: ['vcasso@itba.edu.ar'] });

Introduction to Graph Databases

22

Cypher - Edges

Create an edge of type «manager of» with no properties, from José Pan to Vilma and Ariel Casso:

Employee <id>: 2
Name: Luna Garcia
Salary: 16000
Mails: Igarcia@itba.edu.ar

Employee <id>: 3

* Name: Vilma Casso

e Salary: 8000

¢ Mails: vcasso@itba.edu.ar

Employee <id>: 1

* Name: José Pan

e Salary: 12000

* Mails: jpan@itba.edu.ar

Employee <id>: 0
* Name: Ariel Casso

e Salary: 10000
\ * Mails: acasso@itba.edu.ar,acasso@yahoo.com /

10/10/22 Introduction to Graph Databases

10/10/22

Cypher - Edges

Create an edge of type «manager_of» with no properties, from José Pan to Vilma and Ariel Casso:

S MATCH (n :Employee {Name: 'José Pan'}), (b :Employee {Name: 'Vilma
Casso'}), (¢ :Employee {Name: 'Ariel Casso'})
CREATE (b) <- [r1 :manager_of] - (n) - [r2 :manager_of] ->(c)
RETURN r1, r2

Employee <id>: 3
Name: Vilma Casso
e Salary: 8000
¢ Mails: vcasso@itba.edu.ar

Employee <id>: 1
Name: José Pan
e Salary: 12000
* Mails: jpan@itba.edu.ar

Employee <id>: 0
Name: Ariel Casso

e Salary: 10000
\ * Mails: acasso@itba.edu.ar,acasso@yahoo.com C/

Introduction to Graph Databases

24

Cypher - Edges

Create another edge of type «manager of» with property “from”, from L. Garciato José Pan

/ Employee <id>: 2 \

¢ Name: Luna Garcia
e Salary: 16000
* Mails: Igarcia@itba.edu.ar

<id>: 2
Luna nager of From:10/10/2000

Garcia

Employee <id>: 3

* Name: Vilma Casso

* Salary: 8000

* Mails: vcasso@itba.edu.ar

Employee <id>: 1

* Name: José Pan

* Salary: 12000

* Mails: jpan@itba.edu.ar

Ariel
Casso

Employee <id>: 0
Name: Ariel Casso
Salary: 10000
Mails: acasso@itba.edu.ar,acasso@yahoo.com

10/10/22 Introduction to Graph Databases

Cypher - Edges

Create another edge of type «manager_of» with property “from”, from L. Garcia to José Pan

S MATCH (n :Employee {Name: 'José Pan'}),(b :Employee {Name: 'Luna Garcia'})
CREATE (n) <- [r :manager_of {From:'10/10/2000'}] - (b)
RETURN N, r, b

/ Employee <id>: 2 \

Name: Luna Garcia
e Salary: 16000
* Mails: Igarcia@itba.edu.ar

<id>: 2
Luna nager Of From: 10/10/2000

Garcia

Employee <id>: 1 \
Name: José Pan
* Salary: 12000
* Mails: jpan@itba.edu.ar
n)

10/10/22 Introduction to Graph Databases

26

10/10/22

Cypher — queries

/

(&

High-level query language based on
pattern matching

\

)

/

Query graphs expressing
informational and/or topological
conditions

Introduction to Graph Databases

27

Cypher — queries

«Match» expresses a pattern that DBMS will try to match.
MATCH OPTIONAL MATCH Works like an «outer join», in SQL, i.e., if
dores not find a match, puts nulls.
OPTIONAL MATCH The WHERE clause is part of the «MATCH or OPTIONAL
MATCH». No order can be assumed for the evaluation of the
conditions in the WHERE clause, this is decided by the
DBMS.

WHERE
RETURN

ORDER BY

LIMIT LIMIT returns only part of the result. SKIP skips the first
results. Unless ORDER BY used, no assumption can be
SKIP done for the discarded results.

The evaluation produces subgraphs, and any portion of the match could be returned.
«RETURN DISTINCT» eliminates duplicates.

Cypher — queries

In addition to the above:

1) If we don’t need to refer to a node, we can use “()”, with no variable.

2) If we don’t need to refer to an edge, we can omit it, e.g.: (a) --> (b) indicates an edge between a and b.
3) If we don’t need to consider the direction of the edge, just use “- -” (without the arrow end)

4) If a mattern matches more tan one label, write the OR condition as, e.g., [:manager_of | :Student]

5) To express a path of any length, use [*]. For a fixed length, e.g., 3, use [*3]

6) To indicate boundaries to the length of a pathm use [*2..4] . To limit only one end, use : [*2 ..]

10/10/22 Introduction to Graph Databases 29

10/10/22

Cypher — Example

The query:

S MATCH (p)-[]->(s)-[]->(x)
RETURN Count(p), s.URL, Count(x)

Returns the following. Why???

Introduction to Graph Databases

30

Cypher — Example

The query:

S MATCH (p)-[]->(s)-[]->(x)
RETURN Count(p), s.URL, Count(x)

Returns the following. Why???

9 A 9
3 B 3
4 C 4
2 D 2
4 E 4
8 F 8

10/10/22 Introduction to Graph Databases

10/10/22

Cypher — Example

S MATCH (p)-[]->(s)-[]->(x)
RETURN Count(p), s, Count(x)

The first clause computes paths where a node
(s) has an incoming and an outgoing edge.
E.g., for «c», these paths are:

(a) -- (c) = (f)
(f) -- (c) > (f)
(b) -- (c) --> (f)
(€) - (c) -->(f)

The second clause groups these 4 paths and returm how many
nodes are connected on each side, to node (¢)., and we
obtain:

4 C 4

Introduction to Graph Databases

32

10/10/22

Cypher — Example

A page X gets a score computed as the sum of
all votes given by the pages that references it.

If a page Z references a page X, Z gives X a
normalized vote computed as the inverse of
the number of pages referenced by Z. To
prevent votes of self-referencing pages, if Z
references X and X references Z, Z gives O
votes to X.

Compute the page rank for each web page.

Introduction to Graph Databases

33

10/10/22

Cypher — Example

Possible solution:

S MATCH (p) --> (r)
WITH p, 1.0 / count(r) as vote
MATCH (p) --> (x)
WHERE NOT ((x) --> (p))
RETURN x, SUM(vote) AS Rank
ORDER BY x.URL

mm The first MATCH - WITH pair computes, for each

A 0.333 node, the inverse of the number of outgoing

B 0.333 edges, and passes this number on to the next
clause.

C 1

D 0.5

E 0.5

F 0.333

Introduction to Graph Databases

34

10/10/22

Cypher — Example

Possible solution:
S MATCH (p) --> (r)

WITH p, 1.0 / count(r) as vote

MATCH (p) --> (x)
WHERE NOT ((x) --> (p))

RETURN x, SUM(vote) AS Rank
ORDER BY x.URL

i

A C
A F

Now, for each of these 6 “p”
° ¢ nodes, look for the paths of
£ - length 1 where no reciprocity
L - exists (e.g., delete A->B and
D E B->A)
E A
E C
F E

Introduction to Graph Databases

35

Cypher — Example

Possible solution

S MATCH (p) --> (r)

WITH p, 1.0 / count(r) as vote

MATCH (p) --> (x)

WHERE NOT ((x) --> (p))

RETURN x.URL, COLLECT (p.URL), SUM(vote) AS

«p» «xX»

ORDER BY x.URL

A C

A F

° ¢ » C A, B, E }_/13 /; 1/3
B D

5 A D B 1/3

D E E D, F E %+1/3
E A F A F 1/3

E C

F E

Finally, groups results by the second
component and sorts.

10/10/22 Introduction to Graph Databases 36

10/10/22

Neod| - Practice

Introduction to Graph Databases

37

1TRA

Instituto Tecnoldgico
de Buenos Aires

Neo4j Practice — The Northwind Database

Regions
Customers Orders Termritories »|RegionlD
RegionDescription
CustomerlD OrderiD TerritorylD
CompanyName [|CustomeriD TermitoryDescription
ContactName EmployeelD RegionID < 521“‘?'%22
ContactTitle OrderDate
Address RequiredDate !
City ShippedDate (0,1) Shippers TerritorylD
Region (0,1) ShipVia ¢
PostalCode (0,1) Freight ShipperlD |
Country ShipName > CompanyName Employees
Phone ShipAddress Phone EmployeelD
Fax (0,1) ShipCity FirstName
ShipRegion (0,1) LastName
ShipPostalCode (0,1) P——— Title
Suppliers I i e TitleOfCourtesy
OrderlD BirthDate
SupplieriD Products |« ProductiD HireDate
CompanyName UnitPrice Address
ContactName ProductiD Quantity City
ContactTitle ProductName Discount Region (0,1)
Address QuantityPerUnit PostalCode
City UnitPrice Country
Region (0,1) UnitsIinStock N - HomePhone
PostalCode < UnitsOnOrder > Categories Extension
Country ReorderLevel CategorylD Photo (0,1)
Phone Discontinued CategoryName Notes (0,1)
Fax (0,1) SupplieriD Description PhotoPath (0,1)
Homepage (0,1) CategorylD Picture ReportsTo (0,1)

10/10/22 Introduction to Graph Databases

Loading the graph

1. Using the LOAD CVS statement

LOAD CSV WITH HEADERS FROM "file:///territories.csv" AS row
CREATE (:Territory {territoryID: row.territoryid,
name: row.territorydescription});

LOAD CSV WITH HEADERS FROM "file:///employees.csv" AS row
CREATE (:Employee{employeelD: row.employeeid,
lastName: row.lastname,firstName: row.firstname, city:row.city,region:row.region,country:row.country});

LOAD CSV WITH HEADERS FROM "file:///employeeterritories.csv" AS row
MATCH (t:Territory {territorylD: row.territoryid})

MATCH (e:Employee {employeelD: row.employeeid})
MERGE (e)-[:AssignedTo]->(t)

10/10/22 Introduction to Graph Databases

39

file:///D:/territories.csv
file:///D:/employees.csv
file:///D:/employeeterritories.csv

Loading the graph

2. Connecting to a Postgres DB

* Copy database driver to the “Plugins” folder

* APOC library must also be copied in the “Plugins” folder

* Check the right APOC version for your Neo4j version!!!

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url

%% NorthwindOLTP: your database in the PostgreSQL instance
%% url: to be used in the procedure call

CALL apoc.load.jdbc(url,"select * from categories") YIELD row
% the query string can also mention just a table

% row: a “row variable” just as before

RETURN row.description,row.categoryname

This lists the table “categories” in Neo4;.
We can use this also for loading data into Neo4,j.

10/10/22 Introduction to Graph Databases

40

Loading the graph

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url
CALL apoc.load.jdbc(url,"select * from products") YIELD row

CREATE (:Product {productID: row.productid,productName:row.productname, supplier: row.supplierid, category:row.categoryid,
gtyperunit:row.quantityperunit})

WITH "jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres" as url
CALL apoc.load.jdbc(url,"select * from suppliers") YIELD row

CREATE (:Supplier {supplierID: row.supplierid, supplierName:row.companyname, city:row.city, region:row.region, country:row.country})

10/10/22 Introduction to Graph Databases

41

Loading the graph

3. With Cypher

MATCH(s:Supplier)
MATCH(p:Product) where p.supplier=s.supplierlD

MERGE (s)-[:Supplies]->(p)

10/10/22 Introduction to Graph Databases

42

Loading the graph

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/city.csv" AS row
CREATE (:City {cityID:row.citykey,cityName: row.cityname});

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/NWdata/territories.csv" AS row
CREATE (:Territory {territorylID: row.territorylD, name: row.territoryDescription});

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:/NWdata/employee-territories.csv" AS row
MATCH (territory:Territory{territorylD: row.territorylD})

MATCH (employee:Employee {employeelD: row.employeelD})

MERGE (employee)-[:AssignedTo]->(territory);

Introduction to Graph Databases

43

10/10/22

Loading the graph

-- Create a view to put together orders and order details

CREATE VIEW orderl AS (SELECT o.orderid AS orderID,o.orderdate AS
orderDate,o.shippeddate AS shippedDate,o.shipname AS shipName, sum(quantity)
AS totgty,sum(unitprice*quantity) AS totAmount FROM orders o,orderdetails ol
WHERE o.orderid=01.orderid

group by o.orderid,o.orderdate,o.shippeddate,o.shipname

order by orderid asc)

SELECT * INTO ordershg FROM orderl

COPY ordershg to 'C:\tmp\ordershg.csv' delimiter ',' CSV header USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:/NWdata/ordershg.csv" AS row

CREATE (:Order {orderID: row.orderid, orderDate: row.orderdate,

ShippedDate: row.shippeddate,shipName:row.shipname,totalQty:row.totqgty, totalAmount:row.totamount});

You can also connect to a PostgreSQL database

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from
ordershg') YIELD row

CREATE (:Order {orderlID: row.orderid, orderDate: row.orderdate, ShippedDate:
row.shippeddate,shipName:row.shipname,totalQty:row.totqty, totalAmount:row.totamount});

Introduction to Graph Databases

44

Loading the graph

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:/NWdata/orders.csv" AS row
MATCH (order:Order {orderlID: row.orderID})

MATCH (employee:Employee {employeelD: row.employeelD})
MERGE (employee)-[:Sold]->(order);

LOAD CSV WITH HEADERS FROM "file:/NWdata/order-details.csv" AS row

MATCH (order:Order {orderlID: row.orderID})

MATCH (product:Product {productID: row.productID})

MERGE (order)-[:Contains{unitPrice:row.unitPrice,quantity:row.quantity, discount:row.discount}]->(product);

USING PERIODIC COMMIT

LOAD CSV WITH HEADERS FROM "file:/NWdata/products.csv" AS row
MATCH (product:Product {productID: row.productID})

MATCH (supplier:Supplier {supplierID: row.supplieriD})

MERGE (supplier)-[:Supplies]->(product);

CALL apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select * from employees') YIELD row
MATCH (employee:Employee {employeelD: row.employeeid})

MATCH (employeel:Employee {employeelD: row.reportsto})

MERGE (employee)-[:ReportsTo]->(employeel);

10/10/22 Introduction to Graph Databases 45

*(12)

10/10/22

Schema: Northwindhg database

Ordert) I Tertory() YR UM Gategory() IR customert YR rocuct JRCETIO N O suppier) K Givi)

AssignedTo(1)

B\t

Y
Dy,
a”ss

Customer

Category

hasca\egow

Introduction to Graph Databases

46

Problem 1. Northwindhg database

* Query 1. List products and their unit price.

MATCH (p:Product)
RETURN p.productName, p.unitPrice
ORDER BY p.unitPrice DESC

* Query 2. List information about products 'Chocolade' & 'Pavlova'.

MATCH (p:Product)
WHERE p.productName IN ['Chocolade’,'Paviova']
RETURN p

* Query 3. List information about products with names starting with a "C”, whose unit price is greater than 50.

MATCH (p:Product)
WHERE p.productName STARTS WITH "C" AND tofloat(p.unitPrice) > 50
RETURN p.productName, p.unitPrice;

%% Try without "tofloat”
* Query 4. Same as 3, but considering the sales price, not the product’s price.

MATCH (p:Product) <- [c:Contains] - (0:Order)
WHERE p.productName STARTS WITH "C" AND tofloat(c.unitPrice) > 50
RETURN distinct p.productName, p.unitPrice, c.unitPrice;

10/10/22 Introduction to Graph Databases

47

Problem 1. Northwindhg database

* Query 5. Total purchased by customer and product.

MATCH (c:Customer)

OPTIONAL MATCH (p:Product)<-[pu:Contains]-(:Order)-[:Purchased]->(c)

RETURN c.customerName, p.productName,tofloat(sum(pu.unitPrice) * pu.quantity) as volume
ORDER BY volume desc

* Query 6. Top 10 employees, considering the number of orders sold.
MATCH (:Order)<-[:Sold]-(e:Employee)

RETURN e.firstName,e.lastName, count(*) AS Ordenes
ORDER BY Ordenes DESC LIMIT 10

* Query 7. For each employee, list the assigned territories.

MATCH (t:Territory)<-[:AssignedTo]-(e:Employee)
RETURN e.lastName, COLLECT(t.name);

* Query 8. For each city, list the companies settled in that city.

MATCH (c:City)<-[:locatedIn]-(c1:Customer)
RETURN c.cityname, COLLECT(c1.customerName);

10/10/22 Introduction to Graph Databases

48

Problem 1. Northwindhg database

* Query 10. How many persons an employee reports to, either directly or transitively?

MATCH (report:Employee)
OPTIONAL MATCH (e)<-[rel:ReportsTo*]-(report)
RETURN report.lastName AS el, COUNT(rel) AS reports

* Query 11. To whom do persons called “Robert” report to?
MATCH (e:Employee)<-[:ReportsTo*]-(sub:Employee)
WHERE sub.firstName = 'Robert'

RETURN e.firstName,e.lastName,sub.lastName

* Query 12. Who does not report to anybody?

MATCH (e:Employee)
WHERE NOT (e)-[:ReportsTo]->()
RETURN e.firstName as TopBossFirst, e.lastName as TopBossLast

* Query 13. Suppliers, number of categories they supply, and a list of such categories
MATCH (s:Supplier)-->(:Product)-->(c:Category)

WITH s.supplierName as Supplier, collect(distinct c.categoryName) as Categories

WITH Supplier, Categories, size(Categories) AS Cantidad ORDER BY Cantidad DESC
RETURN Supplier, Cantidad, Categories;

10/10/22 Introduction to Graph Databases

49

Problem 1. Northwindhg database

* Query 14. Suppliers who supply beverages

MATCH (c:Category {categoryName:"Beverages"})<--(:Product)<--(s:Supplier)
RETURN DISTINCT s.supplierName as ProduceSuppliers;

* Query 15. Customer who purchases the largest amount of beverages

MATCH (cust:Customer)<-[:Purchased]-(:Order)-[o0:Contains]->(p:Product), (p)-[:hasCategory]->
(c:Category{categoryName:"Beverages"})

RETURN cust.customerName as CustomerName, SUM(o.quantity)

LIMIT 1

* Query 16. List the 5 most popular products (considering the number of orders)

MATCH (c:Customer)<-[:Purchased]-(o:Order)-[o1:Contains]->(p:Product)
RETURN c.customerName, p.productName, count(o1) as orders
ORDER BY orders desc LIMIT 5

10/10/22 Introduction to Graph Databases

Problem 1. Northwindhg database

* Query 17. Products ordered by customers from the same country than their suppliers

MATCH (c:Customer) -[r:locatedIn]->(cy:City)-[:belongsTo]->(:Region)-[:isIn]->(co:Country)
WITH co, ¢ MATCH (s:Supplier) WHERE co.countryname = s.country

WITH s, co, c MATCH(s)-[su:Supplies]-(p:Product)<-[:Contains]-(o:Order)-[:Purchased]->(c)
RETURN c.customerName,s.supplierName,co.countryname,p.productName

OR
MATCH (c:Customer) -[r:locatedIn]->(cy:City)-[:belongsTo]->(:Region)-[:isIn]->(co:Country)

WITH co, ¢

MATCH(s:Supplier)-[su:Supplies]-(p:Product)<-[:Contains]-(o:Order)-[:Purchased]->(c) WHERE co.countryname = s.country
RETURN c.customerName,s.supplierName,co.countryname,p.productName

10/10/22 Introduction to Graph Databases

51

10/10/22

Problem 2 — MusicBrainz database

3 A

= N "4

$ call db.schema

o) IR Unknown?) 3R Country) =0
20 RELEASED INQ)

TO —

~ REFERS

Introduction to Graph Databases

52

1TBA

> Tecnolé

Buenos Air

Problem 2 — MusicBrainz database

Query 1. Compute the number of releases per artist.

MATCH (r:ReleaseFact)-[]->(a:ArtistCredit)-[]->(al:Artist)
RETURN al.name, al.gender

Query 2. Compute the number of releases per artist and per year.
Query 3. Compute the number of events per artist.

MATCH (e:EventFact)-[r:PERFORMED _BY]->(a:Artist)
RETURN a.name, count(*)

Query 4. Compute the number of times the artist performed in each event.

Query 5. For each (event, artist, year) triple, compute the number of times the
artist performed in an event on an year.

10/10/22 Introduction to Graph Databases

ITBA

Bu

Problem 2 — MusicBrainz database

Query 6. Same as Query 5, for artists in the United Kingdom and events happened after year 2006.

Query 7. Compute the number of releases, per language, in the UK.

Query 8. Compute, for each pair of artists, the number of times they have performed together at least twice in an
event.

Query 9. Compute the triples of artists, and the number of times they have performed together in an event, if this
number is at least 3.

MATCH (al:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)

WHERE al.id < a2.id

WITH a1,a2,COLLECT(e) AS events WHERE SIZE(events) > 2

MATCH (al:Artist)<-[]-(e1:EventFact)-[]->(a2:Artist)

MATCH (a3:Artist)<-[]-(e1) WHERE a2.id < a3.id

WITH al.name as namel, a2.name as nhame2,a3.name as name3,
COUNT(el.idEvent) as nbrTimes WHERE nbrTimes > 2

RETURN namel,name2,name3, nbrTimes ORDER BY nbrTimes DESC

10/10/22 Introduction to Graph Databases 54

1TBA

> Tecnolé

Buenos Air

Problem 2 — MusicBrainz database

Query 10. Compute the quadruples of artists, and the number of times they have performed together in an event,
if this number is at least 3.

Query 11. Compute the pairs of artists that have performed together in at least two events and that have worked
together in at least one release, returning the number of events and releases together.

Query 12. Compute the of artists who released a record and performed in at least an event, and the year(s) this
happened.

10/10/22 Introduction to Graph Databases 55

1TRA

Instituto Tecnoldgico
de Buenos Aires

Problem 3 — Rivers

Database Information rivers$

Use database To enjoy the full Neo4j Browser experience, we advise you touse ~ Neo4j Browser Sync

rivers - default v

call db.schema.visualization y

Node Labels
Relationship Types Table

A flowsTo
Property Keys

10/10/22 Introduction to Graph Databases

1ITRA

Instituto Tecnoldgico
de Buenos Aires

10/10/22

Problem 3 — Rivers

Introduction to Graph Databases

57

1TBA

1STIT ecnolo
e Buenos Aires

Problem 3 — Rivers

Query 6. Find the number of splits in the downstream path of segment 6020612

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p

MATCH (p)-[:flowsTo]->(r:Segment)

WITH p, count(DISTINCT r) as co WHERE co > 1

RETURN count(p)

10/10/22 Introduction to Graph Databases

N
I

Bu

TRA
Problem 3 — Rivers

Query 10. Find the branches of downstream flow starting at a given position (identifed by a segment's
vhas), together with the length and number of segments of each branch.

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p

MATCH (p)-[:flowsTo]->(r:Segment)

WITH r, count(DISTINCT p) as co WHERE co =1

WITH collect(r) as pc

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1,endNodes:pc}) YIELD path AS pp
WITH [p in NODES(pp) | p.vhas] AS nodelist,

reduce(longi= tofloat(0),n IN nodes(pp) | longi+n.lengte) AS seglen,

reduce(longi= 1,n IN nodes(pp)| longi + 1) AS nbrSeg

RETURN nodelist[size(nodelist)-1] as id, nbrSeg, seglLen

UNION

10/10/22 Introduction to Graph Databases

59

N
I

Bu

TRA
Problem 3 — Rivers

Query 10. Find the branches of downstream flow starting at a given position (identifed by a segment's
vhas), together with the length and number of segments of each branch.

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.spanningTree(n, {relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path AS pp
UNWIND NODES(pp) as p

MATCH (p)-[:flowsTo]->(r:Segment)

WITH r, count(DISTINCT p) as co WHERE co > 1

WITH collect(r) as pc

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.expandConfig(n,{relationshipFilter:"flowsTo>", minLevel:1,endNodes:pc}) YIELD path AS pp
WITH [p in NODES(pp) | p.vhas] AS nodelist,

reduce(longi = tofloat(0),n IN nodes(pp) | longi+n.lengte) AS seglLen,

reduce(longi = 1,n IN nodes(pp)| longi + 1) AS nbrSeg

RETURN nodelist[size(nodelist)-1] as id, nbrSeg, seglLen;

10/10/22 Introduction to Graph Databases

60

ITBA

Bu

Problem 3 — Rivers

Query 15. Find all segments reachable from the segment closest to Antwerpen’s Groenplaats

CALL apoc.spatial.geocodeOnce('Groenplaats Antwerpen Flanders Belgium') YIELD location as ini
MATCH (n:Segment)

WITH n, ini,distance(point({longitude:n.source_long, latitude:n.source_lat}),
point({longitude:ini.longitude, latitude:ini.latitude})) as d

WITH n, d order by d asc limit 1

CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD path as pp
UNWIND NODES(pp) as p

RETURN p.vhas;

10/10/22 Introduction to Graph Databases

61

