
SQL Server

Temporal Databases

Consider the above temporal conceptual schema

• Define a relational schema corresponding to the conceptual schema.
• Ensure the following integrity constraints.

(1) An employee works in at most one department at any point in time.
(2) At any point in time an employee cannot work more than once in a project.
(3) The lifecycle of affiliation is included in the lifecycle of employee
(4) The lifecycle of an employee is equal to the union of his/her affiliations.
(5) Employees have a contiguous lifecycle.
(6) The lifecycle of an employee is equal to the union of his/her affiliations, now

taking into account that the lifecycle of employees is contiguous.

• Write the following queries in SQL:

(1) Give the name of managers living currently in Houston
(2) Give the name of employees working currently in the ‘Research’ department

having a salary greater or equal than 45000
(3) Give the name of current employees who does not work currently in any de-

partment
(4) Give the name of the employee(s) that had the highest salary in 1/1/2002
(5) Provide the salary and affiliation history for all employees

1

(6) Give the name of employees and the period of time in which they were super-
visors but did not work in any project during the same period

(7) Give the name of supervisors who had work on a project at some time
(8) Give the name of employees and the date they changed their affiliation
(9) Give the name of employees and the periods they worked on any project

(10) Give the history of the maximum salary
(11) Give by department the history of the maximum salary
(12) Give the history of the number of projects of a department
(13) Give the name of employees and the periods they worked on all projects of

their department

2

Relational Schema

• Employee(SSN, FName, MInit, LName, BirthDate, Sex)
• EmployeeLifecycle(SSN, FromDate, ToDate)

SSN references Employee(SSN)
• EmployeeSalary(SSN, Salary, FromDate, ToDate)

SSN references Employee(SSN)
• EmployeeAddress(SSN, Street, City, Zip, Country, FromDate, ToDate)

SSN references Employee(SSN)
• Engineer(SSN, EngineerType, FromDate, ToDate)

SSN references Employee(SSN)
In this table the lifecycle of Engineer is kept as well as the attribute EngineerType.
There will be redundancy if the lifecycle of Engineer is not continuous.

• EngineerDiplomas(SSN, Diploma)
SSN references Engineer(SSN)

• AdministrativeLifecycle(SSN, FromDate, ToDate)
SSN references Employee(SSN)

• AdminDependent(SSN, Name, Relationship, Sex, BirthDate, FromDate, ToDate)
SSN references AdministrativeLifecycle(SSN)

It is supposed that an employee does not have two dependents of the same name
and the same relationship. An alternative will be to put BirthDate instead of
Relationship as part of the key.

• Supervision(SSN, SuperSSN, FromDate, ToDate)
SSN references Employee(SSN)
SuperSSN references Employee(SSN)

• Affiliation(SSN, DNumber, FromDate, ToDate)
SSN references Employee(SSN)

• Department(DNumber, DName, MgrSSN, MgrStartDate, FromDate, ToDate)
MgrSSN references Employee(SSN)

It is supposed that the lifecycle of departments is continuous. In this case an
additional table for the lifecycle is not necessary.

• DeptLocations(DNumber, Location, FromDate, ToDate)
DNumber references Department(DNumber)

• DepartmentBudget(DNumber, DBudget, FromDate, ToDate)
DNumber references Department(DNumber)

• DepartmentNbEmp(DNumber, NbEmp, FromDate, ToDate)
DNumber references Department(DNumber)

• Project(PNumber, PName, PLocation, PBudget, FromDate, ToDate)
It is supposed that the lifecycle of Project is continuous.

• Controls(PNumber, DNumber, FromDate, ToDate)
PNumber references Project(PNumber)
DNumber references Department(DNumber)

• WorksOn(SSN, PNumber, Hours, FromDate, ToDate)
PNumber references Project(PNumber)
SSN references Employee(SSN)

It is supposed that the temporality of attribute Hours is the same as the lifecycle
of the association. In this case two different tables are not necessary. To obtain
the lifecycle of the association independently of the attribute hours a temporal
projection is needed.

3

Example Database

Partial schema where not all entities and attributes are taken into account.

Employee
SSN FName MInit LName BirthDate Sex

123456789 John B Smith 09-05-1955 M
333445555 Franklin T Wong 08-12-1945 M
999887777 Alicia J Zelaya 19-07-1958 F
987654321 Jennifer S Wallace 20-06-1931 F
666884444 Ramesh K Narayan 15-09-1952 M
453453453 Joyce A English 31-07-1962 F
987987987 Ahmad V Jabbar 29-03-1959 M
888665555 James A Borg 10-11-1927 M

EmployeeLifecycle
SSN FromDate ToDate

123456789 01-01-1985 01-01-2079
333445555 01-01-1982 01-01-2079
999887777 01-01-1985 01-01-2079
987654321 01-01-1982 01-01-2079
666884444 01-01-1985 01-01-2079
453453453 01-01-1985 01-01-2079
987987987 01-01-1985 01-01-2079
888665555 01-01-1980 01-01-2079

EmployeeSalary
SSN Salary FromDate ToDate

123456789 30000 01-01-1985 01-01-2079
333445555 40000 01-01-1982 01-01-1983
333445555 45000 01-01-1983 01-01-2079
999887777 25000 01-01-1985 01-01-2079
987654321 43000 01-01-1982 01-01-2079
666884444 38000 01-01-1985 01-01-2079
453453453 25000 01-01-1985 01-01-2079
987987987 25000 01-01-1985 01-01-2079
888665555 55000 01-01-1980 01-01-1981
888665555 58000 01-01-1981 01-01-2079

EmployeeAddress
SSN Street City Zip State FromDate ToDate

123456789 731 Fondren Houston 1000 TX 01-01-1985 01-01-2079
333445555 638 Voss Houston 1000 TX 01-01-1982 01-01-2079
999887777 3321 Castle Spring 1000 TX 01-01-1985 01-01-2079
987654321 291 Berry Bellaire 1000 TX 01-01-1982 01-01-2079
666884444 975 Fire Oak Humble 1000 TX 01-01-1985 01-01-2079
453453453 5631 Rice Houston 1000 TX 01-01-1985 01-01-2079
987987987 980 Dallas Houston 1000 TX 01-01-1985 01-01-2079
888665555 450 Stone Houston 1000 TX 01-01-1980 01-01-2079

Supervision
SSN SuperSSN FromDate ToDate

123456789 333445555 01-01-1985 01-01-2079
333445555 888665555 01-01-1982 01-01-2079
999887777 987654321 01-01-1985 01-01-2079
987654321 888665555 01-01-1982 01-01-2079
666884444 333445555 01-01-1985 01-01-2079
453453453 333445555 01-01-1985 01-01-2079
987987987 987654321 01-01-1985 01-01-2079

Affiliation
SSN DNumber FromDate ToDate

123456789 1 01-01-1985 01-01-1986
123456789 5 01-01-1986 01-01-2079
333445555 4 01-01-1982 01-01-1984
333445555 5 01-01-1984 01-01-2079
999887777 4 01-01-1985 01-01-2079
987654321 4 01-01-1982 01-01-2079
666884444 5 01-01-1985 01-01-2079
453453453 5 01-01-1985 01-01-2079
987987987 4 01-01-1985 01-01-2079
888665555 1 01-01-1980 01-01-2079

4

Department
DNumber DName MgrSSN MgrStartDate FromDate ToDate

1 Headquarters 888665555 19-06-1980 01-01-1980 01-01-2079
4 Administration 987654321 01-01-1982 01-01-1981 01-01-2079
5 Research 333445555 22-05-1984 01-01-1982 01-01-2079

DepartmentNbEmp
DNumber NbEmp FromDate ToDate

5 4 01-01-1980 01-01-2079
4 3 01-01-1980 01-01-2079
1 1 01-01-1980 01-01-2079

DeptLocations
DNumber DLocation FromDate ToDate

1 Houston 01-01-1980 01-01-2079
4 Stafford 01-01-1980 01-01-2079
5 Bellaire 01-01-1980 01-01-2079
5 Sugarland 01-01-1980 01-01-2079
5 Houston 01-01-1980 01-01-2079

Project
PNumber PName PLocation FromDate ToDate

1 ProductX Bellaire 01-01-1980 01-01-2079
2 ProductY Sugarland 01-01-1980 01-01-2079
3 ProductZ Houston 01-01-1980 01-01-2079
10 Computerization Stafford 01-01-1980 01-01-2079
20 Reorganization Houston 01-01-1980 01-01-2079
30 Newbenefits Stafford 01-01-1980 01-01-2079

Controls
PNumber DNumber FromDate ToDate

1 5 01-01-1980 01-01-2079
2 5 01-01-1980 01-01-2079
3 5 01-01-1980 01-01-2079
10 4 01-01-1980 01-01-2079
20 1 01-01-1980 01-01-2079
30 4 01-01-1980 01-01-2079

WorksOn
SSN PNumber Hours FromDate ToDate

123456789 1 32.5 01-01-1985 01-01-2079
123456789 2 7.5 01-01-1985 01-01-2079
333445555 1 10 01-01-1982 01-01-2000
333445555 2 10 01-01-1982 01-01-2002
333445555 3 20 01-01-2005 01-01-2079
453453453 1 20 01-01-1985 01-01-2079
453453453 2 20 01-01-1985 01-01-2079
666884444 3 40 01-01-1985 01-01-2079
888665555 20 30.0 01-01-1983 01-01-2079
987654321 10 5.0 01-01-1982 01-01-2000
987654321 20 15.0 01-01-1982 01-01-2001
987654321 30 20.0 01-01-1982 01-01-2002
987987987 10 35.0 01-01-1985 01-01-2079
987987987 30 5.0 01-01-1985 01-01-2079
999887777 10 10.0 01-01-1985 01-01-2079
999887777 30 30.0 01-01-1985 01-01-2079

5

Constraints

(1) An employee works in at most one department at any point in time.
In other terms SSN is a sequenced primary key for Affiliation.

create trigger Seq_PK_Affiliation on Affiliation

after insert, update as

if exists (select * from Inserted A1

where 1 < (select count(*) from Affiliation A2

where A1.SSN = A2.SSN

and A1.FromDate < A2.ToDate and A2.FromDate < A1.ToDate))

begin

raiserror 13000

’An employee works in at most one department at any point in time’

rollback transaction

end

(2) At any point in time an employee cannot work more than once in a project.
In other terms (SSN,PNumber) is a sequenced primary key for WorksOn

create trigger Seq_PK_WorksOn on WorksOn

after insert, update as

if exists (select * from Inserted W1

where 1 < (select count(*) from WorksOn W2

where W1.SSN = W2.SSN and W1.PNumber = W2.PNumber

and W1.FromDate < W2.ToDate and W2.FromDate < W1.ToDate))

begin

raiserror 13000

’At any point in time an employee cannot work more than once in a project’

rollback transaction

end

(3) The lifecycle of affiliation is included in the lifecycle of employee.
In the following triggers it is assumed that the table EmployeeLifecycle is coalesced.
Therefore, every line in Affiliation must be covered by one line in EmployeeLifecycle.

create trigger Seq_FK_Affiliation_EmployeeLifecycle_1 on Affiliation

after insert, update as

if exists (select * from Inserted A

where not exists (select * from EmployeeLifecycle E

where A.SSN = E.SSN

and E.FromDate <= A.FromDate and A.ToDate <= E.ToDate))

begin

raiserror 13000

’The lifecycle of affiliation must be included in the lifecycle of employee’

rollback transaction

end

create trigger Seq_FK_Affiliation_EmployeeLifecycle_2 on EmployeeLifecycle

after update, delete as

if exists (select * from Affiliation A

where A.SSN IN (select SSN from Deleted)

and not exists (select * from EmployeeLifecycle E

where A.SSN = E.SSN

and E.FromDate <= A.FromDate and A.ToDate <= E.ToDate))

begin

raiserror 13000

’The lifecycle of affiliation must be included in the lifecycle of employee’

rollback transaction

end

6

(4) The lifecycle of an employee is equal to the union of his/her affiliations. It is
supposed that the previous trigger is activated, therefore it is sufficient to monitor
that an employee must be affiliated to a department throughout his/her lifecycle.

create trigger Seq_FK_EmployeeLifecycle_Affiliation_1 on Affiliation

after update, delete as

if exists (select * from EmployeeLifecycle E

where E.SSN in (select SSN from Deleted)

and not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate <= E.FromDate and E.FromDate < A.ToDate)

or not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate < E.ToDate and E.ToDate <= A.ToDate)

or exists (select * from Affiliation A

where E.SSN = A.SSN

and E.FromDate < A.ToDate and A.ToDate < E.ToDate

and not exists (select * from Affiliation A2

where A2.SSN = A.SSN

and A2.FromDate <= A.ToDate and A.ToDate < A2.ToDate)))

begin

raiserror 13000

’An employee must be affiliated to a department throughout his/her lifecycle’

rollback transaction

end

create trigger Seq_FK_EmployeeLifecycle_Affiliation_2 on EmployeeLifecycle

after insert, update as

if exists (select * from Inserted E

where not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate <= E.FromDate and E.FromDate < A.ToDate)

or not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate < E.ToDate and E.ToDate <= A.ToDate)

or exists (select * from Affiliation A

where E.SSN = A.SSN

and E.FromDate < A.ToDate and A.ToDate < E.ToDate

and not exists (select * from Affiliation A2

where A2.SSN = A.SSN

and A2.FromDate <= A.ToDate and A.ToDate < A2.ToDate)))

begin

raiserror 13000

’An employee must be affiliated to a department throughout his/her lifecycle’

rollback transaction

end

(5) Employees have a contiguous lifecycle.

alter table EmployeeLifecycle

drop constraint PK_EmployeeLifecycle

alter table EmployeeLifecycle

add constraint PK_EmployeeLifecycle primary key (SSN)

(6) The lifecycle of an employee is equal to the union of his/her affiliations, now taking
into account that the lifecycle of employees is contiguous.
It is necessary to ensure that (1) the affiliations of an employee define a contiguous
history, and (2) an employee must be affiliated to a department throughout his/her
lifecycle.

7

The following trigger ensures that the affiliations of an employee define a contiguous
history.

create trigger Contiguous_Hist_Affiliation on Affiliation

after insert, update, delete as

if exists (select * from Affiliation A1, Affiliation A2

where A1.SSN = A2.SSN and A1.ToDate < A2.FromDate

and not exists (select * from Affiliation A3

where A1.SSN = A3.SSN

and ((A3.FromDate <= A1.ToDate and A1.ToDate < A3.ToDate)

or (A3.FromDate < A2.FromDate and A2.FromDate <= A3.ToDate))))

begin

raiserror 13000

’The affiliations of an employee define a contiguous history’

rollback transaction

end

The following two triggers replaces those of question (4).

alter trigger Seq_FK_EmployeeLifecycle_Affiliation_1 on Affiliation

after update, delete as

if exists (select * from EmployeeLifecycle E

where E.SSN in (select SSN from Deleted)

and not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate <= E.FromDate and E.FromDate < A.ToDate)

or not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate < E.ToDate and E.ToDate <= A.ToDate)))

begin

raiserror 13000

’An employee must be affiliated to a department throughout his/her lifecycle’

rollback transaction

end

alter trigger Seq_FK_EmployeeLifecycle_Affiliation_2 on EmployeeLifecycle

after insert, update as

if exists (select * from Inserted E

where not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate <= E.FromDate and E.FromDate < A.ToDate)

or not exists (select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate < E.ToDate and E.ToDate <= A.ToDate)))

begin

raiserror 13000

’An employee must be affiliated to a department throughout his/her lifecycle’

rollback transaction

end

8

Queries

(1) Give the name of the managers living currently in Houston

select E.FName, E.LName

from Employee E, EmployeeAddress A, Department D

where E.SSN = A.SSN and E.SSN = D.MgrSSN

and A.City = ’Houston’

and A.FromDate <= getdate() and getdate() < A.ToDate

and D.FromDate <= getdate() and getdate() < D.ToDate

(2) Give the name of employees working currently in the ‘Research’ department and
having a salary greater or equal than 45000

select E.FName, E.LName

from Employee E, EmployeeSalary S, Affiliation A, Department D

where E.SSN = S.SSN and E.SSN = A.SSN and A.DNumber = D.DNumber

and D.DName = ’Research’ and S.Salary >= 45000

and S.FromDate <= getdate() and getdate() < S.ToDate

and A.FromDate <= getdate() and getdate() < A.ToDate

(3) Give the name of current employees who do not work currently in any department

select distinct E.FName, E.LName

from Employee E, EmployeeLifecycle L

where E.SSN = L.SSN

and L.FromDate <= getdate() and getdate() < L.ToDate

and not exists (

select * from Affiliation A

where E.SSN = A.SSN

and A.FromDate <= getdate() and getdate() < A.ToDate)

(4) Give the name of the employee(s) that had the highest salary on 1/1/2002

select E.FName, E.LName

from Employee E, EmployeeSalary S

where E.SSN = S.SSN

and salary = (select max(salary) from EmployeeSalary

where FromDate <= ’2002-01-01’ and ’2002-01-01’ < ToDate)

and S.FromDate <= ’2002-01-01’ and ’2002-01-01’ < S.ToDate

(5) Provide the salary and affiliation history for all employees

create function minDate

(@one smalldatetime, @two smalldatetime)

returns smalldatetime as

begin

return CASE WHEN @one < @two then @one else @two end

end

go

create function maxDate

(@one smalldatetime, @two smalldatetime)

returns smalldatetime as

begin

return CASE WHEN @one > @two then @one else @two end

end

go

select E.FName, E.LName, D.DName, S.Salary,

’Start Date’ = dbo.maxDate(S.FromDate,A.FromDate),

’End Date’= dbo.minDate(S.ToDate,A.ToDate)

from Employee E, EmployeeSalary S, Affiliation A, Department D

9

where E.SSN = S.SSN and E.SSN = A.SSN and A.DNumber = D.DNumber

and dbo.maxDate(S.FromDate,A.FromDate) <

dbo.minDate(S.ToDate,A.ToDate)

order by E.FName, E.LName

(6) Give the name of employees and the period of time in which they were supervisors
but did not work in any project during the same period

--Case 1

select S.SuperSSN, S.FromDate, W1.FromDate as ToDate

from Supervision S, WorksOn W1

where S.SuperSSN = W1.SSN

and S.FromDate < W1.FromDate and W1.FromDate < S.ToDate

and not exists (select * from WorksOn W2 where S.SuperSSN = W2.SSN

and S.FromDate < W2.ToDate and W2.FromDate < W1.FromDate)

union

--Case 2

select S.SuperSSN, W1.ToDate as FromDate, S.ToDate

from Supervision S, WorksOn W1

where S.SuperSSN = W1.SSN

and S.FromDate < W1.ToDate and W1.ToDate < S.ToDate

and not exists (select * from WorksOn W2 where S.SuperSSN = W2.SSN

and W1.ToDate < W2.ToDate and W2.FromDate < S.ToDate)

union

--Case 3

select S.SuperSSN, W1.ToDate as FromDate, W2.FromDate as ToDate

from Supervision S, WorksOn W1, WorksOn W2

where S.SuperSSN = W1.SSN and S.SuperSSN = W2.SSN and W1.ToDate < W2.FromDate

and S.FromDate < W1.ToDate and W2.FromDate < S.ToDate

and not exists (select * from WorksOn W3 where S.SuperSSN = W3.SSN

and W1.ToDate < W3.ToDate and W3.FromDate < W2.FromDate)

union

--Case 4

select SuperSSN, FromDate, ToDate from Supervision S

where not exists (select * from WorksOn W where S.SuperSSN=W.SSN

and S.FromDate < W.ToDate and W.FromDate < S.ToDate)

(7) Give the name of supervisors who had work on a project at some time

select distinct E.FName, E.LName

from Employee E, Supervision S, WorksOn W

where E.SSN = S.SuperSSN and E.SSN = W.SSN

(8) Give the name of employees and the date they changed their affiliation

select distinct E.FName, E.LName, A1.ToDate

from Employee E, Affiliation A1, Affiliation A2

where E.SSN = A1.SSN and E.SSN = A2.SSN

and A1.ToDate = A2.FromDate and A1.DNumber <> A2.DNumber

(9) Give the name of employees and the periods they worked on any project

select distinct E.SSN, E.FName, E.LName, F.FromDate, L.ToDate

from Employee E, WorksOn F, WorksOn L

where E.SSN = F.SSN and F.SSN = L.SSN and F.FromDate < L.ToDate

and not exists (select * from WorksOn M

where M.SSN = F.SSN

and F.FromDate < M.FromDate and M.FromDate <= L.ToDate

and not exists (select * from WorksOn T1

where T1.SSN = F.SSN

and T1.FromDate < M.FromDate and M.FromDate <= T1.ToDate))

and not exists (select * from WorksOn T2

10

where T2.SSN = F.SSN

and ((T2.FromDate < F.FromDate and F.FromDate <= T2.ToDate)

or (T2.FromDate <= L.ToDate and L.ToDate < T2.ToDate)))

(10) Give the history of the maximum salary

-- First step: Construct intervals during which no salary change occurred

WITH Instants(Instant) AS (

select distinct E.FromDate from EmployeeSalary E

union select distinct E.ToDate from EmployeeSalary E),

Intervals(FromDate,ToDate) AS (

select distinct I1.Instant, I2.Instant

from Instants I1, Instants I2

where I1.Instant < I2.Instant

and not exists (select * from Instants I3

where I1.Instant < I3.Instant

and I3.Instant < I2.Instant)),

-- Second step: Compute the maximum salary for these intervals

TempMax(SalaryMax, FromDate, ToDate) AS (

select max(E.Salary), I.FromDate, I.ToDate

from EmployeeSalary E, Intervals I

where E.FromDate <= I.FromDate and I.ToDate <= E.ToDate

group by I.FromDate, I.ToDate)

-- Third step: Coalescing the above table

select distinct F.SalaryMax, F.FromDate, L.ToDate

from TempMax F, TempMax L

where F.FromDate < L.ToDate and F.SalaryMax = L.SalaryMax

and not exists (select *

from TempMax M

where M.SalaryMax = F.SalaryMax

and F.ToDate < M.FromDate and M.FromDate <= L.FromDate

and not exists (select *

from TempMax T1

where T1.SalaryMax = F.SalaryMax

and T1.FromDate < M.FromDate and M.FromDate <= T1.ToDate))

and not exists (select *

from TempMax T2

where T2.SalaryMax = F.SalaryMax

and ((T2.FromDate < F.FromDate and F.FromDate <= T2.ToDate)

or (T2.FromDate <= L.ToDate and L.ToDate < T2.ToDate)))

order by F.FromDate

(11) Give by department the history of the maximum salary

-- First step: Construct by department the intervals during

-- which the maximum salary must be calculated.

WITH Aff_Sal (DNumber, Salary, FromDate, ToDate) AS (

select distinct A.DNumber, S.Salary,

dbo.maxDate(S.FromDate,A.FromDate),

dbo.minDate(S.ToDate,A.ToDate)

from Affiliation A, EmployeeSalary S

where A.SSN = S.SSN

and dbo.maxDate(S.FromDate,A.FromDate) <

dbo.minDate(S.ToDate,A.ToDate)),

SalChanges(DNumber, Instant) AS (

select distinct DNumber, FromDate from Aff_Sal

union select distinct DNumber, ToDate from Aff_Sal),

SalIntervals(DNumber, FromDate, ToDate) AS (

select distinct P1.DNumber, P1.Instant, P2.Instant

11

from SalChanges P1, SalChanges P2

where P1.DNumber=P2.DNumber and P1.Instant<P2.Instant

and not exists (select * from SalChanges P3

where P1.DNumber = P3.DNumber and P1.Instant < P3.Instant

and P3.Instant < P2.Instant)),

-- Second step: Compute the maximum salary for the

-- above periods.

TempMaxDep(DNumber, MaxSalary, FromDate, ToDate) AS (

select P.DNumber, max(Salary), P.FromDate, P.ToDate

from Aff_Sal A, SalIntervals P

where A.DNumber = P.DNumber

and A.FromDate <= P.FromDate and P.ToDate <= A.ToDate

group by P.DNumber, P.FromDate, P.ToDate)

-- Third step: Coalescing the above table

select distinct F.DNumber, F.MaxSalary, F.FromDate, L.ToDate

from TempMaxDep F, TempMaxDep L

where F.DNumber = L.DNumber and F.MaxSalary = L.MaxSalary

and F.FromDate < L.ToDate

and not exists (select *

from TempMaxDep M

where F.DNumber = M.DNumber and F.MaxSalary = M.MaxSalary

and F.ToDate < M.FromDate and M.FromDate <= L.FromDate

and not exists (select *

from TempMaxDep T1

where F.DNumber = T1.DNumber and F.MaxSalary = T1.MaxSalary

and T1.FromDate < M.FromDate and M.FromDate <= T1.ToDate))

and not exists (select *

from TempMaxDep T2

where F.DNumber = T2.DNumber and F.MaxSalary = T2.MaxSalary

and ((T2.FromDate < F.FromDate and F.FromDate <= T2.ToDate)

or (T2.FromDate <= L.ToDate and L.ToDate < T2.ToDate)))

order by F.DNumber, F.FromDate

(12) Give the history of the number of projects of a department

-- First step: Construct intervals during which the number of

-- projects of a department does not change

WITH Instants(DNumber, Instant) AS (

select distinct DNumber, FromDate from Controls

union

select distinct DNumber, ToDate from Controls),

Intervals(DNumber, FromDate, ToDate) AS (

select distinct I1.DNumber, I1.Instant, I2.Instant

from Instants I1, Instants I2

where I1.DNumber = I2.DNumber

and I1.Instant < I2.Instant

and not exists (select * from Instants I3

where I1.DNumber = I3.DNumber

and I1.Instant < I3.Instant

and I3.Instant < I2.Instant)),

-- Second step: Compute the number of projects for these intervals

TempCountDep(DNumber, NbProjects, FromDate, ToDate) AS (

select I.DNumber, count(C.PNumber), I.FromDate, I.ToDate

from Controls C, Intervals I

where C.DNumber = I.DNumber

and (C.FromDate <= I.FromDate and I.ToDate <= C.ToDate)

group by I.DNumber, I.FromDate, I.ToDate)

-- Third step: Coalescing the above table

select distinct F.DNumber, F.NbProjects, F.FromDate, L.ToDate

12

from TempCountDep F, TempCountDep L

where F.DNumber = L.DNumber and F.FromDate < L.ToDate

and F.NbProjects = L.NbProjects

and not exists (select *

from TempCountDep M

where M.DNumber = F.DNumber and M.NbProjects = F.NbProjects

and F.ToDate < M.FromDate and M.FromDate <= L.FromDate

and not exists (select *

from TempCountDep T1

where T1.DNumber = F.DNumber and T1.NbProjects = F.NbProjects

and T1.FromDate < M.FromDate and M.FromDate <= T1.ToDate))

and not exists (select *

from TempCountDep T2

where T2.DNumber = F.DNumber and T2.NbProjects = F.NbProjects

and ((T2.FromDate < F.FromDate and F.FromDate <= T2.ToDate)

or (T2.FromDate <= L.ToDate and L.ToDate < T2.ToDate)))

order by F.DNumber, F.FromDate

(13) Give the name of employees and the periods they worked on all projects of their
department

-- First step: Construct intervals during which the number of projects

-- of an employee does not change

WITH Aff_Cont(SSN, DNumber, PNumber, FromDate, ToDate) AS (

select distinct A.SSN, A.DNumber, C.PNumber,

dbo.maxDate(A.FromDate,C.FromDate),

dbo.minDate(A.ToDate,C.ToDate)

from Affiliation A, Controls C

where A.DNumber = C.DNumber

and dbo.maxDate(A.FromDate,C.FromDate) <

dbo.minDate(A.ToDate,C.ToDate)),

Aff_Cont_WO(SSN, DNumber, PNumber, FromDate, ToDate) AS (

select distinct A.SSN, A.DNumber, W.PNumber,

dbo.maxDate(A.FromDate,W.FromDate),

dbo.minDate(A.ToDate,W.ToDate)

from Aff_Cont A, WorksOn W

where A.PNumber = W.PNumber and A.SSN = W.SSN

and dbo.maxDate(A.FromDate,W.FromDate) <

dbo.minDate(A.ToDate,W.ToDate)),

ProjChanges(SSN, DNumber, Instant) AS (

select distinct SSN, DNumber, FromDate from Aff_Cont

union select distinct SSN, DNumber, ToDate from Aff_Cont

union select distinct SSN, DNumber, FromDate from Aff_Cont_WO

union select distinct SSN, DNumber, ToDate from Aff_Cont_WO

union select SSN, DNumber, FromDate from Affiliation

union select SSN, DNumber, ToDate from Affiliation),

ProjIntervals(SSN, DNumber, FromDate, ToDate) AS (

select distinct P1.SSN, P1.DNumber, P1.Instant, P2.Instant

from ProjChanges P1, ProjChanges P2

where P1.SSN = P2.SSN

and P1.DNumber = P2.DNumber and P1.Instant < P2.Instant

and not exists (select * from ProjChanges P3

where P1.SSN = P3.SSN and P1.DNumber = P3.DNumber

and P1.Instant < P3.Instant and P3.Instant < P2.Instant)),

-- Second step: Compute the number of projects for these intervals

TempUnivQuant(SSN, FromDate, ToDate) AS (

select distinct P.SSN, P.FromDate, P.ToDate

from ProjIntervals P

where not exists (select * from Controls C

13

where P.DNumber = C.DNumber

and C.FromDate <= P.FromDate and P.ToDate <= C.ToDate

and not exists (select * from WorksOn W

where C.PNumber = W.PNumber and P.SSN = W.SSN

and W.FromDate <= P.FromDate and P.ToDate <= W.ToDate)))

-- Third step: Coalescing the above table

select distinct F.SSN, F.FromDate, L.ToDate

from TempUnivQuant F, TempUnivQuant L

where F.SSN = L.SSN and F.FromDate < L.ToDate

and not exists (select *

from TempUnivQuant M

where M.SSN = F.SSN

and F.ToDate < M.FromDate and M.FromDate <= L.FromDate

and not exists (select *

from TempUnivQuant T1

where T1.SSN = F.SSN

and T1.FromDate < M.FromDate and M.FromDate <= T1.ToDate))

and not exists (select *

from TempUnivQuant T2

where T2.SSN = F.SSN

and ((T2.FromDate < F.FromDate and F.FromDate <= T2.ToDate)

or (T2.FromDate <= L.ToDate and L.ToDate < T2.ToDate)))

order by F.SSN, F.FromDate

14

