Introduction to Graph Databases

Fundamentals & Implementations

Alejandro Vaisman
avaisman@itba.edu.ar

7/11/21 Introducton to Graph Databases

Graph vs Relational Databases

7/11/21 Introducton to Graph Databases

Property graphs revisited

[
[ID: 6666,

From: 10/10/2000 Name:Juan,
Salary: 8000

] ID: 2323,
Name:Irma,
Salary: 5000

[

ID:1112,
Name: Martin,
Salary: 10000 [
] ID: 3333,
Name: Uma,
Salary: 3000

]

7/11/21 Introduction to Graph Databases

Typical SQL query

Index lookup on Person.id

Index lookup on Companyid Index lookup on Company.name

! Person | I

! Company
1
;| 1d | Name Works In : T
1 1 Id [Name
1 1 q. Larry Page Personld Comggnxld Since +
! == _ T - e e ——m=1 | Google 1
1 | 2<¢ JoshuaBloch |~ =+ 1 1) €-14998F-~---"--2=7 I
! = ' ——t -7 2 | Oracle !
: 3 | Brian Goetz =<2 11 <€~ 72001 :

1
| ;

N | .. 3 2! 2010
W " T
\4

Select Person.Name

from Person, Company, Worksin

where Company.name=‘Google’

and Worksin.Companyld = Company. Id
and Worksin.Personld = Person.Id

7/11/21 Introduction to Graph Databases

Same query on graphs

Index lookup to find root Node
/

!
!
Person 1 Traverse relation Company 1 !

!

WORKS

Since 1998 |

!

Person 3

\NO I Name : Brian
‘ ‘ Since 2010
Narme - Joshua

Bloch

The deepest the navigation, the largest the difference with RDBs

7/11/21 Introduction to Graph Databases

Traversal navigation: key to GDBs

A graph traversal pattern is the ability to rapidly traverse structures
to an arbitrary length (e.g., tree structures, cyclic structures), and

with an arbitrary path description (e.g., Friends that work together,
roads below a certain congestion threshold).

 Opposite to set theory, operated by means of relational algebra

7/11/21 Introduction to Graph Databases

7/11/21

Traversing data in a RDBMS

 Based onjoining and selecting data

IDII:IJ«H.:!"I :Eh-l. Ih-ll.:I
Il-ll:l l 1373 Fexa H ILH‘HmIﬁuﬂrlM'mldw!mﬁn|
[] 430 Par ey

|2sch | o@saamhas. |

Ussz |Srdartd]

o
Ao
e

2mb

Il..l.h-l::l.l.'m

SELECT *
FAIM user u, user_order uo,
prders o, items i

WHERE u.u=sr = us.us=r AEHD
us.orderld = o.ord=rId EMD

oI O
i.lin=Itemid = i.Linelteamld
:M’ propey | AND u.user = "Alice’
cudastd | Lirmd tamtd ; o
Nz |ated 1 Cardinalities:
i | efm
| | |Usex|: 5.000.000
e B L |Userlrdec| : 100 . 300 . 303
:L.I.'I-Imd:l:ll|:::pum:hd.|,|_q: |0rders|: 1.000.000.000
sheE urwaETy e | Do l]:1-_,“| - 35 . 000
I .ﬂ.h“.I'h . 4
TR e - Query Cost?!
.u‘d .:.ﬂmﬂn | |

Introduction to Graph Databases

7/11/21

Traversing data in a GDB

Sdli s
dascription:
mtraubarcy ica
LA
Tearedl ing
4L T FETS

RTGULE

|Usex] :

|Item]| :

ddi oEmE
I gIELPrLOaE i
aSpeess0 beans

Introduction to Graph Databases

Cardipalities:

5.003.000

|0rdexs|: 1.000.000. 000

35.000

Query Cost?!

7/11/21

ReportsTo ReportsDirectlyTo

A D A D
c E »= |teration 1 _ E
C M C M
E T » E T
A E

A M Iteration 2

C T

A T Iteration 3

We want to compute the closure of therelation “ReportsDirectlyTo”, that is, to whom someone
“ReportsTo”, either directly or indirectly. SQL supports these kinds of recursive queries. Recursively
joining ReportsToand ReportsDirectlyTo on RT.Employee=RDT.Boss.

WITH recursive ReportsTo(Boss, Employee) AS
(SELECT Boss, Employee
FROM ReportsDirectlyTo
UNION ALL
SELECT ReportsTo.Boss, ReportsDirectlyTo.Employee
FROM ReportsTo, ReportsDirectlyTo
WHERE ReportsTo.Employee = ReportsDirectlyTo.Boss)
SELECT * FROM ReportsTo

Introduction to Graph Databases

7/11/21

ReportsDirectlyTo

Introduction to Graph Databases

10

7/11/21

Implementing Graph DBs

Introducton to Graph Databases

11

Graph database models

* Typesof relationshipssupported by graph data models

Attributes

» Properties,
+ Mono- or multi-
valued.

Standard
abstractions

» Part-of,
composed-by,
n-ary
associations.

7/11/21

Entities
- ~
» (Groups of real-

world objects.

Derivation and
inheritance

*» Subclasses and
superclasses,

 Relations of
instantiations.

Introducton to Graph Databases

Neighborhood
relations

» Structures to

represent
neighborhoods

of an entity.

Mested
relations

* Recursively
specified
relations.

12

The abstract data type Graph (w/properties)

G=(V, E, Z L)is a graph:

\ is a finite set of nodes or vertices,
e.9. V={Term, forOffice, Organization, ...}

= [s aset of edges representing binbry‘"" -

L 1 forodfice }mnﬂ-l Organizatian .
relationship between elements in V. 11, / \
e.g. E=|{(forOffice, Term) \ e e | - comny
(forOffice, Organization),(Office, Organization).. .} |
Vo
* Iisa setof labels, e oo |

e.g., £ ={domain, range, sc, type, ...}

L is a function: VxV = Z
e.g., L={((forOffice, Term),domain), ((forOffice, Organization),range)... |
7/11/21 Introducton to Graph Databases

13

The abstract data type Multigraph

G=(V. E, Z L) is a multi-graph:

= Vs a finite set of nodes or vertices, . .
e.g. V={Term, forOffice, Organization, ... soman m”“”"'iwe
g-V={ g } o

range

i acorain — .
= Eis a set of edges representing binbrf"“ J‘— o | e
relationship between elements in V, ". xi’ :x

e.q. E={{forOffice, Term) I". type ot 1 Country |
(fmrOﬁice,GrganizatiDn},{Gﬁice,GrganizatiDn)...I".I

1 faroética |

= s a set of labels, _— a2

forQrganization

e.g., Z =[{domain, range, sc, type, ...}

= L is a function: V x V =2 PowerSet(2),
eq., L= | main}), ((forOffice, Organization),{range}),
{_id0 A7) [forOffice, forOrganization]). ..

7/11/21 Introducton to Graph Databases

14

Basic operations

7/11/21

Given a graph G, the following are operations over G:

AddNode(G,x): adds node x to the graph G.
DeleteNode(G,x): deletes the node x from graph G.
Adjacent(G,x,y): tests if there is an edge from x to y.
Meighbors(G,x): nodes y s t. there is anedge from x to y.
AdjacentEdges(G,x,y): set of labels of edges from x to y.
Add(G,x,y,l): adds an edge between x and y with label |.
Delete(G,x,y,|): deletes an edge between x and y with label |.
Reach(G,x,y): tests if there a path from x to y.

Path(G,x,y): a (shortest) path from x to y.

2-hop(G,x): set of nodes y s.t. there is a path of length 2 from x to y, or from
y to X

n-hop(G,x): set of nodes y s.t. there is a path of length n from x to y, or from
y to x.

Introducton to Graph Databases

15

Graph generalization: (multi)Hypergraphs

H=(X,E), where Xis aset of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E < P(X), whereP (X)is the power set of X.

Undirected

X = {v19v2av3sv4sv5)v6av7}

E = {e1,e2,€e3,e4} = {{v1,v2,v3},v2v3} {v3,v506}, {v4}}

7/11/21

Introducton to Graph Databases

Let X =(v1,..,vn), E = (el,....em).
Every hypergraph has an m x nincidence
matrix A = (a;;) where

1 ifvy; € €;
ai; =

0 otherwise.
2O 1 |1 (10 00 o0
e2 0 1 1 0 0 0 O

e3 0 0 1 0 1 1 O
e4 0 O O 1 0 O O

V1 v2 v3 v4 Vv5 vb6 V7 16

Graph generalization: (multi)Hypergraphs

H=(X,E), where Xis aset of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E is a subbag of P (X) x P(X), where P (X) is the power set of X.

et . I
O,

Graphically, S,T © X; A hyperedge is denoted S ->T

In the example:

X=1{1,2,3,4}
E ={{1}->{2,4},{2}-> {3}, {3}->{2,3}}

7/11/21 Introducton to Graph Databases

17

Implementation

Adjacency
List

_V For each node a list
of neighbors.

/- A
If the graph is
directed,

| | adjacency list of i
containg only the
outgoing nodes of
i

Cheaper for
obtaining the
neighbors of a
node.

\ J

r’.— -\1
Not suitable for
checking if there
— i3 an edge
between two
es.

|l\

7/11/21 Introducton to Graph Databases

Implementation: adjacency list

L

Adjacency
List

| For each node a list
of neighbors.

/ N
If the graph is
directed,

| | adjacency list of i
containg only the
outgoing nodes of
i
Cheaper for
obtaining the
neighbors of a
node.

N >
™\
\

Not suitable for

7/11/21

checking if there

— i3 an edge
between two
nodes.

J
\ 7

V1

L1

@

Introducton to Graph Databases

V1
V2

(V1.{L2}) | (vs.{L3})
V3
V4 (V1,{L1})

19

Implementation: adjacency list

Adjacency list of a directed graph

Call Adj an array of length |V|

Storage |V| X |E]|

Is there a node between Xand Y? O (V)

Out-degree ofa vertex u = O (Adj[u]) = O (E) (worst case)

Out-degree for all vertices = O (V + E)

In-degree of a node =0 (E)

In-degree of all vertices = O (V x E).

Alternative: allocate an array T of size |V | and initialize its entries to zero. Then

scan the lists in Adj once, incrementing T[u] when we see u in the lists => O (V + E) time with
(V) additional storage.

7/11/21 Introducton to Graph Databases

20

Implementation

Adjacency Incldence
List List
_V For each node a list Vertices and edges
of neighbors. — are stored as records
: of objects.
e N\ h
gitr:fng:fph © | | _Eat_:h vertex stores
| | adjacency listof i incident edges.
contains only the -
putgoing nodes of p .
- |_ Each edge stores
~ incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
4 Y
Not suitable for
checking if there
— i an edge
between two

S8,

|l\

7/11/21 Introducton to Graph Databases

Implementation: incidence list

— are stored as records

l.of objects.

| Each vertex stores
incident edges.

anh edge stores
|n0|dent nodes.

”Venioee and edges “

7/11/21

Properties:

Storage: O(|V|+|E|+|L|)
Adjacent(G,x,y): O(|E|)
Neighbors(G,x): O(|E|)

Vi (destination,L1)
Y
2 (source,2) (source,lL3)
@ e

— destination,L3) >
V4

wt| (source,L1)
L1 » (V4,V1) .
L2 » (V2,V1) -

| |

L3 > (V2.V3) .

Introducton to Graph Databases

AdjacentbEdges(G,x,y): O(|E|)
Add(G,x,y,1): O(|E|)
Delete(G,x,y,1): O(|E|)

Implementation

Adjacency Incldence
List List
_V For each node a list Vertices and edges
of neighbors. — are stored as records
: of objects.
e N\ h
gitr:fng:fph © | | _Eat_:h vertex stores
| | adjacency listof i incident edges.
contains only the -
putgoing nodes of P
- |_ Each edge stores
~ incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
4 Y
Not suitable for
checking if there
— i an edge
between two

S8,

|l\

. adia -
Matrix

J

Bidimensional
graph)
representation.

|| Rows represent
source vertices.

Columns represent
destination vertices.

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

N J

7/11/21 Introducton to wrapn vatapases

23

L

mplementation: adjacency matrix

Adjacency |
Matrix

Bidimensional

graph

representation.
J

_‘ Rows represent
‘source vertices.

Columns represent

destination vertices.

|

Each non-null

entry represents
that there is an

— edge from the
source node to
the destination
node.

\

7/11/21

\.

Vi

V3

V4

Al V2 V3 V4
L2) (L3)
L)

Introducton to Graph Databases

L2 L3
Vi

L1

@

24

Implementation: adjacency matrix

* Complexity

* Storage

Answer: |V| X |V]

* Isthere an edge from XtoZ?
Answer: O(1)

* Compute the out-degree of Z
Answer:O(|V])

* Compute the in-degree of Z
Answer:O(|V])

* Add an edge between two nodes
Answer:0(1)

* Compute all paths of length 4 between any pair of nodes (4-hop)
Answer: O(|V]*).

7/11/21 Introducton to Graph Databases

Implementation

Adjacency
List

of neighbors.

| For each node a list

If the graph is
directed,

| | adjacency list of i
containg only the
outgoing nodes of
i

Cheaper for
obtaining the
neighbors of a
node.

™
Not suitable for
checking if there
— i3 an edge
between two
nodes.

| N

7/11/21

e N

J
/

|

Incldence
List

7]

Vertices and edges
— are stored as records

‘ofobjeots.

| Each vertex stores
incident edges.

|_ Each edge stores
incident nodes.

" Adjacency
Matrix

J

Bidimensional
graph)
representation.

\ /

|| Rows represent
source vertices.

Columns represent
destination vertices.

4 N

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

AN vy

Introducton to wrapn vatapases

»

|

Incidence
Matrix

— represent

— represent

7 Y

Bidimensional

— graph

representation.

)
\ /

Rows
vertices. ,
~ ™\

Columns

edges

\ o

A non-null entry represents

- that the source vertex is

incident to the edge.

\

26

| Incidence
{ Matrix

— graph

'Rows
— represent
vertices.

Columns
— represent
edges

\

Bidimensional

repressentation.

7 \

/

7/11/21

vi

V2

V3

V4

A non-null entry represents
that the source vertex is
incident to the edge.

L1 L2 L3
destination | destination
source source
destination
source

Introducton to Graph Databases

mplementation: incidence matrix

L2 L3
Vi

L1

@

Incidence
Matrix

\

Bidimensional
— graph
repressentation.

'Rows
— represent
vertices.

Columns
— represent
edges

A non-null entry represents
- that the source vertex is
incident to the edge.

7/11/21

VA

V2

V3

V4

L1

L2 L3

destination | destination

source source

destination

source

Properties:

Storage: O(|V|x|E|)
Adjacent(G,x,y): O(|E|)
Neighbors(G,x): O(|V|x|E|)
AdjacentEdges(G,x,y): O(|E|)
Add(G,x,y,l): O(|V])
Delete(G,x,y,1): O(|V])

Introducton to Graph Databases

mplementation: incidence matrix

L2 L3
Vi

L1

@

28

Implementation

Incldence

Adjacency
List List
_V For each node a list Vertices and edges
of neighbors. — are stored as records
: of objects.
e N\ h
gitr:fng:fph © | | _Eat_:h vertex stores
| | adjacency listof i incident edges.
contains only the -
putgoing nodes of P
- |_ Each edge stores
~ —~ incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
4 Y
Not suitable for
checking if there
— i an edge
between two

S8,

|l\

7/11/21

. adia -
Matrix

J

Bidimensional
graph)
representation.

o rep . m
source vertioes.

Columns represent
destination vertices.

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

N J

Introducton to wrapn vatapases

Incidence Compres ‘
Matrix Matrix
Bidimensional Differential

— graph encoding
representation. between two

consecutive
nodes
'Rows
— represent
\vertices.
Columns

— represent

edges

(

A non-null entry represents

- that the source vertex is
incident to the edge.

\

29

7/11/21

Real-world Implementations

Introducton to Graph Databases

30

Graph databases — Representative approaches

Neo4j Reference Card

http://www.neo4).org

http://www_sparsity-technologies.com/

7/11/21 Introducton to Graph Databases 31

Some graph databases

Sparksee ‘ HyperGraphDB Neod;j
Java library for L Implements the Metwork
management of onented model

hyper graph

— peraistent and data model.

temporary
graphs.

— where relationa
are firast-class
objecta.

Implementation Mative disk-

reliea on | | based storage

bitmaps and manager for
~ | secondary grapha.

structures (B+-

tres)

Framewark for
raph trave

e Some graph db implement an API ratherthan a query language

7/11/21 Introducton to Graph Databases

32

Property graph model again

M Bt
| role=Bill
: ref = IMDb

,163 ¢ acts_in:-\I
role=Delilah ,

ref = IMDb !
N | name = Anna Levine

ny : Person

n1 : Person

I

|

no : Movie \

name =Clint Eastwood !
gender =male

title=Unforgiven J gender = female

7/11/21 Introducton to Graph Databases

Neo4| (Robinsonet al., 2013)

* Labelledattributed multigraph

 Nodes and edges can have properties (property graphs)
* No restrictionsonthe # of edges between nodes
 Loopsallowed

* Different types of traversal strategies

* APIs for Javaand Python

* Embeddableand server

* Full ACID transactions

7/11/21 Introducton to Graph Databases 34

N 604j (Robinsonet al., 2013)

* Native graph processing and storage
* Characterized by index-free adjacency:
* Node keepsdirect reference to adjacent nodes
e Acts like a micro-index(or local index)
 Makes query time independent from graph size for many queries
* Joinsare “precomputed” and stored as relationships
* In non-nativegraph DBs, joins must be computed

7/11/21 Introducton to Graph Databases 35

Neo4| (Robinsonet al., 2013)

* Native graph storage

* Storinggraphsinfiles
* Loadinggraphsintomain memory
* Cachinggraphs for fast querying

7/11/21 Introducton to Graph Databases

36

Neo4j - architecture

Robinson et al., 2013

Traverser APl

Core AP

Cypher

Object Cache

File System Cache

Transaction Management

Record Files

Transaction Log

Disks

7/11/21

Introducton to Graph Databases

37

File storage

inUse
nextRelld nextPropld
1 5 9
Relationship (33 bytes)
inUse firstPrevRelld secondNextRelld
firstNode secondNode relationshipType firstNextRelld secondPrevRelld nextPropld
1 5 9 13 17 21 25 29 33

e Graphsstoredin store files
* Nodes (neostore.nodestore.db)
* Relationships (neostore.relationshipstore.db)
* Properties (neostore.propertystore.db)

7/11/21

Introducton to Graph Databases

38

File storage: nodes

inUse
nextRelld nextPropld

 Stored in node records
* Fixed length (9 bytes) to make search performant (find records with an offset from the node id)
* Findinga nodeis O(1)
* First byte: in-useflag
* 4 bytesfor the address of the first relationship
* 4 bytes for the first property

7/11/21 Introducton to Graph Databases 39

File storage: relationships

inUse firstPrevRelld secondNextRelld
firstNode secondNode relationshipType firstNextRelld secondPrevRelld nextPropld

1 5 9 13 17 21 25 29 33

e Storedinrelationship records
* Fixed length (33 bytes)
* First byte: in-use flag
* Organized as a double-linked list
* Each record contains the IDs of the two nodes in a relationship (start and end nodes)
* A pointertothe relationship type
* Foreach node, there is a pointer to the previous and next relationship records
 E.g.: firstPrevRellD: previous relationship of the start node; firstNextRellD: next relationship of
the start node (the one after the current relationship)
e These form the relationship chain

7/11/21 Introducton to Graph Databases 40

File storage: properties

Stored in property records
* Fixed length
* Each record consists of 4 property blocks and the ID of the next property in the property chain
* Property chains: single-linked list
 Each property: between 1 and 4 blocks
* Each property record holds:
. Property type
 Pointerto the property index file, holding the property name
 Avalue, ora pointer to a dynamic structure (string or array store)

7/11/21 Introducton to Graph Databases 41

File storage: example

A
‘L1{p1:v1,p2:v2}

:‘L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

C
:L1{p1:v3,p4:v4}

D
:L2{p8:v9}

. \anmmmmmm
1 A B ID1 NIL r3 NIL r2 NIL

1
In a DFS, start fromr1l,
then r2, r4, r3 (see table
“Relationships”). We have 3
all the information. 4
5

7/11/21

A

npl

np7

r

r2 T 1 B
Nil

r3 1 A
Nil

r4 1 B
Nil

Introducton to Graph Databases

Properties

I
p3 v6 NIL

Relationship P3
Types npl pl vl np2
-- np2 P2 V2 NIL
ID1 R1 np7 pl v7 NIL
ID2 R2

C

E

Relationships

ID1 NIL r4 NIL NIL
ID1 rl NIL NIL NIL
ID2 r2 NIL NIL NIL

42

rp3
NIL

NIL

Caching

File system cache (writing)

e Cache divides each store into regions (pages)

* Stores a fixed number of pages per file

e Pages are replaced using Least Frequently Used pages

Object cache

* Optimized for reading

* Stores object representations of nodes, relationships, and properties for fast path traversal

* Node objects: contain properties and references to relationships

* Relationship objects: contain only their properties

* This is opposite to what happens in disk storage, where most information is in the relationship
records

7/11/21 Introducton to Graph Databases 43

Object cache

7/11/21

Rs

ID
¢ X in R1 Rz “ee Rn
e
PR R]~ [R
2 in [RRTR R | -
typeY
» out | R « | R,
type
2 | ID |start | end | type
& | key key; key; key,

‘L1{p1:v3,p4:v4}

C

1L2{p8:v9}

B IN:rl rl
B OUT:r2 r2
B OUT:r4
n3 C IN:r2 r3
r4

Introducton to Graph Databases

‘L1{p1:v3,p4:v4}

B C R1
(p3,v6)

A E R1

B D R2

44

Traversal

C
‘L1{p1:v3,p4:v4}

‘L1{p1:v3,p4:v4}

Fetch node data from cache - non-blocking access
* Ifnotin cache, retrieve from storage, into
cache
*If region is in FS cache: blocking but
short duration access
»If region is outside FS cache: blocking,

Get relationships from cached node
n2 nl n2 R1

1L2{p8:v9}

* If not fetched, retrieve from storage, by B IN:rl rl
following chains
B OUT:r2 2 2 3 R1
Expand relationship(s) to end up on next node(s) ' ' n n
* The relationship knows the node, no need B OuT:r4 (p3,v6)
to fetchit yet n3 C IN: r2 r3 ni ns R1
Evaluate
* possibly emitting a Pathinto the result set r4 n2 n4 R2
Repeat

7/11/21 Introducton to Graph Databases 45

