
Introduction to	Graph Databases

Fundamentals	&	Implementations

Alejandro	Vaisman
avaisman@itba.edu.ar

7/11/21 Introducton	 to	Graph	 Databases 1

Graph vs	Relational Databases

7/11/21 Introducton	 to	Graph	 Databases 2

Introduction	 to	Graph	Databases 3

V1

V2

V3

V4

[
ID:	1112,
Name:	Martin,
Salary:	10000
]

[
ID:	6666,
Name:	Juan,
Salary:	8000
]

[
ID:	3333,
Name:	Uma,
Salary:	3000
]

[
ID:	2323,
Name:	Irma,
Salary:	5000
]

[
From:	10/10/2000
]

Property	graphs	revisited

7/11/21

Introduction	 to	Graph	Databases 4

Typical SQL	query

7/11/21

Introduction	 to	Graph	Databases 5

Same query on graphs

The deepest the navigation, the largest the difference with RDBs

7/11/21

Introduction	 to	Graph	Databases 6

• A graph traversal pattern is the ability to rapidly traverse structures
to an arbitrary length (e.g., tree structures, cyclic structures), and
with an arbitrary path description (e.g., Friends that work together,
roadsbelow a certain congestion threshold).

• Opposite to set theory, operated bymeans of relational algebra

Traversal navigation:	key to	GDBs

7/11/21

Introduction	 to	Graph	Databases 7

• Based on joining and selecting data

Traversing data	in	a	RDBMS

7/11/21

Introduction	 to	Graph	Databases 8

Traversing data	in	a	GDB

7/11/21

Introduction	 to	Graph	Databases 9

ReportsDirectlyTo

Boss Employee

A C

A D

C E

C M

E T

WITH recursive ReportsTo(Boss, Employee) AS
(SELECT Boss, Employee
FROM ReportsDirectlyTo	
UNION ALL
SELECT ReportsTo.Boss, ReportsDirectlyTo.Employee
FROM ReportsTo, ReportsDirectlyTo
WHERE ReportsTo.Employee = ReportsDirectlyTo.Boss)

SELECT * FROM ReportsTo

ReportsTo

Boss Employee

A C

A D

C E

C M

E T

Iteration	2
A E

A M

C T

Iteration	1

A T Iteration	3

We	want	to	compute	the	closure	of		the	relation	“ReportsDirectlyTo”,	that	is,	to	whom	someone	
“ReportsTo”,	either	directly	or	indirectly.		SQL	supports	these	kinds	of	recursive	queries.	Recursively	
joining	ReportsTo	and	ReportsDirectlyTo	on	RT.Employee=RDT.Boss.

7/11/21

Introduction	 to	Graph	Databases 10

These	queries	are	normally	more	expensive	in	the	Relational	Model,	since	they	imply		MULTIPLE	
JOINS.

Joins	are	expressed	at	the	schema	level	rather	than	at	the	instance	level.		

How	would	we	represent	this	in	a	Graph	Data	Model?

ReportsDirectlyTo

Boss Employee

A C

A D

C E

C M

E T

A

C

D

E

M

T

Paths	in	a	graph	are	expressed	at	the	instance	level		(there	is	no	schema).		Just	check	if	there	is	an	
outgoing	edge.

7/11/21

ImplementingGraph DBs

7/11/21 Introducton	 to	Graph	 Databases 11

Graph database models

7/11/21 Introducton	 to	Graph	 Databases 12

• Types of	relationshipssupportedby graph data	models

The	abstract	data	type	Graph	(w/properties)

7/11/21 Introducton	 to	Graph	 Databases 13

The	abstract	data	type	Multigraph

7/11/21 Introducton	 to	Graph	 Databases 14

Basic	operations

7/11/21 Introducton	 to	Graph	 Databases 15

an edge

Graph	generalization:	 (multi)Hypergraphs

7/11/21 Introducton to	Graph	 Databases 16

Undirected

H	=	(X	,	E),		where X	is a	set	of		nodes,	and	E		is a	set	of	non-empty subsets of		X called hyperedges =>		
E		⊆ P	(X), where P	(X)	is the power set	of	X.

Let X	=	(v1,…,vn),	E	=	(e1,...,em).	
Every hypergraph has	an m x n incidence
matrix where

1 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 0 0{v2,v3}, {v3, v5,v6},

e1

e2

e3

e4

V1					v2					v3				v4					v5					v6				v7		

Graph	generalization:	 (multi)Hypergraphs

7/11/21 Introducton	 to	Graph	 Databases 17

Directed
1 2 3

4

In	the example:

X	=	 {1,2,3,4}
E	=	{{1}->{2,4},	{2}	->	{3},	{3}	->	{2,3}}	

H	=	(X	,	E),		where X	is a	set	of		nodes,	and	E		is a	set	of	non-empty subsets of		X called hyperedges =>		
E		is a	subbag of		P	(X)	x	P(X),	where P	(X)	is the power set	of	X.	

Graphically, S,T	⊆ X;	A	hyperedge is denoted S	->	T

Implementation

7/11/21 Introducton	 to	Graph	 Databases 18

Implementation:	 adjacency	list

7/11/21 Introducton	 to	Graph	 Databases 19

7/11/21 Introducton	 to	Graph	 Databases 20

Implementation:	 adjacency	list
Adjacency list of a directed graph

Call Adj an array of length |V|
Storage				|V|	X	|E|		
Is there a	node between X	and	Y?		O	(V)
Out-degree of a vertex u = O (Adj[u]) = O (E) (worst case)
Out-degree	 for	all	 vertices	 =		O	(V	+	E)	
In-degree	of	a	node	 	=	O	(E)
In-degree	of	all	 vertices	 =	O	(V	x		E).	
Alternative:	 	allocate	 an	array	T	of	size	|V	|	and	initialize	 its	entries	 to	zero.		Then	 	
scan	the	lists	 in	Adj	once,	incrementing	 T[u]	when	we	see	u	in	the	 lists	=>	O	(V	+	E)	time	with
(V)	additional	 storage.

Implementation

7/11/21 Introducton	 to	Graph	 Databases 21

Implementation:	 incidence	list

7/11/21 Introducton	 to	Graph	 Databases 22

Implementation

7/11/21 Introducton	 to	Graph	 Databases 23

Implementation:	 adjacency	matrix

7/11/21 Introducton	 to	Graph	 Databases 24

• Complexity
• Storage

Answer	:	|V|	X	|V|

• Is	there	an	edge	from	X	to	Z?		

Answer	:	O(1)

• Compute	the		out-degree	of	Z	

Answer:	O(|V|)

• Compute	the		in-degree	of	Z	

Answer:	O(|V|)

• Add	an	edge	between	two	nodes

Answer:	O(1)

• Compute	all	paths	of	length	4	between	any	pair	of	nodes	(4-hop)

Answer:	O(|𝑉|$).			

7/11/21 Introducton	 to	Graph	 Databases 25

Implementation:	 adjacency	matrix

Implementation

7/11/21 Introducton	 to	Graph	 Databases 26

Implementation:	 incidence	matrix

7/11/21 Introducton	 to	Graph	 Databases 27

Implementation:	 incidence	matrix

7/11/21 Introducton	 to	Graph	 Databases 28

Properties:

Implementation

7/11/21 Introducton	 to	Graph	 Databases 29

Real-world	Implementations

7/11/21 Introducton	 to	Graph	 Databases 30

Graph	databases	– Representative	 approaches

7/11/21 Introducton	 to	Graph	 Databases 31

Some graph databases

7/11/21 Introducton	 to	Graph	 Databases 32

• Some graph db implement anAPI	rather than a	query language

7/11/21 Introducton	 to	Graph	 Databases 33

Property	graph	model	again

Neo4j	(Robinson	et	al.,	2013)

7/11/21 Introducton	 to	Graph	 Databases 34

• Labelled	attributed	multigraph
• Nodes and	edges can	have properties (propertygraphs)
• No	restrictions on the #	of	edges betweennodes
• Loops allowed
• Different types of	traversal strategies
• APIs	for	Java	and	Python
• Embeddable	and	server
• Full	ACID	transactions

Neo4j	(Robinson	et	al.,	2013)

7/11/21 Introducton	 to	Graph	 Databases 35

• Native	graph	processing	and	storage
• Characterized	by	index-free	adjacency:		
• Node	keeps	direct	reference	to	adjacent	nodes
• Acts	like	a	micro-index	(or	local	index)
• Makes	query	time	independent from	graph	size	for	many	queries

• Joins are	“precomputed”	and	stored	as	relationships
• In	non-native	graph	DBs,	joins	must	be	computed

Neo4j	(Robinson	et	al.,	2013)

7/11/21 Introducton	 to	Graph	 Databases 36

• Native	graph	storage

• Storing	graphs	in	files
• Loading	graphs	into	main	memory
• Caching	graphs	for	fast	querying

Neo4j	- architecture

7/11/21 Introducton	 to	Graph	 Databases 37

Robinson	et	al.,	2013

File	storage

7/11/21 Introducton	 to	Graph	 Databases 38

• Graphs	stored	in	store	files
• Nodes	(neostore.nodestore.db)
• Relationships	(neostore.relationshipstore.db)
• Properties	(neostore.propertystore.db)

File	storage:	nodes

7/11/21 Introducton	 to	Graph	 Databases 39

• Stored	in	node	records
• Fixed	length	(9	bytes)	to	make	search	performant	(find	records	with	an	offset	from	the	node	id)

• Finding	a	node	is	O(1)
• First	byte:	in-use flag
• 4	bytes	for	the	address	of	the	first	relationship
• 4	bytes	for	the	first	property

File	storage:	relationships

7/11/21 Introducton	 to	Graph	 Databases 40

• Stored	in	relationship	records
• Fixed	length	(33	bytes)		
• First	byte:	in-use flag
• Organized	as	a	double-linked	list
• Each	record	contains	the	IDs	of	the	two	nodes	in	a	relationship	(start	and	end	nodes)
• A	pointer	to	the	relationship	type
• For	each	node,	there	is	a	pointer	to	the	previous	and	next	relationship records

• E.g.:	firstPrevRelID:	previous relationship of the start node;		firstNextRelID:	next relationship of
the start node (the one after	the current relationship)

• These form	the	relationship	chain

File	storage:	properties

7/11/21 Introducton	 to	Graph	 Databases 41

• Stored	in	property	records
• Fixed	length
• Each	record	consists	of	4	property	blocks	and	the	ID	of	the	next	property	in	the	property	chain		
• Property	chains:	single-linked	list
• Each	property:	between	1	and	4	blocks
• Each	property	record	holds:

• Property	type
• Pointer	to	the	property	index	file,	holding	the	property	name
• A	value,	or	a	pointer	to	a	dynamic	structure	(string	or	array	store)

File	storage:	example

7/11/21 Introducton	 to	Graph	 Databases 42

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

IU Fst Snd RT FPrev FNext SPrev SNext NP

1 A B ID1 NIL r3 NIL r2 NIL

1 B C ID1 NIL r4 NIL NIL rp3

1 A E ID1 r1 NIL NIL	 NIL NIL

1 B D ID2 r2 NIL NIL NIL NIL

ID1 R1

ID2 R2

r1

r2

r3

r4

p3 v6 NIL

p1 v1 np2

p2 v2 NIL

p1 v7 NIL

... … …

… … …

rp3

Start

1 A np1 .. r1

2 B r2

3 C Nil

4 D Nil

5 E np7 .. Nil

np1

np2

np7

Relationship
Types

Relationships

Properties

Nodes

In	a	DFS,	start	from	r1,	
then	r2,	r4,	r3	(see	 table
“Relationships”).	 We	have	
all	 the	information.

Caching

7/11/21 Introducton	 to	Graph	 Databases 43

• File	system	cache	(writing)
• Cache	divides	each	store	into	regions	(pages)
• Stores	a	fixed	number	of		pages	per	file
• Pages	are	replaced	using	Least	Frequently	Used	pages

• Object	cache
• Optimized	for	reading
• Stores	object	representations	of	nodes,	relationships,	and	properties	for	fast	path	traversal
• Node	objects:	contain	properties	and	references	to	relationships
• Relationship	objects:	contain	only	their properties
• This is opposite to what happens in	disk	storage,	where most information is in	the relationship

records

Object	cache

7/11/21 Introducton	 to	Graph	 Databases 44

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

Node Type REL
n2 B IN:	r1

B OUT:	r2

B OUT:	r4

n3 C IN: r2

… … …

REL Start End Type
r1 A B R1

r2 B	 C R1

(p3,v6)		

r3 A E R1	

r4 B D R2

Traversal

7/11/21 Introducton	 to	Graph	 Databases 45

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

Node Type REL
n2 B IN:	r1

B OUT:	r2

B OUT:	r4

n3 C IN: r2

… … …

REL Start End Type
r1 n1 n2 R1

r2 n2 n3 R1

(p3,v6)		

r3 n1 n5 R1	

r4 n2 n4 R2

• Fetch	node	data	from	cache	- non-blocking	access
• If	not	in	cache,	retrieve	from	storage,	into	

cache
‣If	region	is	in	FS	cache:	blocking	but	
short	duration	access
‣If	region	is	outside	FS	cache:	blocking,		
slower	access

• Get	relationships	from	cached	node
• If	not	fetched,	retrieve	from	storage,	by	

following	chains
• Expand	relationship(s)	to	end	up	on	next	node(s)

• The	relationship	knows	the	node,	no	need	
to	fetch	it	yet

• Evaluate
• possibly	emitting	a	Path	into	the	result	set

• Repeat	

