
Introduction	to	Graph	Databases

Neo4j

Alejandro	Vaisman
avaisman@itba.edu.ar

1Introduction	 to	Graph	Databases7/11/21



Introduction	 to	Graph	Databases 2

• Open Source.

• Versions for Linux,Win, Mac. Implemented in Java.

• High-level query language: Cypher.

• Customers: Lufthansa, Linkedin, InfoJobs, gameSys, eBay,
FiftyThree, Accenture, National Geographic, CISCO, HP, Telenor, etc.

GDBs:	Neo4j	www.neo4j.com

7/11/21



Introduction	 to	Graph	Databases 3

(N,	E)

A	set	of	nodes

Directed edges (probablywith cycles)

A	node has:	
1)	Zero	or +	properties: boolean,	 string,	numeric,	arrays of	the
former.
2)	Zero	or +	Labels:	Give a	name to	a	node.		

An edge has:	
1)	Zero	or +	properties: Sams as	with nodes.
2)	Exactly one Label:	To	distinguish a	relationship between nodes.		

A	Neo4j	graph

7/11/21



Introduction	 to	Graph	Databases 4

To	create	nodes

To	update/delete information

To	query graphs

Cypher

7/11/21



Introduction	 to	Graph	Databases 5

To	create graphs

To	update/delete that
information

Cypher

Different from the relational model where:

1) First,	the structure is created,	 to	store	tuples.
2) FKs are	defined at	the structural level.
3) Then,	tuples are	 inserted/updated/deleted,	 and	must conform to	the structure.

7/11/21



Introduction	 to	Graph	Databases 6

To	create graphs

To	update/delete that
information

Cypher

7/11/21

Nodes and edges are created. Properties, labels, types, are the informational structure, but
no schema is defined.

Topology can be thought as analogous to the FK in the relational model. Defined at the
instance level.



Introduction	 to	Graph	Databases 7

A	node variable	goes between“()”.		Identifies a	node in	an expression.

(v		:Label1:Label2…:LabelN { Prop1: Value1, Prop2: Value2, …	Propk: Valuek } )

A	list of	N	labels (opcional)	associated with the node,	prefixed by “:”

A list of K propertie (opcional) associated with the node.
Each property has a name and a value, separated by the
symbol “:”

Cypher	- nodes

7/11/21



Create another one.

$	CREATE	 ();
If RETURN	is not written,	nodes are	not displayed

Create a	node with no	properties/labels:

$	CREATE	 (v)	
RETURN	v;

Introduction	 to	Graph	Databases 8

ID	assigned internally,	with a	different number
each time.	Can	be	reused by the system.	Do	
not use	it in	applications.

<id>:	0

<id>:	0 <id>:	1

Cypher	- nodes

7/11/21



Introduction	 to	Graph	Databases 9

Create a	node with two labels:

$	CREATE	 (v		:Student:ITBA)	
RETURN	v;

Create a	node with one label and	3	properties:

$	CREATE	 (n		:Student {Name:	'Juan	Polo',		
DateOfBirth:	 '12/04/2000',		
Mails:	 ['jmpolo@itba.edu.ar',	 'juan@yahoo.com']	 		})	

RETURN	n;

Student ITBA	<id>:	2

Student <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

7/11/21



Introduction	 to	Graph	Databases 10

Add labels “English”	 and	“Spanish”	 	to	all nodes previously created.
$	MATCH	(n)
SET	n		:English:Spanish
RETURN	n;

<id>:	0 <id>:	1

Student ITBA	<id>:	2 Student <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

7/11/21



Add labels “English”	 and	“Spanish”	 	to	all nodes previously created.
$	MATCH	(n)
SET	n		:English:Spanish
RETURN	n;

Introduction	 to	Graph	Databases 11

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	English	Spanish <id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

7/11/21



Introduction	 to	Graph	Databases 12

Delete labels English	and	Spanish from the node labelled “ITBA”
$	
MATCH	(n		:ITBA)
REMOVE	n		:English:Spanish

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	English	Spanish <id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

7/11/21



Introduction	 to	Graph	Databases 13

Delete labels English	and	Spanish from the node labelled “ITBA”

$	MATCH	(n		:ITBA)
REMOVE	n		:English:Spanish

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA		<id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

7/11/21



Introduction	 to	Graph	Databases 14

Delete properties DateOfBirth,	 Name and	Age from the nodes labelled “Student”.		
Properties are	referred to	as:		node.propertyName
$	MATCH	(n		:Student)
REMOVE	n.DateOfBirth,	n.Name,	n.mails,	n.edad
RETURN	n

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	<id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

7/11/21



Introduction	 to	Graph	Databases 15

Delete properties DateOfBirth,	 Name and	Age from the nodes labelled “Student”.		
Properties are	referred to	as:		node.propertyName
$	MATCH	(n		:Student)
REMOVE	n.DateOfBirth,	n.Name,	n.mails,	n.edad
RETURN	n

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	<id>:	2 Student English	Spanish <id>:	3
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

Undefinedproperties are	ignored,	the do	
not produce	errors when trying to	delete
them.	The same for labels.

Note	that	property	“mails”	was	not	
deleted,	language	is	case	sensitive.

7/11/21



Introduction	 to	Graph	Databases 16

An edge is placed	 between brackets [].			It	is	defined	between	 to	nodes	(here,	n	and	v).	If	
the	edge	goes	from	n	to	v,		this		is	indicated	as		“- [				]	->”,	conversely,	 	it	is	indicated	as	“	<- [	
]	–”.		A	variable	 name,	with local	 scope,	must also be	 included.	 	

(n)- [e :Type { Prop1: Value1, Prop2: Value2, …	Propk: Valuek } ]	->	(v)

Exactly one Type (mandatory)	prefixed by “:”

A list of K properties (opcional) associated with the node.
Each property has a name and a value, separated by the symbol “:”

Cypher	- Edges

7/11/21



Introduction	 to	Graph	Databases 17

Consider a			Neo4j	database.	The nodes already created are:

$	CREATE	 (n		:Employee {	Name:	 'Ariel	 Casso',		
Salary:	10000,			
Mails:	 ['acasso@itba.edu.ar',	 'acasso@yahoo.com']	 		});

CREATE	 (n		:Employee {	Name:	 'José	Pan',			
Salary:	12000,		
Mails:	 ['jpan@itba.edu.ar']	 		});

CREATE	 (n		:Employee {	Name:	 'Luna	García',	 			
Salary:	16000,		
Mails:	 ['lgarcia@itba.edu.ar']	 		});

CREATE	 (n		:Employee {	Name:	'Vilma	Casso',		
Salary:	8000,		
Mails:	 ['vcasso@itba.edu.ar']	 		});

Cypher	- Edges

7/11/21



Introduction	 to	Graph	Databases 18

$	MATCH	(	n		:Employee {Name:	'José	Pan'}	),	(	b		:Employee {Name:	'Vilma			
Casso'}	),	(	c		:Employee {Name:	'Ariel	Casso'}	)
CREATE	(b)	<- [r1		:manager_of]		- (n)		- [r2		:manager_of]	->	(c)
RETURN	r1,	r2

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>:	1
• Name:	José	Pan
• Salary:	12000
• Mails:	jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

Create an edge of	type «manager_of»	with no	properties,	 	from José	Pan	to	Vilma	and	Ariel	 Casso:

Cypher	- Edges

7/11/21



Introduction	 to	Graph	Databases 19

$	MATCH	(	n		:Employee {Name:	'José	Pan'}	),	(	b		:Employee {Name:	'Vilma			
Casso'}	),	(	c		:Employee {Name:	'Ariel	Casso'}	)
CREATE	(b)	<- [r1		:manager_of]		- (n)		- [r2		:manager_of]	->	(c)
RETURN	r1,	r2

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>:	1
• Name:	José	Pan
• Salary:	12000
• Mails:	jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

nb

c

Create an edge of	type «manager_of»	with no	properties,	 	from José	Pan	to	Vilma	and	Ariel	 Casso:
:

Cypher	- Edges

7/11/21



Introduction	 to	Graph	Databases 20

$	MATCH		(	n		:Employee {Name:	'José	Pan'}	),(	b		:Employee {Name:	'Luna	García'}	)
CREATE	(n)	<- [r		:manager_of {From:	'10/10/2000'}	]		- (b)
RETURN	n,	r,	b

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

manager_of
<id>:	2
From:	10/10/2000

Cypher	- Edges
Create another edge of	type «manager_of»	 with property “from”,	from L.	García to	 José	Pan		

7/11/21



Introduction	 to	Graph	Databases 21

$	MATCH		(	n		:Employee {Name:	'José	Pan'}	),(	b		:Employee {Name:	'Luna	García'}	)
CREATE	(n)	<- [r		:manager_of {From:	'10/10/2000'}	]		- (b)
RETURN	n,	r,	b

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

b

n

manager_of
<id>:	2
From:	10/10/2000

Cypher	- Edges
Create another edge of	type «manager_of»	 with property “from”,	from L.	García to	 José	Pan		

7/11/21



Introduction	 to	Graph	Databases 22

Query graphs expressing
informational and/or topological

conditions

Cypher	– queries

High-level query language based on
pattern matching

7/11/21



MATCH

OPTIONAL	MATCH

WHERE

RETURN

ORDER	 BY

LIMIT

SKIP

Introduction	 to	Graph	Databases 23

«Match»	expresses a	pattern that DBMS	will try	to	match.	
OPTIONAL	MATCH	Works	like an «outer join»,	in	SQL,	i.e.,	if
dores	not find a	match,	puts nulls.
The WHERE	clause is part of	the «MATCH	or OPTIONAL	
MATCH».	No	order can	be	assumed for the evaluation of	
the conditions in	the WHERE	clause,	 this is decided by the
DBMS.

LIMIT	returns	only	part	of	the	result.	SKIP	skips the first
results.	Unless ORDER	BY		used,	no	assumption can	be				
done	for the discarded results.

The evaluation produces	subgraphs,	and	any portion of	the match	could be	returned.	
«RETURN	DISTINCT»	eliminates duplicates.	

Cypher	– queries

7/11/21



Introduction	 to	Graph	Databases 24

In	addition to	the above:

1) If we don’t need to	refer to	a	node,	we can	use	“()”,	with no	variable.
2) If we don’t need to	refer to	an edge,	we can	omit it,	e.g.:	 	(a)	-->	(b)		indicates an edge between a	and	b.
3) If we don’t need to	consider the direction of	the edge,	just use	“- -”			(without the arrow end)	
4) If	a	mattern	matches	more	 tan	one	 label,	write	 the	OR	condition	as,	e.g.,		[	:manager_of	 |	:Student	 ]
5) To	express a	path of	any length,	use	[*].		For a	fixed length,	e.g.,	3,	use	[*3]
6) To	indicate boundaries to	the length of	a	pathm use		[*2..4]	.	To	limit only one end,	use		:	[*2	..]

Cypher	– queries

7/11/21



Introduction	 to	Graph	Databases 25

The query:	

$	MATCH	(p)-[]->(s)-[]->(x)	
RETURN	Count(p),	s.URL,	Count(x)		

Returns the following.	Why???

A

B

C

D

E

F

Cypher	– Example

7/11/21



Introduction	 to	Graph	Databases 26

The query:	

$	MATCH	(p)-[]->(s)-[]->(x)	
RETURN	Count(p),	s.URL,	Count(x)		

Returns the following.	Why???

A

B

C

D

E

F

Cypher	– Example

7/11/21

«Count(p)» «s» «Count(x)»

9 A 9

3 B 3

4 C 4

2 D 2

4 E 4

8 F 8



Introduction	 to	Graph	Databases 27

$	MATCH	(p)-[]->(s)-[]->(x)	
RETURN	Count(p),	s,	Count(x)		

A

B

C

D

E

F

Cypher	– Example

The first clause computes	paths where a	node
(s)	has		an incoming and	an outgoing edge.	
E.g.,	for «c»,	these paths are:

(a)	-- (c)	–>	 (f)	
(f)	-- (c)	-->	(f)	
(b)	-- (c)	-->	(f)	
(e)	-- (c)	-->	(f)	
The second clause groups these 4	paths and	returm how many
nodes are	connected on each side,	to	node (	c	).,	and	we
obtain:
4 c 4

7/11/21



Introduction	 to	Graph	Databases 28

A

B

C

D

E

F

A page X gets a score computed as the sum of
all votes given by the pages that references it.

If a page Z references a page X, Z gives X a
normalized vote computed as the inverse of
the number of pages referenced by Z. To
prevent votes of self-referencing pages, if Z
references X and X references Z, Z gives 0
votes to X.

Compute the page rank for each web page.

Cypher	– Example

7/11/21



Possible	solution:
$	MATCH	(p)	-->	(r)	
WITH	 	p,	1.0	/	count(r)	as	vote
MATCH	(p)	-->	(x)
WHERE	 NOT	(	(x)	-->	(p)	)
RETURN	 	x,	SUM(vote)	AS	Rank
ORDER	BY	x.URL

Introduction	 to	Graph	Databases 29

«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

A

B

C

D

E

F

Cypher	– Example

The	 first	MATCH	- WITH	pair	 computes,	for	each	
node,	the	inverse	of	the	number	of	outgoing	
edges,	and	passes	this	number	on	to	the	next	
clause.	

7/11/21



«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

Introduction	 to	Graph	Databases 30

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

A

B

C

D

E

F

Possible	solution:
$	MATCH	(p)	-->	(r)	
WITH	 	p,	1.0	/	count(r)	as	vote
MATCH	(p)	-->	(x)
WHERE	 NOT	(	(x)	-->	(p)	)
RETURN	 	x,	SUM(vote)	AS	Rank		
ORDER	BY	x.URL

Now,	for	each	of	these	6	“p”	
nodes,	look	for	the	paths	of	
length	 	1	where	no	reciprocity	
exists	 	(e.g.,	delete	 A	->B		and		
B	->	A)

Cypher	– Example

7/11/21



«p» «vote»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Introduction	 to	Graph	Databases 31

«x» «p»	
grouped

A D,	E

C A,	B,	E

D B

E D,	F

F A

«x» «Rank»

A ½	+	½

C 1/3	+	1/3	
+	1/2

D 1/3

E ½ +	1/3

F 1/3

A

B

C

D

E

F

Cypher	– Example
Possible	solution
$	MATCH	(p)	-->	(r)	
WITH	 	p,	1.0	/	count(r)	as	vote
MATCH	(p)	-->	(x)
WHERE	 NOT	(	(x)	-->	(p)	)
RETURN	 	x,	COLLECT	 (p.URL),	SUM(vote)	AS	Rank
ORDER	BY	x.URL

Finally,	groups	results	by	the	second	
component	and	sorts.		

7/11/21



Introduction	 to	Graph	Databases 32

• Lot of work in graph summarization

• Not that much for OLAP

• Graphs can be good for some OLAP cases:

• When the number of dimensions in a fact is not fixed

• Eg.: group calls
• Let’s study a typical OLAP example, and implement it on Neo4j

Example:	Graph	Aggregation	- OLAP

7/11/21



Introduction	 to	Graph	Databases 33

• We have call data	in	a	company
• Geography:	Cities	and	countries,	including	languages	and	capital	

cities		
• Operators by	country
• Phone	numbers	by	operator
• Persons that	registered	phones	and	city	of	residence.	People	may	

have	several	phones	but	only	one	place	of	residence	
• Communication	between	phones,		either	sms’s	(with	date	and	

length)		or	calls	(with	date	and	duration)		=	>	facts

Example

7/11/21



Introduction	 to	Graph	Databases 34

• 3	dimensions:	Caller,	Callee,	Time
• 2	measures:	length(SMS),	duration (call)	

Conceptual	model

All

Country

OperatorCity

Person

Phone

All

Date

7/11/21



Introduction	 to	Graph	Databases 35

Logical model in	Neo4j	(“schema”)
belongsTo

:operatesIn

:Country
{Name,	languages[]}

:belongsTo

:Operator
{Name}

:Call
{Date,	Duration}

:City
:Capital
{Name}

:Tel
{Nro}

:Person
{Name}

:LivesIn

:registers

:sms
{Date,	 Length}

7/11/21



Introduction	 to	Graph	Databases 36

• The	following		query	computes	the	average	length	of	the	calls	
corresponding	to	each	Caller-Callee	pair.		

• In	OLAP	this	is	called	a	Slice on	the	Time	dimension	and		on	the	
measure	Length,	summarizing	the	remaining	measures	with	the	
function avg.

Example	1.	

7/11/21



Introduction	 to	Graph	Databases 37

• The	following		query	computes	the	average	length	of	the	calls	
corresponding	to	each	Caller-Callee	pair.		

• In	OLAP	this	is	called	a	Slice on	the	Time	dimension	and		on	the	
measure	Length,	summarizing	the	remaining	measures	with	the	
function avg.

Example	1.	

7/11/21

MATCH (n :Tel) -[r :call]-> (m: Tel)
RETURN n as TelCaller, m as TelCallee, AVG(toFloat(r.Duration)) AS AvgDuration



Introduction	 to	Graph	Databases 38

Example	1.	
MATCH (n :Tel) -[r :call]-> (m: Tel)

RETURN n as TelCaller, m as TelCallee, AVG(toFloat(r.Duration)) AS AvgDuration

TelEmisor TelReceptor PromedioDuracion
(158)1111-1111 (160)1111-1113 6.5 (two calls, one of duration 12, the other, 1)
(104)1111-1111 (103)1111-1111 2.5 (Two calls, of durations 2 and 3)
(103)1111-1111 (104)1111-1111 7 (one call, with duration 7)
(125)1111-1111 (126)1111-1113 17 (one call, of duration 17)
(126)1111-1113 (127)1111-1113 3 (one call, of duration 3)
(158)1111-1112 (160)1111-1113 1 (one call, of duration 1)
(125)1111-1111 (126)1111-1112 20 (one call, of duration 20)

7/11/21



Introduction	 to	Graph	Databases 39

Example	1.	
MATCH (n :Tel) -[r :call]-> (m: Tel)
RETURN n as TelCaller, m as TelCallee, AVG(toFloat(r.Duration)) AS AvgDuration

TelEmisor TelReceptor PromedioDuracion
(158)1111-1111 (160)1111-1113 6.5 (two calls, one of duration 12, the other, 1)
(104)1111-1111 (103)1111-1111 2.5 (Two calls, of durations 2 and 3)
(103)1111-1111 (104)1111-1111 7 (one call, with duration 7)
(125)1111-1111 (126)1111-1113 17 (one call, of duration 17)
(126)1111-1113 (127)1111-1113 3 (one call, of duration 3)
(158)1111-1112 (160)1111-1113 1 (one call, of duration 1)
(125)1111-1111 (126)1111-1112 20 (one call, of duration 20)

7/11/21



Introduction	 to	Graph	Databases 40

• Same	as	before,	but	summarizing	calls	regardless	who	started	them.

Example	2.	

7/11/21



Introduction	 to	Graph	Databases 41

• Same	as	before,	but	summarizing	calls	regardless	who	started	them.

Example	2.	

7/11/21

MATCH (n :Tel) -[r :call]- (m: Tel)
WHERE n.Nro < m.Nro
RETURN n as Tel1, m as Tel2, AVG(toFloat(r.Duration)) As AvgDuration;



Introduction	 to	Graph	Databases 42

OLAP	Operations:	SLICE
MATCH (n :Tel) -[r :Call]- (m: Tel)

WHERE n.Nbr < m.Nbr

RETURN n as Tel1, m as Tel2, AVG(toFloat(r.Duration)) As AvgDuration;

Tel1 Tel2 PromedioDuracion
(158)1111-1111 (160)1111-1113 6.5 (two calls, one of duration 12, the other one 1)
(103)1111-1111 (104)1111-1111 4 (three calls summarized, regardless who started

the call: 2, 3, 7)
(125)1111-1111 (126)1111-1113 17 (one call with duration 17)
(126)1111-1113 (127)1111-1113 3 (one call with duration 3)
(158)1111-1112 (160)1111-1113 1 (one call with duration 1)
(125)1111-1111 (126)1111-1112 20 (one call with duration 20)

7/11/21



Introduction	 to	Graph	Databases 43

• Same	as	before,	but	rolling	up	to Person, either	for	the	caller	and	the	
callee.		That	means,	phones	belonging	to	the	same	person	must	be	
summarized.	Then,	we	want	the	average	duration	of	calls	between	
each	pair	of	persons,	regardless	who	started	them.

Example	3.	

7/11/21



Introduction	 to	Graph	Databases 44

• Same	as	before,	but	rolling	up	to Person, either	for	the	caller	and	the	
callee.		That	means,	phones	belonging	to	the	same	person	must	be	
summarized.	Then,	we	want	the	average	duration	of	calls	between	
each	pair	of	persons,	regardless	who	started	them.

Example	3.	

7/11/21

MATCH (x :Person)-[r1 :registers]->
(n :Tel) -[r:call]- (m: Tel)<-[r2: registers]-(y :Person)
WHERE x.Name < y.Name
RETURN x as Person1, y as Person2 , AVG(toFloat(r.Duration)) As AvgDuration;



Introduction	 to	Graph	Databases 45

Example	3.
Persona1 Persona2 Promedio Duración
Name: Ana
(Liverpool)
ID: 315
Sexo: F

Name: Luis (Londres)
ID: 313
Sexo: M

4.666667 (3 calls, with duración 12, 1 & 1,
respectively)

Name: Juan
(Amberes)
ID: 300
Sexo: M

Name: Roberto
(Amberes)
ID: 301
Sexo: M

4 (3 calls, with duración 2, 3 & 7, respectively)

Name: Andrea (Roma)
ID: 307
Sexo: M

Name: Leandro
(Roma)
ID: 308
Sexo: M

13.333333 (3 calls, with duración 17, 3 & 20
respectively)

Note:	the figure	shows	the
calls,	not the average duration

7/11/21



Introduction	 to	Graph	Databases 46

• Same	as	before,	but	keeping	only	the	pairs	of	users	of	the	same	gender,			F-F	o	M-M.	
• In	OLAP	jargon,	this	is	called	a	Dice

Example	4.

7/11/21

MATCH (x :Person)-[r1 :registers]-> (n :Tel) -[r:Call]- (m: Tel)<-[r2: registers]-(y :Person)

MATCH (x :Person)-[r1 :registers]-> (n :Tel) -[r:call]- (m: Tel)<-[r2: registers]-(y :Person)
WHERE x.Name < y.Name AND x.Gender = y.Gender
RETURN x as Person1, y as Person2 , AVG(toFloat(r.Duration)) As AvgDuration;



Introduction	 to	Graph	Databases 47

Example	4.
Persona1 Persona2 Promedio Duración
Name: Juan (Amberes)
ID: 300
Sexo: M

Name: Roberto
(Amberes)
ID: 301
Sexo: M

4 (3 calls, with durations 2, 3 & 7, respectively)

Name: Andrea (Roma)
ID: 307
Sexo: M

Name: Leandro
(Roma)
ID: 308
Sexo: M

13.333333 (3 calls, with durations 17, 3 & 20,
respectively)

7/11/21



Introduction	 to	Graph	Databases 48

• Same	temporal	SLICE	with	a	Rollup to	Person,	regardless	who	initiated	
the	call	or	sent	the		SMS	but:
• For	each	pairs	of	persons	who	only	exchanged	calls	or	only	exchanged	SMSs,	the	value	

for	the	missing	measure	should	be	set	to	“0”.	If	there	is	a	pair	of	persons	who	did	not	
communicate	at	all,	the	pair	is	not	displayed.	Consider	that	a	person	can	send	a	self-
message.		

More	examples	(coalesce)

MATCH (x:Person)-[:registers]->(n:Tel)-[r1]-(m:Tel)<-[:registers] -(y:Person)
WHERE x.Name <=y.Name
RETURN x as Person1,y as Person2, COALESCE(Avg(toFloat(r1.Duration)),0) as AvgDuration,
COALESCE(Avg(toFloat(r1.Length)),0) as AvgLength
ORDER BY x.Name

7/11/21



Introduction	 to	Graph	Databases 49

Alternative Solution

More	examples	(coalesce)

MATCH (x:Person)-[:registers]->(n:Tel)-[r1]-(m:Tel)<-[:registers] -(y:Person)
WHERE x.Name<=y.Name
RETURNxasPerson1,y as Person2, CASE WHENAvg(toFloat(r1.Duration)) ISNULL THEN0ELSE Avg(to
Float(r1.Duration)) ENDASAvgDuration,
CASE WHENAvg(toFloat(r1.Length)) ISNULL THEN0ELSEAvg(toFloat(r1.Length)) END ASAvgLength
ORDER BY x.Name

7/11/21

MATCH (x:Person)-[:registers]->(n:Tel)-[r1]-(m:Tel)<-[:registers] -(y:Person)
WHERE x.Name<=y.Name
RETURNxasPerson1,y as Person2, COALESCE(Avg(toFloat(r1.Duration)),0) asAvgDuration,
COALESCE(Avg(toFloat(r1.Length)),0) asAvgLength
ORDER BY x.Name



Introduction	 to	Graph	Databases 50

More	examples	(coalesce)
Persona1 Persona2 PromedioDura

cion
PromedioLongitud

Name: Ana
ID: 315
Sexo: F

Name: Luis
ID: 313
Sexo: M

4.666667 0

Name: Andrea
ID: 307
Sexo: M

Name: Leandro
ID: 308
Sexo: M

13.333333 0

Name: Andrea
ID: 311
Sexo: F

Name: Romina
ID: 304
Sexo: F

0 120

Name: Jimena
ID: 303
Sexo: F

Name: Juan
ID: 300
Sexo:M

0 2

Name: Juan
ID: 300
Sexo:M

Name: Romina
ID: 304
Sexo: F

0 12.5

Name: Juan
ID: 300
Sexo: M

Name: Roberto
ID: 301
Sexo: M

4 85

Name: Juana
ID: 305
Sexo: F

Name: Juana
ID: 305
Sexo: F

0 220

Name: Juana
ID: 305
Sexo: F

Name: Luis
ID: 306
Sexo: M

0 20

Name: Romina
ID: 304
Sexo: F

Name: Silvio
ID: 314
Sexo: M

0 7

7/11/21

MATCH (x:Person)-[:registers]->(n:Tel)-[r1]-(m:Tel)<-
[:registers] -(y:Person)
WHERE x.Name<=y.Name
RETURNxasPerson1,y as Person2,
COALESCE(Avg(toFloat(r1.Duration)),0) asAvgDuration,
COALESCE(Avg(toFloat(r1.Length)),0) asAvgLength
ORDER BY x.Name



Neo4j	in	Practice			

51Introduction	 to	Graph	Databases7/11/21



Introduction	 to	Graph	Databases 52

Neo4j	Practice – The Northwind Database

7/11/21



Introduction	 to	Graph	Databases 53

Neo4j	Practice		

7/11/21

1.	Using the LOAD	CVS	statement

LOAD	CSV	WITH	HEADERS	FROM	"file:///territories.csv"	AS	row
CREATE	(:Territory {territoryID:	 row.territoryid,
name:	row.territorydescription});

============
LOAD	CSV	WITH	HEADERS	FROM	"file:///employees.csv"	AS	row
CREATE	(:Employee{employeeID:	row.employeeid,
lastName:	row.lastname,firstName:	row.firstname,	city:row.city,region:row.region,country:row.country});

==============

LOAD	CSV	WITH	HEADERS	FROM	"file:///employeeterritories.csv"	AS	row
MATCH	(t:Territory {territoryID:	row.territoryid})
MATCH	(e:Employee {employeeID:	row.employeeid})
MERGE	(e)-[:AssignedTo]->(t)



Introduction	 to	Graph	Databases 54

Neo4j	Practice

7/11/21

2.	Connecting	 to	a	Postgres	DB

• Driver	copied	 in	 the	“Plugins”	 folder
• APOC	library	must	also	be	copied	 in	the	“Plugins”	 folder

WITH	"jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres"	 as	url

%%	NorthwindOLTP:	 	your	database	 in	the	PostgreSQL	instance
%%	url:	 to	be	used	 in	the	procedure	call	
CALL	apoc.load.jdbc(url,"select	*	from	categories")	YIELD	row
%	the	query	string	can	also	mention	 just	a	table
%	row:	a	“row	variable”	 just	as	before
RETURN	 row.description,row.categoryname

This	lists	 the	table	“categories”	 in	Neo4j.
We	can	use	this	also	 for	loading	data	into	Neo4j.



Introduction	 to	Graph	Databases 55

Neo4j	Practice

7/11/21

WITH	"jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres"	 as	url

CALL	apoc.load.jdbc(url,"select *	from products")	YIELD	row

CREATE	(:Product {productID:	 row.productid,productName:row.productname, supplier:	 row.supplierid,	 category:row.categoryid,	
qtyperunit:row.quantityperunit})

===================================

WITH	"jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres"	 as	url

CALL	apoc.load.jdbc(url,"select *	from suppliers")	YIELD	row

CREATE	(:Supplier {supplierID:	row.supplierid,	 supplierName:row.companyname,	city:row.city,	 region:row.region,	country:row.country})



Introduction	 to	Graph	Databases 56

Neo4j	Practice

7/11/21

3.	With Cypher

MATCH(s:Supplier)

MATCH(p:Product)	where p.supplier=s.supplierID

MERGE	(s)-[:Supplies]->(p)



Introduction	 to	Graph	Databases 57

Neo4j	Practice - Creating the NW	Graph

7/11/21

USING	PERIODIC	COMMIT
LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/city.csv"	AS	row
CREATE	(:City	{cityID:row.citykey,cityName:	row.cityname});

USING	PERIODIC	COMMIT
LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/territories.csv"	AS	row
CREATE	(:Territory {territoryID:	row.territoryID,	name:	row.territoryDescription});

...

USING	PERIODIC	COMMIT
LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/employee-territories.csv"	AS	row
MATCH	(territory:Territory{territoryID:	 row.territoryID})
MATCH	(employee:Employee {employeeID:	row.employeeID})
MERGE	(employee)-[:AssignedTo]->(territory);



Introduction	 to	Graph	Databases 58

Neo4j	Practice

7/11/21

-- To create the join of orders withorder details.

CREATE	VIEW	order1 AS	(SELECT	o.orderid AS	orderID,o.orderdate AS
orderDate,o.shippeddate AS	shippedDate,o.shipnameAS	shipName,	sum(quantity)	
AS	totqty,sum(unitprice*quantity)	AS	totAmount FROM	orders o,orderdetails o1	
WHERE	o.orderid=o1.orderid	
group by o.orderid,o.orderdate,o.shippeddate,o.shipname
order by orderid asc)
SELECT	*	INTO	ordershg FROM	order1

COPY	ordershg to	 'C:\tmp\ordershg.csv'	delimiter ','	CSV	header USING	PERIODIC	COMMIT

LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/ordershg.csv"	AS	row
CREATE	(:Order {orderID:	row.orderid,	orderDate:	row.orderdate,
ShippedDate:	row.shippeddate,shipName:row.shipname,totalQty:row.totqty,	totalAmount:row.totamount});

You can	also connect directly to a	PostgreSQL	database

CALL	apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select *	from
ordershg')	YIELD	row
CREATE	(:Order {orderID:	 row.orderid,	orderDate:	row.orderdate,	ShippedDate:	
row.shippeddate,shipName:row.shipname,totalQty:row.totqty,	totalAmount:row.totamount});



Introduction	 to	Graph	Databases 59

Neo4j	Practice

7/11/21

USING	PERIODIC	COMMIT
LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/orders.csv"	AS	row
MATCH	(order:Order {orderID:	 row.orderID})
MATCH	(employee:Employee {employeeID:	row.employeeID})
MERGE	(employee)-[:Sold]->(order);

LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/orderdetails.csv"	AS	row
MATCH	(order:Order {orderID:	 row.orderID})
MATCH	(product:Product {productID:	 row.productID})
MERGE	(order)-[:Contains{unitPrice:row.unitPrice,quantity:row.quantity,		discount:row.discount}]->(product);

USING	PERIODIC	COMMIT
LOAD	CSV	WITH	HEADERS	FROM	"file:/NWdata/products.csv"	AS	row
MATCH	(product:Product {productID:	 row.productID})
MATCH	(supplier:Supplier {supplierID:	row.supplierID})
MERGE	(supplier)-[:Supplies]->(product);

CALL	apoc.load.jdbc('jdbc:postgresql://localhost:5433/NorthwindOLTP?user=postgres&password=postgres','select	*	from	employees')	YIELD	row
MATCH	(employee:Employee {employeeID:	row.employeeid})
MATCH	(employee1:Employee	{employeeID:	row.reportsto})
MERGE	(employee)-[:ReportsTo]->(employee1);



Introduction	 to	Graph	Databases 60

Schema:	Northwindhg database

7/11/21



Introduction	 to	Graph	Databases 61

Northwindhg database

7/11/21

• Query 1.	List products and	their unit price.

MATCH	(p:Product)
RETURN	p.productName,	p.unitPrice
ORDER	BY	p.unitPrice DESC

• Query 2.	List informationabout products 'Chocolade'	&		'Pavlova'.	

MATCH	(p:Product)
WHERE	p.productName IN	['Chocolade','Pavlova']
RETURN	p

• Query 3.	List informationabout products with namesstartingwitha	"C”,		whose unit price is greater than50.

MATCH	(p:Product)
WHERE	p.productName STARTS	WITH	"C"	AND	tofloat(p.unitPrice)	>	50
RETURN	p.productName,	p.unitPrice;

• Query 4.	Same as		3,	but considering the sales	price,	not theproduct’s price.	

MATCH	(p:Product)	<- [c:Contains]	- (o:Order)
WHERE	p.productName STARTS	WITH	"C"	AND	tofloat(c.unitPrice)	>	50
RETURN	distinct p.productName,	p.unitPrice,c.unitPrice;



Introduction	 to	Graph	Databases 627/11/21

• Query 5.	Total	purchasedby customer and	product.

• Query 6.	Top	10	employees,	considering thenumber of	orders sold.

• Query 7.	For each employee,	list the assignedterritories.

MATCH	(t:Territory)<-[:AssignedTo]-(e:Employee)	
RETURN	e.lastName,	COLLECT(t.name);

• Query 8.		For eachcity,	list the companies settled in	that city.

Northwindhg database



Introduction	 to	Graph	Databases 637/11/21

• Query 10.	Howmany persons an employee reports to,	either directly or transitively?

• Query 11.	To	whom do	persons called “Robert”	report to?

• Query 12.	Who	does not report to	anybody?

• Query 13.		Suppliers,		number of	categories they supply,	and	a	listof	such categories

Northwindhg database



Introduction	 to	Graph	Databases 647/11/21

• Query 14.	Suppliers who supply beverages

• Query 15.	Customer who purchasesthe largest amount ofbeverages

• Query 16.	List the5	most popular	products (considering the number of	orders)

• Query 17.		Products orderedby customers from the samecountry	thantheir suppliers

Northwindhg database



Introduction	 to	Graph	Databases 657/11/21

Problem 2	– NorthwindDW database



Introduction	 to	Graph	Databases 667/11/21

Query 1.		Total	sales	amount per	customer,	year,	and	product category.

MATCH	(c:Category)<-[hc:HasCategory]-(p:Product)<-[pu:Contains]-
(s:Sales)-[:PurchasedBy]->(cu:Customer)
MATCH	(s)-[:HasOrderDate]->(d:Date)		
RETURN	cu.CompanyNameAS	Customer,c.CategoryName as	Category,d.year,	
sum(tofloat(s.SalesAmount))	AS	Volume
ORDER	BY	CustomerDESC;

Query 2.		Yearly sales	amountfor each pair of	customer country	and	supplier countries.

Query 3.			Monthly sales	by customer country	comparedto thoseoftheprevious year.

Problem 2	– NorthwindDW database



Introduction	 to	Graph	Databases 677/11/21

Query 3.		Three best-sellingemployees.

MATCH	(e:Employee)<-[:HandledBy]-(s:Sales)
RETURN	e.FirstName+	'	'	+	e.LastName,	SUM(s.SalesAmount)	AS	SalesAmount
ORDER	BY	SalesAmount DESC	LIMIT	3

Problem 2	– NorthwindDW database



Introduction	 to	Graph	Databases 687/11/21

Problem 2	– NorthwindDW database
Query 7.	Countriesthat accountfor top	50%	of	the sales	amount.

MATCH	(c:Country)<-[:OfCountry]-(:State)<-[:OfState]-(:City)<-[:IsLocatedIn]-
(:Customer)<-[:PurchasedBy]-(s:Sales)
WITH	c.CountryNameAS	CountryName,	sum(s.SalesAmount)	AS	SalesAmount
ORDER	BY	SalesAmount DESC
WITH	collect({CountryName:CountryName,	SalesAmount:SalesAmount})	AS	Countries,
sum(SalesAmount)	*	0.5	AS	Sales50Perc

UNWIND	Countries	AS	c

WITH	c.CountryNameAS	CountryName,	c.SalesAmount AS	SalesAmount,
apoc.coll.sum([c1	IN	Countries	where	c1.SalesAmount	>=	c.SalesAmount |
c1.SalesAmount	])	AS	CumulSales,	Sales50Perc		//	This	computes	the	cumulative	sum	per	country	
WITH	collect({CountryName:CountryName,	SalesAmount:SalesAmount,
CumulSales:CumulSales})	AS	CumulCountries,	Sales50Perc
UNWIND	[c1	IN	CumulCountries where	c1.CumulSales	<=	Sales50Perc]	+	//elements	in	the	list	up	to	50%	of	sales	amount
[c1	IN	CumulCountries where	c1.CumulSales	>	Sales50Perc][0]	AS	r	//	first	element	in	the	list	of	the	countries	exceeding	50%
RETURN	r.CountryNameAS	CountryName,	r.SalesAmount AS	SalesAmount,		r.CumulSalesAs	CummulativeSales
ORDER	BY	r.SalesAmount DESC


