
Graph Database Seminar

Part 3	– Neo4j

Alejandro	Vaisman
avaisman@itba.edu.ar

1Graph	 DBs	Seminar8/10/19



Graph	 DBs	Seminar 2

NoSQL		databases

8/10/19



Graph	 DBs	Seminar 3

V1

V2

V3

V4

[
ID:	1112,
Name:	Martin,
Salary:	10000
]

[
ID:	6666,
Name:	Juan,
Salary:	8000
]

[
ID:	3333,
Name:	Uma,
Salary:	3000
]

[
ID:	2323,
Name:	Irma,
Salary:	5000
]

[
From:	10/10/2000
]

Property	graphs	revisited

8/10/19



Graph	 DBs	Seminar 4

Typical SQL	query

8/10/19



Graph	 DBs	Seminar 5

Same query on graphs

The deepest the navigation, the largest the difference with RDBs

8/10/19



Graph	 DBs	Seminar 6

• A graph traversal pattern is the ability to rapidly traverse structures
to an arbitrary length (e.g., tree structures, cyclic structures), and
with an arbitrary path description (e.g., Friends that work together,
roadsbelow a certain congestion threshold).

• Opposite to set theory, operated bymeans of relational algebra

Traversal navigation:	key to	GDBs

8/10/19



Graph	 DBs	Seminar 7

• Based on joining and selecting data

Traversing data	in	a	RDBMS

8/10/19



Graph	 DBs	Seminar 8

Traversing data	in	a	GDB

8/10/19



Graph	 DBs	Seminar 9

• Graph	databases	<>	large-scale	graph	processing	frameworks	(e.g.,	Pregel
de	Google)

• Same	data	representation,	but
• graph	processing	tools	focus	on	exploitation
• graph	databases focus	on	storage	and	transactions	

• Graph	databases	scale	vertically
• GBD	problem:	partitioning	a	graph	is	HARD		
• Pregel executes	distributed	processing	in		commodity	servers
• Two	product	families:

• A	GDB	appropriate	to	traverse	the	graph,	compute	shortest	paths
• A graph	processing	framework	adequate	for	clustering,	graph	mining,		
etc.

Graph storage vs	graph processing

8/10/19



Graph	 DBs	Seminar 10

Graph DB	vs.	Graph processing

8/10/19



Graph	 DBs	Seminar 11

• Open Source.

• Versions for Linux,Win, Mac. Implemented in Java.

• High-level query language: Cypher.

• Customers: Lufthansa, Linkedin, InfoJobs, gameSys, eBay,
FiftyThree, Accenture, National Geographic, CISCO, HP, Telenor, etc.

GDBs:	Neo4j	www.neo4j.com

8/10/19



Graph	 DBs	Seminar 12

(N,	E)

A	set	of	nodes

Directed edges (probablywith cycles)

A	node has:	
1)	Zero	or +	properties: boolean,	 string,	numeric,	arrays of	the
former.
2)	Zero	or +	Labels:	Give a	name to	a	node.		

An edge has:	
1)	Zero	or +	properties: Sams as	with nodes.
2)	Exactly one Label:	To	distinguish a	relationship between nodes.		

A	Neo4j	graph

8/10/19



Graph	 DBs	Seminar 13

To	créate	nodes

To	update/delete information

To	query graphs

Cypher

8/10/19



Graph	 DBs	Seminar 14

To	create graphs

To	update/delete that
information

Cypher

Different from the relational model where:

1) First,	the structure is created,	 to	store	tuples.
2) FKs are	defined at	the structural level.
3) Then,	tuples are	 inserted/updated/deleted,	 and	must conform to	the structure.

8/10/19



Graph	 DBs	Seminar 15

To	create graphs

To	update/delete that
information

Cypher

8/10/19

Nodes and edges are created. Properties, labels, types, are the informational structure, but
no schema is defined.

Topology can be thought as analogous to the FK in the relational model. Defined at the
instance level.



Graph	 DBs	Seminar 16

ReportsDirectlyTo

Boss Employee

A C

A D

C E

C M

E T

WITH recursive ReportsTo(Boss, Employee) AS 
(SELECT Boss, Employee 
FROM ReportsDirectlyTo	
UNION ALL   
SELECT ReportsTo.Boss, ReportsDirectlyTo.Employee  
FROM ReportsTo, ReportsDirectlyTo
WHERE  ReportsTo.Employee = ReportsDirectlyTo.Boss ) 

SELECT * FROM ReportsTo

ReportsTo

Boss Employee

A C

A D

C E

C M

E T

Iteration	2
A E

A M

C T

Iteration	1

A T Iteration	3

We	want	to	compute	the	closure	of		the	relation	“ReportsDirectlyTo”,	that	is,	to	whom	someone	
“ReportsTo”,	either	directly	or	indirectly.		SQL	supports	these	kinds	of	recursive	queries.

8/10/19



Graph	 DBs	Seminar 17

These	queries	are	more	expensive	in	the	Relational	Model,	since	they	imply		MULTIPLE	JOINS.

Joins	are	expressed	at	the	schema	level	rather	than	at	the	instance	level.		

How	would	we	represent	this	in	a	Graph	Data	Model?

ReportsDirectlyTo

Boss Employee

A C

A D

C E

C M

E T

A

C

D

E

M

T

Paths	in	a	graph	are	expressed	at	the	instance	level		(there	is	no	schema).		Just	check	if	there	is	an	
outgoing	edge.

8/10/19



Graph	 DBs	Seminar 18

A	node variable	goes between“()”.		Identifies a	node in	an expression.

(v		:Label1:Label2…:LabelN { Prop1: Value1, Prop2: Value2, …	Propk: Valuek } )

A	list of	N	labels (opcional)	associated with the node,	prefixed by “:”

A list of K propertie (opcional) associated with the node.
Each property has a name and a value, separated by the
symbol “:”

Cypher	- nodes

8/10/19



Create another one.

$	CREATE	 ();
If RETURN	is not written,	nodes are	not displayed

Create a	node with no	properties/labels:

$	CREATE	 (v)	
RETURN	v;

Graph	 DBs	Seminar 19

ID	assigned internally,	with a	different number
each time.	Can	be	reused by the system.	Do	
not use	it in	applications.

<id>:	0

<id>:	0 <id>:	1

Cypher	- nodes

8/10/19



Graph	 DBs	Seminar 20

Create a	node with two labels:

$	CREATE	 (v		:Student:ITBA)	
RETURN	v;

Create a	node with one label and	3	properties:

$	CREATE	 (n		:Student {Name:	'Juan	Polo',		
DateOfBirth:	 '12/04/2000',		
Mails:	 ['jmpolo@itba.edu.ar',	 'juan@yahoo.com']	 		})	

RETURN	n;

Student ITBA	<id>:	2

Student <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

8/10/19



Graph	 DBs	Seminar 21

Add labels “English”	 and	“Spanish”	 	to	all nodes previously created.
$	MATCH	(n)
SET	n		:English:Spanish
RETURN	n;

<id>:	0 <id>:	1

Student ITBA	<id>:	2 Student <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

8/10/19



Add labels “English”	 and	“Spanish”	 	to	all nodes previously created.
$	MATCH	(n)
SET	n		:English:Spanish
RETURN	n;

Graph	 DBs	Seminar 22

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	English	Spanish <id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

8/10/19



Graph	 DBs	Seminar 23

Delete labels English	and	Spanish from the node labelled “ITBA”
$	
MATCH	(n		:ITBA)
REMOVE	n		:English:Spanish

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	English	Spanish <id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

8/10/19



Graph	 DBs	Seminar 24

Delete labels English	and	Spanish from the node labelled “ITBA”

$	MATCH	(n		:ITBA)
REMOVE	n		:English:Spanish

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA		<id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

8/10/19



Graph	 DBs	Seminar 25

Delete properties DateOfBirth,	 Name and	Age from the nodes labelled “Student”.		
Properties are	referred to	as:		node.propertyName
$	MATCH	(n		:Student)
REMOVE	n.DateOfBirth,	n.Name,	n.mails,	n.edad
RETURN	n

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	<id>:	2 Student English	Spanish <id>:	3
• Name:	Juan	Polo
• DateOfBirth:	12/04/2000
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

8/10/19



Graph	 DBs	Seminar 26

Delete properties DateOfBirth,	 Name and	Age from the nodes labelled “Student”.		
Properties are	referred to	as:		node.propertyName
$	MATCH	(n		:Student)
REMOVE	n.DateOfBirth,	n.Name,	n.mails,	n.edad
RETURN	n

English	Spanish <id>:	0 English	Spanish <id>:	1

Student ITBA	<id>:	2 Student English	Spanish <id>:	3
• Mails:	jmpolo@itba.edu.ar,juan@yahoo.com

Cypher	- nodes

Undefinedproperties are	ignored,	the do	
not produce	errors when trying to	delete
them.	The same for labels.

Note	that ´rpérty mails	was not deleted,	
language is case	sensitive.

8/10/19



Graph	 DBs	Seminar 27

An edge is placed	 between brackets [].			It is defined between to	nodes (here n	and	v).	If
the edge goes from n	to	v,		this is indicated as		“- [				]	->”	,	conversely,	 	it is indicated as	“	<-
[	]	–”.		A	variable	 name,	with local	 scope,	must also be	 included.	 	

(n)- [e :Type { Prop1: Value1, Prop2: Value2, …	Propk: Valuek } ]	->	(v)

Exactly one Type (mandatory)	prefixed by “:”

A list of K propertie (opcional) associated with the node.
Each property has a name and a value, separated by the symbol “:”

Cypher	- Edges

8/10/19



Graph	 DBs	Seminar 28

Consider a			Neo4j	database.	The nodes already created are:

$	CREATE	 (n		:Employee {	Name:	 'Ariel	 Casso',		
Salary:	10000,			
Mails:	 ['acasso@itba.edu.ar',	 'acasso@yahoo.com']	 		});

CREATE	 (n		:Employee {	Name:	 'José	Pan',			
Salary:	12000,		
Mails:	 ['jpan@itba.edu.ar']	 		});

CREATE	 (n		:Employee {	Name:	 'Luna	García',	 			
Salary:	16000,		
Mails:	 ['lgarcia@itba.edu.ar']	 		});

CREATE	 (n		:Employee {	Name:	'Vilma	Casso',		
Salary:	8000,		
Mails:	 ['vcasso@itba.edu.ar']	 		});

Cypher	- Edges

8/10/19



Graph	 DBs	Seminar 29

$	MATCH	(	n		:Employee {Name:	'José	Pan'}	),	(	b		:Employee {Name:	'Vilma			
Casso'}	),	(	c		:Employee {Name:	'Ariel	Casso'}	)
CREATE	(b)	<- [r1		:manager_of]		- (n)		- [r2		:manager_of]	->	(c)
RETURN	r1,	r2

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>:	1
• Name:	José	Pan
• Salary:	12000
• Mails:	jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

Create an edge of	type «manager_of»	with no	properties,	 	from José	Pan	to	Vilma	and	Ariel	 Casso:

Cypher	- Edges

8/10/19



Graph	 DBs	Seminar 30

$	MATCH	(	n		:Employee {Name:	'José	Pan'}	),	(	b		:Employee {Name:	'Vilma			
Casso'}	),	(	c		:Employee {Name:	'Ariel	Casso'}	)
CREATE	(b)	<- [r1		:manager_of]		- (n)		- [r2		:manager_of]	->	(c)
RETURN	r1,	r2

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>:	1
• Name:	José	Pan
• Salary:	12000
• Mails:	jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

nb

c

Create an edge of	type «manager_of»	with no	properties,	 	from José	Pan	to	Vilma	and	Ariel	 Casso:
:

Cypher	- Edges

8/10/19



Graph	 DBs	Seminar 31

$	MATCH		(	n		:Employee {Name:	'José	Pan'}	),(	b		:Employee {Name:	'Luna	García'}	)
CREATE	(n)	<- [r		:manager_of {From:	'10/10/2000'}	]		- (b)
RETURN	n,	r,	b

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

manager_of
<id>:	2
From:	10/10/2000

Cypher	- Edges
Create another edge of	type «manager_of»	 with property “from”,	from L.	García to	 José	Pan		

8/10/19



Graph	 DBs	Seminar 32

$	MATCH		(	n		:Employee {Name:	'José	Pan'}	),(	b		:Employee {Name:	'Luna	García'}	)
CREATE	(n)	<- [r		:manager_of {From:	'10/10/2000'}	]		- (b)
RETURN	n,	r,	b

Luna	
Garcia

manager_of

manager_of

José	
Pan

Ariel	
Casso

Vilma	
Casso

Employee <id>: 1
• Name: José Pan
• Salary: 12000
• Mails: jpan@itba.edu.ar

Employee <id>:	0
• Name:	Ariel	Casso
• Salary:	10000
• Mails:	acasso@itba.edu.ar,acasso@yahoo.com

Employee <id>:	3
• Name:	Vilma	Casso
• Salary:	8000
• Mails:	vcasso@itba.edu.ar

Employee <id>:	2
• Name:	Luna	García
• Salary:	16000
• Mails:	lgarcia@itba.edu.ar

b

n

manager_of
<id>:	2
From:	10/10/2000

Cypher	- Edges
Create another edge of	type «manager_of»	 with property “from”,	from L.	García to	 José	Pan		

8/10/19



Graph	 DBs	Seminar 33

Query graphs expressing
informational and/or topological

conditions

Cypher	– queries

High-level query language based on
pattern matching

8/10/19



MATCH

OPTIONAL	MATCH

WHERE

RETURN

ORDER	 BY

LIMIT

SKIP

Graph	 DBs	Seminar 34

«Match»	expresses a	pattern that DBMS	will try	to	match.	
OPTIONAL	MATCH	Works	like an «outer join»,	in	SQL,	i.e.,	if
dores	not find a	match,	puts nulls.
The WHERE	clause is part of	the «MATCH	or OPTIONAL	
MATCH».	No	order can	be	assumed for the evaluation of	
the conditions in	the WHERE	clause,	 this is decided by the
DBMS.

LIMIT	 returns only part of	the result.	SKIP	skips the first
results.	Unless ORDER	BY	 used,	no	assumption can	be				
done	for the discarded results.

The evaluation produces	subgraphs,	and	any portion of	the match	could be	returned.	
«RETURN	DISTINCT»	eliminates duplicates.	

Cypher	– queries

8/10/19



Graph	 DBs	Seminar 35

In	addition to	the above:

1) If we don’t need to	refer to	a	node,	we can	use	“()”,	with no	variable.
2) If we don’t need to	refer to	an edge,	we can	omit it,	e.g.:	 	(a)	-->	(b)		indicates an edge

between a	and	b.
3) If we don’t need to	consider the direction of	the edge,	just use	“- -”			(without the arrow

end)	
4) If a	mattern matches more	 tan	one label,	write the OR	condition as,	e.g.,				[	:manager_of |	

:Student ]
5) To	express a	path of	any length,	use	[*].		For a	fixed length,	e.g.,	3,	use	[*3]
6) To	indicate boundaries to	the length of	a	pathm use		[*2..4]	.	To	limit only one end,	use		:	

[*2	..]

Cypher	– queries

8/10/19



Graph	 DBs	Seminar 36

The query:	

$	MATCH	(p)-[]->(s)-[]->(x)	
RETURN	Count(p),	s.URL,	Count(x)		

Returns the following.	Why???

A

B

C

D

E

F

Cypher	– Example

8/10/19



Graph	 DBs	Seminar 37

The query:	

$	MATCH	(p)-[]->(s)-[]->(x)	
RETURN	Count(p),	s.URL,	Count(x)		

Returns the following.	Why???

A

B

C

D

E

F

Cypher	– Example

8/10/19

«Count(p)» «s» «Count(x)»

9 A 9

3 B 3

4 C 4

2 D 2

4 E 4

8 F 8



Graph	 DBs	Seminar 38

$	MATCH	(p)-[]->(s)-[]->(x)	
RETURN	Count(p),	s,	Count(x)		

A

B

C

D

E

F

Cypher	– Example

The first clause computes	paths where a	node
(s)	has	 an incoming and	an outgoing edge.	
E.g.,	for «c»,	these paths are:

(a)	-- (c)	–>	 (f)	
(f)	-- (c)	-->	(f)	
(b)	-- (c)	-->	(f)	
(e)	-- (c)	-->	(f)	
The second clause groups these 4	paths and	returm how many
nodes are	connected on each side,	to	node (	c	).,	and	we
obtain:
4 c 4

8/10/19



Graph	 DBs	Seminar 39

A

B

C

D

E

F

A page X gets a score computed as the sum of
all votes given by the pages that references it.

If a page Z references a page X, Z gives X a
normalized vote computed as the inverse of
the number of pages referenced by Z. To
prevent votes of self-referencing pages, if Z
references X and X references Z, Z gives 0
votes to X.

Calcular el page rank para cada página

Cypher	– Example

8/10/19



Possible	solution:
$	MATCH	(p)	-->	(r)	
WITH	 	p,	1.0	/	count(r)	as	voto
MATCH	(p)	-->	(x)
WHERE	 NOT	(	(x)	-->	(p)	)
RETURN	 x,	SUM(voto)	AS	Rank
ORDER	BY	x.URL

Graph	 DBs	Seminar 40

«p» «voto»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

A

B

C

D

E

F

Cypher	– Example

The	 first	MATCH	WITH	computes,	for	each	node,	
the	inverse	of	the	number	of	outgoing	edges,	and	
passes	this	number	on	to	the	next	clause.	

8/10/19



«p» «voto»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

Graph	 DBs	Seminar 41

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

A

B

C

D

E

F

Possible	solution:
$	MATCH	(p)	-->	(r)	
WITH	 	p,	1.0	/	count(r)	as	voto
MATCH	(p)	-->	(x)
WHERE	 NOT	(	(x)	-->	(p)	)
RETURN	 x,	SUM(voto)	AS	Rank		
ORDER	BY	x.URL

Now,	for	each	of	thses 6	“p”	
nodes,	looks	for	the	paths	of	
length	 		1	where	no	reciprocity	
exists	 	(e.g.,	deletes	A	->B		and		
B	->A)

Cypher	– Example

8/10/19



«p» «voto»

A 0.333

B 0.333

C 1

D 0.5

E 0.5

F 0.333

«p» «x»

A C

A F

B C

B D

D A

D E

E A

E C

F E

Graph	 DBs	Seminar 42

«x» «p»	
agrupad
os

A D,	E

C A,	B,	E

D B

E D,	F

F A

«x» «Rank»

A ½	+	½

C 1/3	+	1/3	
+	1/2

D 1/3

E ½ +	1/3

F 1/3

A

B

C

D

E

F

Cypher	– Example
Possible	solution
$	MATCH	(p)	-->	(r)	
WITH	 	p,	1.0	/	count(r)	as	voto
MATCH	(p)	-->	(x)
WHERE	 NOT	(	(x)	-->	(p)	)
RETURN	 x,	SUM(voto)	AS	Rank
ORDER	BY	x.URL

Finally,	groups	results	by	the	second	
component	and	sorts.		

8/10/19



Graph	 DBs	Seminar 43

• Lot of work in graph summarization

• Not that much for OLAP

• Graphs can be good for some OLAP cases:

• When the number of dimensions in a fact is not fixed

• Eg.: group calls
• Let’s study a typical OLAP example, and iplement it on

Neo4j

OLAP and	summarization

8/10/19



Graph	 DBs	Seminar 44

• We have call data	in	a	company
• Geography:	Cities	and	countries,	including	languages	and	capital	

cities		
• Operators by	country
• Phone	numbers	by	operator
• Persons that	registered	phones	and	city	of	residence.	People	may	

have	several	phones	but	only	one	place	of	residence	
• Communication	between	phones,		either	sms’s	(with	date	and	

length)		or	calls	(with	date	and	duration)	

Example

8/10/19



Graph	 DBs	Seminar 45

• 3	dimensions:	Caller,	Callee Emisor,	Time
• 2	measures:	length(SMS),	duration (call)	

Conceptual	model

All

Country

OperatorCity

Person

Phone

All

Date

8/10/19



Graph	 DBs	Seminar 46

Logical model in	Neo4j	(“schema”)
:perteneceA

:operatesIn

:Country
{Name,	languages[]}

:perteneceA

:Operator
{Name}

:Call
{Date,	Duration}

:City
:Capital
{Name}

:Tel
{Nro}

:Person
{Name}

:LivesIn

:registers

:sms
{Date,	 Length}

8/10/19



Graph	 DBs	Seminar 47

• Slice on	the	Time	dimension	and		a	Slice on	the	measure	“Length”,	
summarizing	the	remaining	measures	with	the	function avg.			The	
following		OLAP		query	computes	the	average	length	of	the	calls	
corresponding	to	each	Caller-Callee	pair.		

OLAP	Operations:	SLICE

8/10/19



Graph	 DBs	Seminar 48

• Slice on	the	Time	dimension	and		a	Slice on	the	measure	“Length”,	
summarizing	the	remaining	measures	with	the	function avg.			The	
following		OLAP		query	computes	the	average	length	of	the	calls	
corresponding	to	each	Caller-Callee	pair.		

OLAP	Operations:	SLICE

8/10/19

MATCH (n :Tel) -[r :llamada]-> (m: Tel)

RETURN	n	as	TelEmisor,	m	as	TelReceptor,	
AVG(r.Duracion)	AS	PromedioDuracion



Graph	 DBs	Seminar 49

OLAP	Operations:	SLICE
MATCH (n :Tel) -[r :llamada]-> (m: Tel)

RETURN	n	as	TelEmisor,	m	as	TelReceptor,	
AVG(r.Duracion)	AS	PromedioDuracion

TelEmisor TelReceptor PromedioDuracion
(158)1111-1111 (160)1111-1113 6.5 (two calls, one of duration 12, the other, 1)
(104)1111-1111 (103)1111-1111 2.5 (Two calls, of durations 2 and 3)
(103)1111-1111 (104)1111-1111 7 (one call, with duration 7)
(125)1111-1111 (126)1111-1113 17 (one call, of duration 17)
(126)1111-1113 (127)1111-1113 3 (one call, of duration 3)
(158)1111-1112 (160)1111-1113 1 (one call, of duration 1)
(125)1111-1111 (126)1111-1112 20 (one call, of duration 20)

8/10/19



Graph	 DBs	Seminar 50

OLAP	Operations:	SLICE
MATCH (n :Tel) -[r :llamada]-> (m: Tel)

RETURN	n	as	TelEmisor,	m	as	TelReceptor,	
AVG(r.Duracion)	AS	PromedioDuracion

TelEmisor TelReceptor PromedioDuracion
(158)1111-1111 (160)1111-1113 6.5 (two calls, one of duration 12, the other, 1)
(104)1111-1111 (103)1111-1111 2.5 (Two calls, of durations 2 and 3)
(103)1111-1111 (104)1111-1111 7 (one call, with duration 7)
(125)1111-1111 (126)1111-1113 17 (one call, of duration 17)
(126)1111-1113 (127)1111-1113 3 (one call, of duration 3)
(158)1111-1112 (160)1111-1113 1 (one call, of duration 1)
(125)1111-1111 (126)1111-1112 20 (one call, of duration 20)

8/10/19



Graph	 DBs	Seminar 51

• Slice over	the	time	dimension.	Same	as	before,	but	summarizing	calls	
regardless	who	started	them.

OLAP	Operations:	SLICE

8/10/19



Graph	 DBs	Seminar 52

• Slice over	the	time	dimension.	Same	as	before,	but	summarizing	calls	
regardless	who	started	them.

OLAP	Operations:	SLICE

8/10/19

MATCH (n :Tel) -[r :llamada]- (m: Tel)

WHERE n.Nro < m.Nro

RETURN n as Tel1, m as Tel2, AVG(r.Duracion) As PromedioDuracion;



Graph	 DBs	Seminar 53

OLAP	Operations:	SLICE
MATCH (n :Tel) -[r :llamada]- (m: Tel)

WHERE n.Nro < m.Nro

RETURN n as Tel1, m as Tel2, AVG(r.Duracion) As PromedioDuracion;

Tel1 Tel2 PromedioDuracion
(158)1111-1111 (160)1111-1113 6.5 (two calls, one of duration 12, the other one 1)
(103)1111-1111 (104)1111-1111 4 (three calls summarized, regardless who started

the call: 2, 3, 7)
(125)1111-1111 (126)1111-1113 17 (one call with duration 17)
(126)1111-1113 (127)1111-1113 3 (one call with duration 3)
(158)1111-1112 (160)1111-1113 1 (one call with duration 1)
(125)1111-1111 (126)1111-1112 20 (one call with duration 20)

8/10/19



Graph	 DBs	Seminar 54

• Same	aggregation	as	before,	but	rolling	up	to Person, either	for	the	
caller	and	the	callee.		That	means,	phones	belonging	to	the	same	
person	must	be	summarized.	

OLAP	Operations:	Rollup

8/10/19



Graph	 DBs	Seminar 55

• Same	aggregation	as	before,	but	rolling	up	to Person, either	for	the	
caller	and	the	callee.		That	means,	phones	belonging	to	the	same	
person	must	be	summarized.	

OLAP	Operations:	Rollup

8/10/19

MATCH (x :Persona)-[r1 :registra]-> (n :Tel) -[r :llamada]- (m: Tel)<-[r2: registra]-
(y :Persona)

WHERE x.Name < y.Name

RETURN x as Persona1, y as Persona2 , AVG(r.Duracion) As PromedioDuracion;



Graph	 DBs	Seminar 56

OLAP	Operations:	Rollup
Persona1 Persona2 Promedio Duración
Name: Ana
(Liverpool)
ID: 315
Sexo: F

Name: Luis (Londres)
ID: 313
Sexo: M

4.666667 (3 calls, with duración 12, 1 & 1,
respectively)

Name: Juan
(Amberes)
ID: 300
Sexo: M

Name: Roberto
(Amberes)
ID: 301
Sexo: M

4 (3 calls, with duración 2, 3 & 7, respectively)

Name: Andrea (Roma)
ID: 307
Sexo: M

Name: Leandro
(Roma)
ID: 308
Sexo: M

13.333333 (3 calls, with duración 17, 3 & 20
respectively)

Note:	the figure	shows	the
calls,	not the average duration

8/10/19



Graph	 DBs	Seminar 57

• Same	as	before,	but	with	a	Dice to	filter	pairs	of	users	of	the	same	
gender,			F-F	o	M-M.		

OLAP	Operations:	DICE

8/10/19

MATCH (x :Persona)-[r1 :registra]-> (n :Tel) -[r :llamada]- (m: Tel)<-[r2: registra]-(y
:Persona)

WHERE x.Name < y.Name AND x.Sexo = y.Sexo

RETURN x as Persona1, y as Persona2 , AVG(r.Duracion) As PromedioDuracion;



Graph	 DBs	Seminar 58

OLAP	Operations:	DICE
Persona1 Persona2 Promedio Duración
Name: Juan (Amberes)
ID: 300
Sexo: M

Name: Roberto
(Amberes)
ID: 301
Sexo: M

4 (3 calls, with durations 2, 3 & 7, respectively)

Name: Andrea (Roma)
ID: 307
Sexo: M

Name: Leandro
(Roma)
ID: 308
Sexo: M

13.333333 (3 calls, with durations 17, 3 & 20,
respectively)

8/10/19



Graph	 DBs	Seminar 59

• Same	temporal	SLICE	with	a	Rollup to	Person,	regardless	who	initiated	
the	call	or	sent	the		SMS	but:
• For	each	pairs	of	persons	who	only	exchanged	calls	or	only	exchanged	SMSs,	the	value	

for	the	missing	measure	should	be	set	to	“0”.	If	there	is	a	pair	of	persons	who	did	not	
communicate	at	all,	the	pair	is	not	displayed.	Consider	that	a	person	can	send	a	self-
message.		

OLAP	Operations:	More	examples	(coalesce)

MATCH (x :Persona)-[r1 :registra]-> (n :Tel) -[r ]- (m: Tel)<-[r2: registra]-(y :Persona)

WHERE x.Name <= y.Name

RETURN x as Persona1, y as Persona2 , COALESCE(AVG(r.Duracion), 0) As
PromedioDuracion , COALESCE(AVG(r.Longitud), 0) As PromedioLongitud

ORDER BY x.Name

8/10/19



Graph	 DBs	Seminar 60

Alternative Solution

OLAP	Operations:	More	examples	(coalesce)
MATCH (x :Persona)-[r1 :registra]-> (n :Tel) -[r ]- (m: Tel)<-[r2: registra]-(y :Persona)

WHERE x.Name<=y.Name

RETURN x as Persona1, y as Persona2 , COALESCE(AVG(r.Duracion), 0) As PromedioDuracion ,
COALESCE(AVG(r.Longitud),0)As PromedioLongitud

ORDER BY x.Name

MATCH (x :Persona)-[r1 :registra]-> (n :Tel) -[r :sms|:llamada]- (m: Tel)<-[r2: registra]-(y :Persona)

WHERE x.Name<=y.Name

RETURNxasPersona1, y as Persona2 ,

CASE WHENAVG(r.Duracion)ISNULL THEN0 ELSEAVG(r.Duracion)ENDAsPromedioDuracion,

CASE WHENAVG(r.Longitud)ISNULL THEN0 ELSEAVG(r.Longitud)ENDAsPromedioLongitud

ORDER BY x.Name

8/10/19



Graph	 DBs	Seminar 61

OLAP	Operations:	More	examples	(coalesce)
MATCH (x :Persona)-[r1 :registra]-> (n :Tel) -
[r ]- (m: Tel)<-[r2: registra]-(y :Persona)

WHERE x.Name <= y.Name

RETURN	x	as	Persona1,	y	as	Persona2	,	
COALESCE(AVG(r.Duracion),	0)		As	
PromedioDuracion	,	
COALESCE(AVG(r.Longitud),	0)		As	
PromedioLongitud

ORDER BY x.Name

Persona1 Persona2 PromedioDura
cion

PromedioLongitud

Name: Ana
ID: 315
Sexo: F

Name: Luis
ID: 313
Sexo: M

4.666667 0

Name: Andrea
ID: 307
Sexo: M

Name: Leandro
ID: 308
Sexo: M

13.333333 0

Name: Andrea
ID: 311
Sexo: F

Name: Romina
ID: 304
Sexo: F

0 120

Name: Jimena
ID: 303
Sexo: F

Name: Juan
ID: 300
Sexo:M

0 2

Name: Juan
ID: 300
Sexo:M

Name: Romina
ID: 304
Sexo: F

0 12.5

Name: Juan
ID: 300
Sexo: M

Name: Roberto
ID: 301
Sexo: M

4 85

Name: Juana
ID: 305
Sexo: F

Name: Juana
ID: 305
Sexo: F

0 220

Name: Juana
ID: 305
Sexo: F

Name: Luis
ID: 306
Sexo: M

0 20

Name: Romina
ID: 304
Sexo: F

Name: Silvio
ID: 314
Sexo: M

0 7

8/10/19


