
Graph Databases Seminar

Part 2	– Fundamentals	&	Implementation

Alejandro	Vaisman
avaisman@itba.edu.ar

8/10/19 Graph	 DBs	Seminar 1

Graph database models

10/8/19 Bases	de	datos	de	grafos	- ITBA 2

• Types of	relationshipssupportedby graph data	models

The	abstract	data	type	Graph	(w/properties)

10/8/19 Bases	de	datos	de	grafos	- ITBA 3

The	abstract	data	type	Multigraph

10/8/19 Bases	de	datos	de	grafos	- ITBA 4

Basic	operations

10/8/19 Bases	de	datos	de	grafos	- ITBA 5

an edge

Graph	generalization:	 (multi)Hypergraphs

10/8/19 Bases	de	datos	de	grafos	- ITBA 6

Undirected

H	=	(X	,	E),		where X	is a	set	of	 nodes,	and	E	 is a	set	of	non-empty subsets of	 X called hyperedges =>		
E		⊆ P	(X), where P	(X)	is the power set	of	X.

Let X	=	(v1,…,vn),	E	=	(e1,...,em).	
Every hypergraph has	an m x n incidence
matrix where

1 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 1 0 1 1 0

0 0 0 1 0 0 0{v2,v3}, {v3, v5,v6},

Graph	generalization:	 (multi)Hypergraphs

10/8/19 Bases	de	datos	de	grafos	- ITBA 7

Directed
1 2 3

4

In	the example:

X	=	 {1,2,3,4}
E	=	{{1}->{2,4},	{2}	->	{3},	{3}	->	{2,3}}	

H	=	(X	,	E),		where X	is a	set	of	 nodes,	and	E	 is a	set	of	non-empty subsets of	 X called hyperedges =>		
E		is a	subbag of		P	(X)	x	P(X),	where P	(X)	is the power set	of	X.	

Graphically, S,T	⊆ X;	A	hyperedge is denoted S	->	T

Implementation

10/8/19 Bases	de	datos	de	grafos	- ITBA 8

Implementation:	 adjacency	list

10/8/19 Bases	de	datos	de	grafos	- ITBA 9

Implementation:	 adjacency	list

10/8/19 Bases	de	datos	de	grafos	- ITBA 10

• Complexity
• Storage

A:	|V|	X	|E|		

• Is	there	a	node	 from	X	to	Y?		

Answer	:	O(V)				

• Out-degree	of	all nodes

Answer:	O(|V|		+	|E|)

• In-degree	of	all nodes

Answer:	O(|V|	 x	|E|)		OR

• Add	an	edge	between	two	nodes

Answer:	O(|V|)					

8/10/19 El	Paradigma	NoSQL:	Bases	de	Datos	de	Grafos	- ITBA 11

Implementation:	 adjacency	list

O(V	+	E)	plus	additional storage:	an arrayof	length |V|,	initialized to	0

Implementation

10/8/19 Bases	de	datos	de	grafos	- ITBA 12

Implementation:	 incidence	list

10/8/19 Bases	de	datos	de	grafos	- ITBA 13

Implementation

10/8/19 Bases	de	datos	de	grafos	- ITBA 14

Implementation:	 adjacency	matrix

10/8/19 Bases	de	datos	de	grafos	- ITBA 15

• Complexity
• Storage

Answer	:	|V|	X	|V|

• Is	there	an	edge	from	X	to	Z?		

Answer	:	O(1)

• Compute	the		out-degree	of	Z	

Answer:	O(|V|)

• Compute	the		in-degree	of	Z	

Rta:	O(|V|)

• Add	an	edge	between	two	nodes

Rta:	O(1)

• Compute	all	paths	of	length	4	between	any	pair	of	nodes	(4-hop)

Answer:	O(|𝑉|$).			

8/10/19 El	Paradigma	NoSQL:	Bases	de	Datos	de	Grafos	- ITBA 16

Implementation:	 adjacency	matrix

Implementation

10/8/19 Bases	de	datos	de	grafos	- ITBA 17

Implementation:	 incidence	matrix

10/8/19 Bases	de	datos	de	grafos	- ITBA 18

Implementation:	 incidence	matrix

10/8/19 Bases	de	datos	de	grafos	- ITBA 19

Properties:

Implementation

10/8/19 Bases	de	datos	de	grafos	- ITBA 20

Implementations

8/10/19 Graph	 DBs	Seminar 21

Graph	databases	– Representative	 approaches

8/10/19 Graph	 DBs	Seminar 22

Some graph databases

8/10/19 Graph	 DBs	Seminar 23

• Some graph db implement anAPI	rather than a	query language

8/10/19 Graph	 DBs	Seminar 24

Property	graph	model	reminder

Neo4j	(Robinson	et	al.,	2013)

8/10/19 Graph	 DBs	Seminar 25

• Labelled	attributed	multigraph
• Nodes and	edges can	have properties (propertygraphs)
• No	restrictions on the #	of	edges betweennodes
• Loops allowed
• Different	types	of	indexes:	nodes	and	relationships
• Different types of	traversal strategies
• APIs	for	Java	and	Python
• Embeddable	and	server
• Full	ACID	transactions

Neo4j	(Robinson	et	al.,	2013)

8/10/19 Graph	 DBs	Seminar 26

• Native	graph	processing	and	storage
• Characterized	by	index-free	adjacency:		
• Node	keeps	direct	reference	to	adjacent	nodes
• Acts	like	a	micro-index	(or	local	index)
• Makes	query	time	independent from	graph	size	for	many	queries

• Non-native	graph	DBs rely on	global	indices
• Joins	are	“precomputed”	and	stored	as	relationships
• In	non-native	graph	DBs,	joins	must	be	computed

Neo4j	(Robinson	et	al.,	2013)

8/10/19 Graph	 DBs	Seminar 27

• Native	graph	storage

• Storing	graphs	in	files
• Loading	graphs	into	main	memory
• Caching	graphs	for	fast	querying

Neo4j	- architecture

8/10/19 Graph	 DBs	Seminar 28

Robinson	et	al.,	2013

File	storage

8/10/19 Graph	 DBs	Seminar 29

• Graphs	stored	in	store	files
• Nodes	(neostore.nodestore.db)
• Relationships	(neostore.relationshipstore.db)
• Properties	(neostore.propertystore.db)

File	storage:	nodes

8/10/19 Graph	 DBs	Seminar 30

• Stored	in	node	records
• Fixed	length	(9	bytes)	to	make	search	performant	(find	records	with	an	offset	from	the	node	id)

• Finding	a	node	is	O(1)
• First	byte:	in-use flag
• 4	bytes	for	the	address	of	the	first	relationship
• 4	bytes	for	the	first	property

File	storage:	relationships

8/10/19 Graph	 DBs	Seminar 31

• Stored	in	relationship	records
• Fixed	length	(33	bytes)		
• First	byte:	in-use flag
• Organized	as	a	double-linked	list
• Each	record	contains	the	IDs	of	the	two	nodes	in	a	relationship	(start	and	end	nodes)
• A	pointer	to	the	relationship	type
• For	each	node,	there	is	a	pointer	to	the	previous	and	next	relationship	records

• These	form	the	relationship	chain

File	storage:	properties

8/10/19 Graph	 DBs	Seminar 32

• Stored	in	property	records
• Fixed	length
• Each	record	consists	of	4	property	blocks	and	the	ID	of	the	next	property	in	the	property	chain		
• Property	chains:	single-linked	list
• Each	property:	between	1	and	4	blocks
• Each	property	record	holds:

• Property	type
• Pointer	to	the	property	index	file,	holding	the	property	name
• A	value,	or	a	pointer	to	a	dynamic	structure	(string	or	array	store)

File	storage:	example

8/10/19 Graph	 DBs	Seminar 33

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

IU SN EN RT FP FN SP SN NP

1 A B ID1 NIL r3 NIL r2 NIL

1 B C ID1 r1 r4 NIL NIL rp3

1 A E ID1 r1 NIL NIL	 NIL NIL

1 B D ID2 r2 NIL NIL NIL NIL

ID1 R1

ID2 R2

r1

r2

r3

r4

p3 v6 NIL

p1 v1 np2

p2 v2 NIL

p1 v7 NIL

... … …

… … …

rp3

1 A np1 ..

2 B

3 C

4 D

5 E np7 ..

np1

np2

np7

Relationship
Types

Relationships

Properties

Nodes

Caching

8/10/19 Graph	 DBs	Seminar 34

• File	system	cache	(writing)
• Cache	divides	each	store	into	regions	(pages)
• Stores	a	fixed	number	of		pages	per	file
• Pages	are	replaced	using	Least	Frequently	Used	pages

• Object	cache
• Optimized	for	reading
• Stores	object	representations	of	nodes,	relationships,	and	properties	for	fast	path	traversal
• Node	objects:	contain	properties	and	references	to	relationships
• Relationship	objects:	contain	only	their	properties

Object	cache

8/10/19 Graph	 DBs	Seminar 35

A
:L1{p1:v1,p2:v2}

B
:L1{p1:v3,p4:v4}

:R1{p3:v6}
r2

:R1
r1 C

:L1{p1:v3,p4:v4}

E
:L1{p1:v7}

:R1
r3

D
:L2{p8:v9}

:R2
r4

Node Type REL
n2 B IN:	r1

B OUT:	r2

B OUT:	r4

n3 C IN: r2

… … …

REL Start End Type
r1 A B R1

r2 B	 C R1

(p3,v6)		

r3 A E R1	

r4 B D R2

Some graph databases

8/10/19 Graph	 DBs	Seminar 36

• Some graph db implement anAPI	rather than a	query language

Sparksee

8/10/19 Graph	 DBs	Seminar 37

• Logical model
• Labeled

• a label for each vertex and	edge
• Directed

• fixed direction edges,	from tail to	head
• Attributed

• variable	#	for each vertex)
• Multigraph

• possiblymore	than one edge between nodes
• Embeddedgraph dbms

• tightly integratedwith the application at	code level

Sparksee

8/10/19 Graph	 DBs	Seminar 38

• Nodes and	edges have a	sparksee-generatedOID
• Node,	edge and	global	attributes

• Not restricted to	an edge or node type (e.g.,	NAME	can	belong to	all node objects)
• Global	attributes belong to	the graph

• Attributes can	have different indexes
• Basic	attributes
• Indexed attributes
• Unique attributes
• Edges can	index neighborhoods
• Neighborhood index

• Persistentdatabase in	a	single	file
• Can	manage very large graphs

Sparksee

8/10/19 Graph	 DBs	Seminar 39

• A	graph G=	(V,E,L,T,H,	A1,…….,An)	is defined as:

• Labels L=	{(o,l)|	o ϵ (V	∪ E)	˄ l ϵ	string}
• Heads H=	{(e,h)|	e ϵ E	˄ h	ϵ	V}
• Tails T={(e,t)| e ϵ E	˄ t	ϵ	V}
• AttributesAi={(o,c)|o ϵ (V	∪ E)	˄ c ϵ	(int,string,…}

• The graph is split intomultiple lists of	pairs
• The first element in	a	pair is always an edge or a	vertex

Sparksee - architecture

8/10/19 Graph	 DBs	Seminar 40

*SWIG	=	Simplified	Wrapper	and	Interface	Generator.	Open	source	tool	used	to	
connect	programs/libraries	written	in	C/C++	with	other	languages.	

Sparksee – internal representation

8/10/19 Graph	 DBs	Seminar 41

• Each	vertex	and	edge	is	identified	with	an	immutable	oid.
• Links:	bidirectional

• A	set	of	OIDs	for	a	value.
• Given	an	OID	->	a	value.

• Two	maps:	(a)	from	a	value	to	a	vertex	or	edge	set;	(b)	from	a	vertex	or	edge	to	an	oid.	
• Maps	are	B-trees.

Sparksee – internal representation

8/10/19 Graph	 DBs	Seminar 42

• A	SparkseeGraph	is	a	combination	of	Bitmaps:
• Bitmap	for	each	node	or	edge	set	(type).
• Each	position	in	the	bitmap	corresponds	to	the	oid.
• One	link	for	each	attribute.
• Two	links	for	each	type:	Outgoing	and	in-going	edges.

• Maps	are	B+trees
• A	compressed	UTF-8	storage	for	UNICODE	string.

Sparksee – example

8/10/19 Graph	 DBs	Seminar 43

2

Sparksee – example

8/10/19 Graph	 DBs	Seminar 44

Value sets:	group all pairs of	the original	 set	with the
same value,	as	a	pair between the value and	the set	of	
objects with that value

2

Sparksee – example

8/10/19 Graph	 DBs	Seminar 45

2

Sparksee – example

8/10/19 Graph	 DBs	Seminar 46

