
Deductive Databases: Topics

• The logic of query languages

• Bottom-up Semantics

• Top-down Semantics

• Summary

1

Introduction

• First-order logic provides a conceptual foundation for relational query
languages

• Relational calculus (RC): logic-based model for declarative query lan-
guages

• Relational algebra (RA): operational equivalent of RC
• Safe queries in RC can be transformed into equivalent RA expressions and

vice versa
• Transformation of RC into RA: first step in efficient query implementation

and optimization
• RC has limited expressive power and cannot express many important

queries, e.g., transitive closures and generalized aggregates
• Need of more powerful logic-based languages that subsume RC

2

Deductive DBs- 1

Datalog

• DB is viewed as a set of facts, one for each tuple in corresponding table
of relational DB

• Name of relation becomes predicate name of the fact

student

Name Major Year

Joe Doe cs senior

Jim Jones cs junior

Jim Black ee junior

took

Name Course Grade

Joe Doe cs123 2.7

Jim Jones cs101 3.0

Jim Jones cs143 3.3

Jim Black cs143 3.3

Jim Black cs101 2.7

student(’Joe Doe’,cs,senior)

student(’Jim Jones’,cs,junior)

student(Jim Black’,ee,junior)

took(’Joe Doe’,cs123,2.7)

took(’Jim Jones’,cs101,3.0)

took(’Jim Jones’,cs143,3.3)

took(’Jim Black’,cs143,3.3)

took(’Jim Black’,cs101,2.7)

3

Datalog, cont.

• Fact: logical predicate having only constants (no variables)

• Conventions

– constants: tokens begining with lowercase characters or numbers, to-
kens in quotes

– variables: tokens begining with uppercase characters

• Rules : main construct of Datalog programs

firstReq(Name) ← student(Name,Major,junior),

took(Name,cs101,Grade1),

took(Name,cs143,Grade2).

• Head, body, goals of rules, arity of predicates

• Commas = logical conjuncts, order of goals is immaterial

4

Deductive DBs- 2

Datalog, cont.

• Logical disjunct: multiple rules sharing same predicate name and arity

scndReq(Name) ← student(Name,Major,junior),

took(Name,cs131,Grade), Grade > 3.0.

scndReq(Name) ← student(Name, ,junior),

took(Name,cs151,Grade), Grade > 3.0.

• Major occurs only once, can be replaced with anonymous variable

• Meaning is independent of order in which rules are listed

• Scope of variables local to rules

• Definition of p : set of rules having as their heads same name p and same
arity

5

Datalog vs. Relational Model

Datalog Relational Model

Base predicate Table or relation

Derived predicate View

Fact Row or tuple

Argument Column or attribute

• Extensional database : base predicates

• Intensional database : derived predicates (defined by rules)

• Assumption : base predicates never appear in heads of rules

6

Deductive DBs- 3

Datalog Rules

• Rules represent a powerful formalism from both theoretical and practical
viewpoints

• Goals in rules can be viewed as search patterns

• A problem can be break up into smaller subproblems, each expressed by
simple rules

• Derived relations can be used as goals in rules, as for database relations

req cs298(Name) ← firstReq(Name),scndReq(Name).

7

Query Goals

• Specify which of derived relations must be computed

• Boolean or closed queries: contain no variables

• Their answer is yes or no

?firstReq(’Jim Black’)

• Open queries contain variables

?firstReq(X)

• Their answer is a (possibly empty) set of facts satisfying the query

firstReq(’Jim Black’)

firstReq(’Jim Black’)

• Query goals mix variables and constants in their arguments

8

Deductive DBs- 4

Datalog and Negation

• Negation can only be applied to goals of rules

hasTaken(Name,Course) ← took(Name,Course,Grade).

lacks cs143(Name) ← student(Name, ,junior),

¬hasTaken(Name,cs143).

• A common use of negation is in conjunction with universally quantified
queries, often expressed by words such as “each” and “every”

• Example: find senior students who completed all requirements for a cs
major

9

Datalog and Universal Quantification

• An universally quantified condition can only be expressed by an equivalent
condition with existential quantification and negation

• This transformation requires two steps

(1) Formulate complementary query : find students who did not take some
of the courses required for a cs major

reqMissing(Name) ← student(Name, ,senior),req(cs,Course),

¬ hasTaken(Name,Course)

(2) Original query reexpressed as : find senior students who are not missing
any requirement for a cs major

allReqSat(Name) ← student(Name, ,senior),

¬ reqMissing(Name).

10

Deductive DBs- 5

Relational Calculi

• Two types

– domain relational calculus: variables denote values of attributes

– tuple relational calculus: variables denote tuples

• Provide a link to commercial database languages: QBE is based on DRC,
QUEL and SQL on TRC

• Example: query ?firstReq(N) in DRC and TRC

{(N) | ∃G1(took(N, cs101, G1)) ∧ ∃G2(took(N, cs, 143, G2))∧
∃M(student(N, M, junior)) }

{(t[1]) | ∃u∃s(took(t) ∧ took(u) ∧ student(s) ∧ t[2] = cs101∧
u[2] = cs143 ∧ t[1] = u[1] ∧ s[3] = junior ∧ s[1] = t[1] }

• TRC requires explicit statement of equality, in DRC equality denoted by
the presence of the same variable in different places

11

Relational Calculi and Datalog

• TRC and DRC are equivalent: mappings transform a formula in one lan-
guage into an equivalent formula in the other

• Syntactic differences between calculi and Datalog: set definition by ab-
straction, nesting of parentheses, mixing of conjuntions and disjunctions
in the same formula, negation, explicit existential and universal quantifiers

• Example: query ?allReqSat(N) in DRC

{(N) | ∃M(student(N, M, junior))∧
∀C(req(cs, C) → ∃G(took(N,C, G)) }

• For each DRC expression there is an equivalent nonrecursive Datalog pro-
gram. The converse is also true

12

Deductive DBs- 6

Relational Algebra

• Union : R ∪ S = {t | t ∈ R ∨ t ∈ S} a

• Difference : R− S = {t | t ∈ R ∧ t 6∈ S} a

• Cartesian Product:

R× S = {t | (∃r ∈ R)(∃s ∈ S)(t[1, . . . , n] = r ∧ t[n + 1, . . . , m] = s)}
• Projection: πLR = {r[L] | r ∈ R}, L ⊆ {$1, . . . , $n}
• Selection: σF (R) = {t | t ∈ R ∧ F ′},

– F is composed from $iθC and $iθ$j using ∧, ∨, and ¬
– F ′ denotes the formula obtained from F by replacing $i and $j by t[i]

and t[j]

Example : σ$2=$3∧$1=bobR = {t | t ∈ R ∧ t[2] = t[3] ∧ t[1] = bob}
aRelations must be union-compatible

13

Derived Algebraic Operators

• Join : R 1F S = σF ′(R× S)

– F = $i1θ1$j1 ∧ . . . ∧ $ikθ1$jk

– F ′ = $i1θ1$(m + j1) ∧ . . . ∧ $ikθ1$(m + jk)

• Intersection R ∩ S constructed either by

– equijoin of R and S in every column, and projecting out duplicate
columns

– R ∩ S = R− (R− S) = S − (S −R)

• Generalized projection: πL(R), L is a list of constants and column names
(components may appear more than once)

– E.g., π$1,c,$1(R)

14

Deductive DBs- 7

From Safe Datalog to Relational Algebra

• Datalog, DRC and TRC are declarative logic-based languages, relational
algebra is an operator-based language

• Formulas in logical languages can be implemented by transforming them
into equivalent RA expressions

• Only safe Datalog can be maped into equivalent RA expressions

• Not a limitation: enforcing safety enables compiler-time detection of rules
and queries inadequately specified

15

Problems with Unsafe Rules

betterGrade(G1) ← took(’Joe Doe’, cs143,G), G1 > G.

• Infinitely many numbers satisfy condition

• Lack of domain independence, i.e., answer must depend on DB and con-
stants in the query, not on domain of interpretation

– set of values of G1 depends on domain assumed for numbers

• No RA equivalent

– only relations are allowed as operands of RA expressions

– as relations are finite, result of RA expressions is also finite

• Domain independence and finiteness of answers are undecidable even for
nonrecursive queries

• Sufficient conditions must be used

16

Deductive DBs- 8

Safe Datalog

Inductive definition of safety for a program P

(1) Safe predicates: predicate q of P is safe if

(a) q is a database predicate, or

(b) every rule defining q is safe

(2) Safe variables: variable X in rule r is safe if

(a) X is contained in some positive goal q(t1, . . . , tn), where predicate
q(t1, . . . , tn) is safe, or

(b) r contains some equality goal X = Y , where Y is safe

(3) Safe rules: rule r is safe if all its variables are safe

(4) Goal ?q(t1, . . . , tn) is safe when predicate q(A1, . . . , An) is safe

17

From Safe Datalog to RA

Mapping a safe nonrecursive Datalog program P into RA

(1) P is transformed into an equivalent program P ′ not containing any equal-
ity goal

s(Z,b,W) ← q(X,X,Y),p(Y,Z,a),W=Z,W>24.3.

is translated into

s(Z,b,Z) ← q(X,X,Y),p(Y,Z,a),W>24.3.

(2) Body of a rule r translated into RA expression Bodyr: Cartesian product
of relations in body followed by selection σF accounting for equalities and
inequalities

Bodyr = σ$1=$2,$3=$4,$6=a,$5>24.3(Q× P)

18

Deductive DBs- 9

From Safe Datalog to RA, cont.

(3) Each rule r is translated into a generalized projection on Bodyr, according
to the patterns in the head of r

S = π$5,b,$5Bodyr

(4) Multiple rules with the same head are translated into the union of their
equivalent expressions

19

Mapping Rules with Negated Goals

r : . . . ← b1(a,Y),b2(Y),¬b3(Y)

• Positive body: negated goal is dropped

rp : . . . ← b1(a,Y),b2(Y)

• Negative body: remove negation from negated goal

rn : . . . ← b1(a,Y),b2(Y),b3(Y)

• Both bodies are safe, can be transformed into RA expressions giving
Bodyrp and Bodyrn

• Body expression to be used in step 3 Bodyr = Bodyrp −Bodyrn

• Rules with several negated goals can be translated by repeating this map-
ping for each negated goal

20

Deductive DBs- 10

Mapping Rules with Several Negated Goals

• Rules with several negated goals can be translated by repeating this map-
ping for each negated goal, e.g.,

r : . . . → b1(X,Y),¬b2(X),¬b3(Y).

• Positive body: all negated goals are dropped

rp : . . . → b1(X, Y).

• Negative bodies

– one for each negated goal

– add to the positive body one of the negated goals, without negation

rn1 : . . . → b1(X,Y), b2(X).
rn2 : . . . → b1(X, Y), b3(Y).

• Body expression: Bodyrp −Bodyrn1 − . . .−Bodyrnk

21

Relaxing Safety

• Safety conditions can be relaxed in several ways to improve flexibility and
ease-of-use

• One extension: allow existential variables in negated goals, variables are
not used anywhere else in the rule

• For example

student(Nme,Yr) ← student(Nme,cs,Yr),¬took(Nme,cs143,G).

can be viewed as a shorthand to
projectTook(Nme,cs143) ← took(Nme,cs143,G).

student(Nme,Yr) ← student(Nme,cs,Yr),¬projectTook(Nme,cs143).

22

Deductive DBs- 11

Commercial Query Languages

• Goal: simplify DRC and TRC to make them more user-friendly

• QBE is based on DRC, QUEL and SQL on TRC

• Main modification: ensuring that every variable is range quantified, i.e.,
associated with a relation thus ensuring safety

• Example of transformation of TRC into SQL
{(t[1]) |

t ∈ took∃u ∈ took∃s ∈ student

(t[2] = cs101 ∧ u[2] = cs143 ∧ t[1] = u[1]∧
s[3] = junior ∧ s[1] = t[1] }

SELECT t.Name

FROM took t, took u, student s

WHERE t.Course=’cs101’ AND u.Course=’cs143’ AND

t.Name = u.Name AND s.Year=’junior’ AND

s.Name = t.Name

23

Universal Quantification in SQL

• EXISTS and ALL are allowed in nested SQL queries

• Universal quantifiers must be expressed using double negation and exis-
tential quantifiers

SELECT Name

FROM Student

WHERE Year=’senior’ AND Name NOT IN

(SELECT S.Name

FROM student s, req r

WHERE r.Major=’cs’ AND s.Year=’senior’ AND

NOT EXISTS

(SELECT t.*

FROM took t

WHERE t.Course=r.Course AND t.Name=s.Name

)

)

24

Deductive DBs- 12

Beyond SQL

• Excepted set aggregates, the many additional constructs cluttering SQL
do not extend its expressive power

• Current practice: procedural languages with embedded SQL

• Impedance mismatch: different data types and computational
paradigms

• More powerful query languages would allow a larger portion of the appli-
cation to be developped in the DB query language

• Result: better data independence and distributed processing

• Datalog provides, in terms of syntax and semantics, a better vehicle for
investigating the design of more powerful DB query languages

25

Recursive Rules

• Bill of materials (BoM): assemblies containing superparts composed of
subparts, eventually composed of basic parts

partCost

basicPart supplier cost time

topTube cinelli 20.00 14

topTube columbus 15.00 6

downTube columbus 10.00 6

headTube cinelli 20.00 14

assembly

part subpart qty

bike frame 1

bike wheel 2

frame topTube 1

frame downTube 1

• To find all subparts of a given part a recursive rule is needed

allSubparts(Part,Sub) ← assembly(Part,Sub,).

allSubparts(Part,Sub) ← allSubparts(Part,Sub1),assembly(Sub1,Sub,).

• First rule: nonrecursive exit rule

• This computes the transitive closure of the aggregation graph

• Transitive closure computations are very common in applications

26

Deductive DBs- 13

Example: Basic Subparts

Compute how long it takes to obtain all basic subparts of an assembly

• Find for each part its basic subparts
basicSubparts(BasicP,BasicP) ← partCost(BasicP, , ,).

basicSubparts(Part,BasicP) ← assembly(Part,SubP,),

basicSubparts(SubP,BasicP).

• For each basic part, find the least time needed for delivery
fastest(Part,Time) ← partCost(Part, , ,Time), ¬faster(Part,Time).

faster(Part,Time) ← partCost(Part,Sup, ,Time),

partCost(Part,Sup1, ,Time1), Time1<Time.

• Times required for basic subparts of the given assembly
timeForBasic(AssPart,BasicSub,Time) ←

basicSubparts(AssPart,BasicSub), fastest(BasicSub,Time).

27

Example: Basic Subparts, cont.

• Maximum time required for basic subparts of the given assembly
howSoon(AssPart,Time) ← timeForBasic(AssPart, ,Time),

¬larger(AssPart,Time).

larger(Part,Time) ← timeForBasic(Part, ,Time),

timeForBasic(Part, ,Time1), Time1>Time.

• Nonrecursive Datalog with negation can express min and max

• Other aggregates (e.g., count, sum) require stratified Datalog with arith-
metic

• Counting the elements in a set modulo an integer does not require arith-
metic

28

Deductive DBs- 14

Example: Counting Elements

• Determine if a base relation br contains an even number of elements

between(X,Z) ← br(X),br(Y),br(Z),X<Y,Y<Z.

next(X,Y) ← br(X),br(Y),X<Y,¬between(X,Y).

next(nil,X) ← br(X),¬smaller(X)

smaller(X) ← br(X),br(Y),Y<X.

even(nil)

even(Y) ← odd(X),next(X,Y).

odd(Y) ← even(X),next(X,Y).

brIsEven ← even(X),¬next(X,Y).

• Predicate next sorts elements of br into an ascending chain

• First link of the chain connects nil to the least element in br

• Relies on the assumption that the elements of br are totally ordered by >

are can therefore be visited one at a time using this order

29

Counting with Arithmetics

• Counting the number of elements of a base relation br

nbElements(0,nil).

nbElements(N,X) ← nbElements(N1,Y), next(Y,X), N=N1+1.

nbElements(N) ← nbElements(N,X), ¬next(X,Y).

30

Deductive DBs- 15

Stratification

• Predicate dependency graph for a program P , pdg(P)

– Nodes: names of the predicates in P

– Arc g → h if there is a rule r with goal g and head h. If goal is negated,
arc is marked as a negative arc

• Nodes and arcs of the strong components of pdg(P) identify recursive
predicates and recursive rules of P

• If rule r defines a recursive predicate p, the number of goals in r that are
mutually recursive with p is called the rank of r

– rank(r) = 0 : exit rule; recursive rule otherwise

– rank(r) = 1 : linear rule; nonlinear otherwise

– rank(r) = 2 : quadratic, rank(r) = 3 : cubic

31

Predicate Dependency Graph

• BoM program: basicSubparts only recursive rule

• Parity query: strong component having as nodes the mutually recursive
predicates even and odd

• Both programs are stratifiable: no arc marked with negation belongs to a
strong component of the graph (a directed cycle)

32

Deductive DBs- 16

Stratifiable Programs

• Non-stratifiable programs are ill-defined from a semantic viewpoint

• Given a statifiable program P , applying topological sorting on pdg(P),
the nodes of P can be partitioned into a finite set of strata 1, . . . , n where
for each rule r ∈ P , the predicate of the head belongs to a stratum that

– is ≥ to each stratum containing some positive goal of r; and

– is > than each stratum containing some negated goal of r

• Strata structure the computation: predicates of stratum j are used only
after every predicate of lower stratum has been computed

• Strict stratification : every stratum contains either a single predicate or a
set of predicates that are mutually exclusive

33

Functors

• Store complex terms and variable-length subrecords in tuples

part(202,circle(11),actualKg(0.034)).

part(21,rectangle(10,20),unitKg(2.1)).

partWeigth(No,Kilos) ← part(No, ,actualKg(Kilos)).

partWeigth(No,Kilos) ← part(No,Shape,unitKg(K)),

area(Shape,Area),Kilos=K*area.

area(circle(Dmtr),A) ← A=Dmtr*Dmtr*3.14/4.

area(rectangle(Base,Height),A) ← A=Base*Height.

• In actual applications functions are used as variable-length subrecords

• Functions can be nested, can be used as discriminants to prescribe different
computations

34

Deductive DBs- 17

Lists

• Functors can be used to generate recursive objects as lists :

– list(nil) for empty list, list(Head,Tail) for nonempty list

• Most LP languages provide a special notation for lists

• List-based representation of suppliers of topTube

partSupList(topTube,[cinelli,columbus,mavic]).

• Normalizing a nested relation into a flat relation

flatten(P,S,L) ← partSupList(P,[S|L]).

flatten(P,S,L) ← flatten(P, ,[S|L]).

ps(Part,Sup) ← flatten(Part,Sup,).

• Applying these rules yield

ps(topTube,cinelli).

ps(topTube,columbus).

ps(topTube,mavic).

35

Lists, cont.

• Constructing a nested relation from a normalized relation

between(P,X,Z) ← ps(P,X),ps(P,Y),ps(P,Z),X<Y,Y<Z.

smaller(P,X) ← ps(P,X),ps(P,Y),Y<X.

nested(P,[X]) ← ps(P,X),¬smaller(P,X).

nested(P,[Y|[X|W]]) ← nested(P,[X|W]),ps(P,Y),X<Y, ¬between(P,X,Y).

psNested(P,W) ← nested(P,W),¬nested(P,[X|W]).

36

Deductive DBs- 18

Syntax of First-Order Logic

Alphabet consists of

• Constants

• Variables

• Functions f(t1, . . . , tn), f is an n-ary functor and t1, . . . , tn are terms

• Predicates

• Connectives: ∨, ∧, ¬, ←, →, ↔
• Quantifiers: ∀, ∃
• Parentheses and punctuation symbols, used to avoid ambiguities

37

Syntax of First-Order Logic, cont.

• A term is defined inductively by

– a variable is a term

– a constant is a term

– f(t1, . . . , tn) is a term if f is an n-ary functor and t1, . . . , tn are terms

• Well-formed formulas (WFF)

– If p is an n-ary predicate and t1, . . . , tn are terms, then p(t1, . . . , tn) is
an atomic formula, or an atom

– If F and G are formulas then so are ¬F , F ∨G, F ∧G, F ← G, F → G,
F ↔ G,

– If F is a formula and x is a variable then ∀x(F) and ∃x(F) are formulas.
When so, x is said to be quantified in F

• Ground terms, atoms, and formulas : contain no variables

38

Deductive DBs- 19

Syntax of First-Order Logic, cont.

• Well-formed formulas

∃G1(took(N, cs101, G1)) ∧ ∃G2(took(N, cs143, G2))∧
∃M(student(N, M, junior))

∃N, ∃M(student(N,M, junior) ∧ ∀C(req(cs, C) →
∃G(took(N, C,G))))

• Closed WFF F : every variable in F is quantified

• Free variable in F : variable that is not quantified in F

• Clause: closed WFF of the form

∀x1, . . . , ∀xs(A1 ∨ . . . ∨Ak ∨ ¬B1 ∨ . . . ∨ ¬Bn)

Ai, Bj are atoms, x1, . . . , xs are all variables in these atoms

39

Syntax of First-Order Logic, cont.

• Definite clause: one positive atom and zero or more negated atoms

∀x1, . . . , ∀xs(A ∨ ¬B1 ∨ . . . ∨ ¬Bn)

• Since F ← G ≡ F ∨ ¬G this can be rewritten

A ← B1, . . . , Bn

where A is the head and B1, . . . , Bn is the body of the rule

• Unit clause: definite clause with empty body

– written A. instead of A ← .

• Fact: unit clause without variables

loves(X,X). loves(marc,mary).

loves(mary,tom). loves(marc,tom).

• Positive logic program: set of definite clauses

40

Deductive DBs- 20

Semantics

• Alternative semantics for positive logic programs are equivalent

• Semantics for more general programs (e.g. with negation) is more complex

• Model-theoretic semantics: declarative meaning of a program

• Fixpoint semantics: bottom-up implementation of deductive DBs

• Proof-theoretic semantics: SLD-resolution and top-down execution

41

Interpretation of a Program P

• Defined with respect to constant symbols, function symbols, and predicate
symbols of P

• More generally, for a first-order language L

• Universe (domain) of interpretation: nonempty set of elements U

• Interpretation of L consists of

– For each constant in L, an assignment of an element in U

– For each n-ary function in L, the assignment of a mapping from Un to
U

– For each n-ary predicate q in L, the assignment of a mapping from Un

intro true, false (i.e., a relation on Un)

42

Deductive DBs- 21

Herbrand Interpretations

• Definite clause languages and programs: sufficient to consider interpreta-
tions where constants and functions represent themselves

• Functors viewed as variable-length subrecords

• Herbrand universe for L (UL): set of terms recursively constructed by
letting arguments of functions to be constants in L or elements in UL

• Herbrand base of L: set of atoms that can be built by assigning elements
of UL to the arguments of the predicates

• Herbrand interpretation (HI): assign to each n-ary predicate q, a relation
Q of arity n, where q(a1, . . . , an) is true iff a1, . . . , an ∈ Q, a1, . . . , an ∈ UL

• Alternatively: a Herbrand interpretation of L is a subset of the Herbrand
base of L

43

Herbrand Interpretations, cont.

• For a program P , Herbrand universe UP and Herbrand base BP defined
as UL and BL of the language L that has as constants, functions, and
predicates those appearing in P

• In the program

anc(X,Y) ← parent(X,Y).

anc(X,Z) ← anc(X,Y),parent(Y,Z).

parent(X,Y) ← father(X,Y).

parent(X,Y) ← mother(X,Y).

mother(anne,silvia). mother(anne,marc).

– UP = {anne, silvia,marc}
– BP = {parent(x, y) | x, y ∈ UP } ∪ {father(x, y) | x, y ∈ UP }∪

{mother(x, y) | x, y ∈ UP } ∪ {anc(x, y) | x, y ∈ UP }
– |BP | = 4× 3× 3 = 36

– 2|BP | = 236 Herbrand interpretations

44

Deductive DBs- 22

Herbrand Interpretations, cont.

• Program P with an infinite BP and an infinite number of interpretations

p(f(X)) ← q(X).

q(a) ← p(X).

– UP = {a, f(a), . . . , fn(a), . . .}, where f0(a), f1(a), f2(a) . . . stand for
a, f(a), f(f(a)), . . .

– BP = {p(fn(a)) | n ≥ 0} ∪ {q(fm(a)) | m ≥ 0}

45

Models of a Program

• ground(r): set of ground instances of r, i.e., rules obtained by assigning
values from UP to variables in r

• For parent(X,X) ← mother(X,X)., |UP | = 3, |ground(r) | = 9

parent(anne,anne) ← mother(anne,anne).

parent(anne,marc) ← mother(anne,marc).

. . .

parent(silvia,silvia) ← mother(silvia,silvia).

• Ground version of a program P :

ground(P) = {ground(r) | r ∈ P}
• If I is an interpretation, every ground atom a ∈ I is said to be true (or

satisfied), if a 6∈ I is said to be false (or not satisfied)

• A formula consisting of ground atoms and logical connectives is defined
as true or false according to the rules of propositional logic

46

Deductive DBs- 23

Models of a Program, cont.

• A rule r ∈ P is true in interpretation I if every instance of r is satisfied
in I

• Model for P : interpretation making true all rules of P

• I is a model for P iff it satisfies all the rules in ground(P)

• Interpretations and models for the example

– I1 = ∅ is not a model: facts are not satisfied

– I2 = {mother(anne, silvia),mother(anne,marc)} is not a model

– I3 = {mother(a, s), mother(a,m), parent(a, s), parent(a,m),
anc(a, s), anc(a,m)} is a model

– I4 = I3 ∪ {anc(silvia,marc)} is also a model but it is not a minimal
one

47

Properties of Models

• If M1, M2 are models for P , then M1 ∩M2 is also a model for P

• A model M for a program P is minimal if there is no other model M ′ of
P where M ′ ⊂ M

• A model M for a program P is its least model if M ′ ⊇ M for every model
M ′ of P

• Every positive program has a least model

• Least model of a program P (MP): logic-based declarative definition of
its meaning

• Need: constructive semantics for realizing minimal model semantics

48

Deductive DBs- 24

Fixpoint-Based Semantics

• Views rules as constructive derivation patterns: from the tuples satisfying
the goals in a rule the head atoms are constructed

• Relational algebra can be used for such a mapping from the body relations
to the head relations

– parent can be derived through union

– grandParent from these

– anc is both the arugment and the result of the RA expression

• Fixpoint equation : x = T (x) where T is a mapping U → U

• Fixpoint for T : a value x that satisfies this equation

• For an arbitrary T there might be zero or more fixpoints

49

Immediate Consequence Operator

• Mapping TP , the immediate consequence operator for P

TP ={A∈BP | ∃r :A←A1, . . . , An∈ground(P), {A1, . . . , An}⊆I}
• Is a mapping from HIs of P to HIs of P

• For the program P

anc(X,Y) ← parent(X,Y).

anc(X,Z) ← anc(X,Y),parent(Y,Z).

parent(X,Y) ← father(X,Y).

parent(X,Y) ← mother(X,Y).

mother(anne,silvia). mother(anne,marc).

– I = {anc(anne,marc), parent(marc, silvia)}
– TP = {anc(marc, silvia), anc(anne, silvia),

mother(anne, silvia),mother(anne,marc)}
• In addition to the atoms derived from the applicable rules, TP returns

also the facts and the ground instances of unit clauses

50

Deductive DBs- 25

Immediate Consequence Operator

• For the program P
p(f(X)) ← q(X).

q(a) ← p(X).

then UP = {a, f(a), . . . , fn(a), . . .}
– If I = {p(a)}, then TP (I) = {q(a)}
– If I1 = {p(x) | x ∈ UP } ∪ {q(y) | y ∈ UP }, then TP (I1) = {q(a)} ∪
{p(fn(a)) | n ≥ 1}

– If I2 = ∅, then TP (I2) = ∅
– If I3 = TP (I1) then TP (I3) = {q(a)} ∪ {p(f(a))}

51

Fixpoint Semantics

• A program P defines the fixpoint equation I = TP (I) over HIs
• A fixpoint equation may have zero, one, or several solutions
• Equation is over HIs, i.e., subsets of BP partially ordered with ⊆
• (2|BP |,⊆)

– partial order (transitive, reflexive, and antisymmetric)
– lattice where I1 ∩ I2 and I1 ∪ I2 define the lub and the glb

• Complete lattice: given a set of elements in 2|BP | there exists the ∪ and
∩ of such a set, even it it contains infinitely many elements

• TP for definite clause programs is monotonic, i.e., if N ≤ M , then TP (N) ≤
TP (M)

• If P is a definite clause program, then
– there always exists a least fixpoint for TP , denoted lfp(TP)
– MP = lfp(TP)

52

Deductive DBs- 26

Powers of TP

• For positive programs, lfp(TP) computed by repeated applications of TP

• T ↑nP : nth power of TP is defined by

T ↑0P (I) = I

. . .

T ↑n+1
P (I) = TP (T ↑nP)

• With ω denoting the first limit ordinal

T ↑ωP (I) =
⋃{T ↑nP (I) | n ≥ 0}

• For a definite clause program P , lfp(TP) = T ↑ωP (∅)
• This gives a simple algorithm for computing lfp(TP)

– Starting from the bottom

– Iterating the application of T ad infinitum or until no new atoms are
obtained and the (n + 1)th power equals the nth power

53

Top-Down Execution

• Each goal in a rule body viewed as a call to a procedure defined by other
rules in the same stratum or in lower strata

part(202,circle(11),actualKg(0.034)).

part(21,rectangle(10,20),unitKg(2.1)).

partWeigth(No,Kilos) ← part(No, ,actualKg(Kilos)).

partWeigth(No,Kilos) ← part(No,Shape,unitKg(K)),

area(Shape,Area),Kilos=K*area.

area(circle(Dmtr),A) ← A=Dmtr*Dmtr*3.14/4.

area(rectangle(Base,Height),A) ← A=Base*Height.

• A and Area ≈ formal and actual parameters in procedural languages

• Arguments can be complex ⇒ passing of parameters through unification

54

Deductive DBs- 27

Unification

• Substitution θ: finite set {v1/t1, . . . , vn/tn}, each vi is a distinct variable,
ti term distinct from vi

• Ground substitution if every ti is a ground term

• If E is a term and θ a substitution for variables of E, then Eθ is the result
of applying θ to E

• E.g., E = p(x, y, f(a)), θ = {x/b, y/x} ⇒ Eθ = p(b, x, f(a))

• Variables that are not part of the substition left unchanged

• Composition θδ of θ = {u1/s1, . . . , um/sm} and δ = {v1/t1, . . . , vn/tn}:
substitution obtained from {u1/s1δ, . . . , um/smδ, v1/t1, . . . , vn/tn} by delet-
ing any ui/siδ for which ui = siδ and deleting any vj/tj for which
vj ∈ {u1, . . . , um}

• E.g., θ = {x/f(y), y/z}, δ = {x/a, y/b, z/y}, θδ = {x/f(b), z/y}

55

Unifiers

• Substitution θ is a unifier for terms A et B if Aθ = Bθ

• Most general unifier (mgu): unifier for two terms such that for each other
unifier γ there is a substitution δ such that γ = θδ

• E.g., p(f(x), a) and p(y, f(w)) not unifiable

• E.g., p(f(x), z) and p(y, a) unifiable since δ = {y/f(a), x/a, z/a} is a
unifier. Mgu is θ = {y/f(x), z/a}

• There are efficient algorithms to perform unification: they return either a
mgu or reports that none exists

• Given r : A ← B1, . . . , Bn and← g (r and g have no variables in common),
if there is an mgu δ for A and g, the resolvent of r and g is ← B1δ, . . . , Bnδ

56

Deductive DBs- 28

SLD-Resolution

Input: A first-order program P and a goal list G

Output: An instance Gδ proved from P , or failure
begin
Res := G;
While Res is not empty repeat

Choose a goal g from Res

Choose a rule A ← B1, . . . , Bn, n ≥ 0, from P such that A and g

unify under the mgu δ (renaming variables in the rule as needed);
If no such rule exists then output failure and exit
else delete g from Res;
Add B1, . . . , Bn to Res;
Apply δ to Res and G;

If Res is empty then output Gδ

end

57

SLD-Resolution: Example

s(X,Y) ← p(X,Y),q(Y). q(3).

p(X,3). q(4).

←s(5,W)

• Goal unifies with rule under {X/5,Y/W}: goal list ← p(5,W),q(W)

• q(W) unifies with q(3) under {W/3}: goal list ← p(5,3)

• Goal unifies with p(X,3) under {X/5}: success with answer {W/3}
• If q(4) is choosen with {W/4}: goal list ← p(5,4)

• Goal cannot unify with head of any rule ⇒ returns failure

• At each step, SLD-resolution choose nondeterministically

– a next goal from the goal list

– a next rule from those whose head unifies with goal just selected

• An instance of an SLD-resolution can return success or failure depending
on the choices made

58

Deductive DBs- 29

SLD-Resolution, cont.

• Success set for predicate q without bound arguments: consider all choices
and collect results of successful instances of SLD-resolution

• Union of success sets for all predicates in a program P = least model of
P ⇒ equivalence between top-down and bottom-up semantics

• Generation of success set for a predicate (e.g., using breadth-first) too
inefficient for most practical applications

• Prolog: depth-first exploration of alternatives, left-to-right order of goals,
heads of rules in order of appearence

• Programmer responsible to guide Prolog into successful and efficient searches

59

Infinite Loops

anc(X,Z) ← anc(X,Y),parent(Y,Z).

anc(X,Y) ← parent(X,Y).

• Resolvents of ?anc(marc,mary) with 1st rule
?anc(marc,Y1),parent(Y1,mary).

?anc(marc,Y2),parent(Y2,Y1),parent(Y1,mary).

?anc(marc,Y3),parent(Y3,Y2),parent(Y2,Y1),parent(Y1,mary).

. . .

• Reordering does not ensure safety from infinite loops
anc(X,Y) ← parent(X,Y).

anc(X,Z) ← anc(X,Y),anc(Y,Z).

• Produce all ancestor pairs and then enter a perpetual loop: e.g., if there
is no parent fact, second rule calls itself infinitely

• Even when rules are properly written, directed cycles in parent (e.g.,
homonyms, incorrect data) cause infinite loops

• Similar rules compute transitive closure of graphs
• Bottom-up operational semantics more robust

60

Deductive DBs- 30

Reducing Search Space

• Top-down approach take advantage of constants and constraints
anc(Old,Young) ← parent(Old,Young).

anc(Old,Young) ← anc(Old,Mid),parent(Mid,Young).

grandma(Old,Young) ← parent(Mid,Young),mother(Old,Mid).

parent(F,Cf) ← father(F,Cf).

parent(M,Cm) ← mother(M,Cm).

• ?grandma(GM,marc): marc unifies with Young, then with Cf and Cm

• Search in father for 2nd column = marc: efficient if index
• A value, say, tom, passed to Mid and mother(Old,tom) is solved
• If several names found for father, each one passed to goal mother and new

answers generated for each new name
• When no more names are found, Cm=marc attempted and second parent

rule processed similarly
• Deductive DBs mix bottom-up and top-down techniques for combining

their strength

61

Recursive Queries in SQL

• SQL3 standards include support for recursive queries

CREATE RECURSIVE VIEW allSubparts(Major,Minor) AS

SELECT PART SUBPART

FROM assembly

UNION

SELECT all.Major assb.SUBPART

FROM allSubparts all, assembly assb

WHERE all.Minor=assb.PART

• Exit and recursive selects: before and after the union

• A query on this view is needed to materialize the recursive relation

SELECT *

FROM allSubparts

62

Deductive DBs- 31

Recursive Queries in SQL

• WITH construct: another, more direct, way to express recursion

• Example: find the parts using ’topTube’

WITH RECURSIVE all super(Major,Minor) AS

(SELECT PART, SUBPART

FROM assembly

UNION

SELECT assb.PART, all.Minor

FROM assembly assb, all super all

WHERE assb.SUBPART = all.Major

)

SELECT *

WHERE Minor=’topTube’

63

Deductive DBs- 32

