MySQL

www.mysql.com

MySQLAB

- MySQL AB : swedish company of the MySQL founders and main developers: David Axmark, Allan Larsson, and Michael "Monty" Widenius.
- Develop the MySQL database software, promoting it to new users, sell support and certifications
- MySQL AB owns copyright to the source code, the MySQL logo and (registered) trademark
- "AB" is the acronym for the Swedish "aktiebolag," or "stock company." It translates to "MySQL, Inc."

ULB

Formation Continue

MySQLAB Goals

- To be the best and the most widely used database in the world
- To be available and affordable by all
- To be easy to use
- To be continuously improved while remaining fast and safe
- To be fun to use and improve
- To be free from bugs

ULB

Formation Continue

MySQLAB Core Values

- We subscribe to the Open Source philosophy and support the Open Source community
- We aim to be good citizens
- We prefer partners that share our values and mindset
- We answer email and provide support
- We are a virtual company, networking with others
- We work against software patents

- MySQL is a relational database management system.
- MySQL software is Open Source: GPL, but to embed MySQL code into a commercial application:a commercially licensed version
- The MySQL Database Server is very fast, reliable, and easy to use
- Client/server or embedded systems
- Google, Yahoo, YouTube, Flickr, Second Life, Wikipedia, Craigslist, Slashdot, Blogger.com, Facebook, LiveJournal, Digg, Del.icio.us and Weather.com

TTT

Internals

- Written in C and C++
- Works on many different platforms
- APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available
- Fully multi-threaded using kernel threads. It can easily use multiple CPUs if they are available

Data Types

- Many data types:
 - signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE
 - CHAR, VARCHAR, TEXT, BLOB
 - DATE, TIME, DATETIME, TIMESTAMP, YEAR
 - SET, ENUM, and OpenGIS spatial types
- Fixed-length and variable-length records

Connectivity

- Clients can connect to the MySQL server using TCP/IP sockets on any platform
- Connector/ODBC (MyODBC): MS Access to MySQL server, clients can run on Windows or Unix
- Java: JDBC
- Connector/NET: .NET application, implements ADO.NET interfaces and integrates into ADO.NET aware tools, any .NET languages, fully managed ADO.NET driver written in 100% pure C#

Storage Engines

- Storage engines: how and when data is stored
- MySQL storage engines:
 - MyISAM: non transactional tables
 - InnoDB: transactional engine
 - MEMORY (aka HEAP): in-memory tables

Using Storage Engines

- Specify storage engine: ENGINE or TYPE (old) table option to the CREATE TABLE statement:
 - CREATE TABLE t (i INT) ENGINE = INNODB;
 - CREATE TABLE t (i INT) TYPE = MEMORY;
- --default-storage-engine or --default-table-type server startup option: set the default engine (default MyISAM)
- Database may contain tables of different types

Storage Engines Transactional or Not

- Transaction-safe tables (InnoDB) have several advantages over nontransaction-safe tables:
 - They are safer. Even if MySQL crashes or you get hardware problems, you can get your data back, either by automatic recovery or from a backup plus the transaction log
 - You can combine many statements and accept them all at the same time with the COMMIT statement (if autocommit is disabled) or ROLLBACK
 - If an update fails, all of your changes are reverted
 - Transaction-safe storage engines can provide better concurrency for tables that get many updates concurrently with reads.

Storage Engines Transactional or Not

- Non-transaction-safe (MyISAM) tables have several advantages:
 - Much faster
 - Lower disk space requirements
 - Less memory required to perform updates
- Combine transaction-safe and non-transaction-safe tables in the same statements, changes to non-transaction-safe tables still are committed immediately and cannot be rolled back

ULB

- MyISAM is the default storage engine. It is based on the older ISAM code
- Non-transactional very efficient engine
- No check on FOREIGN KEY constraints
- Can be corrupted need repair

MyISAM Table Corruption

- Corruption can occur when:
 - mysqld process is killed in the middle of a write
 - Unexpected computer shutdown (e.g. computer is turned off)
 - Hardware failures.
 - External program (such as myisamchk) modify a table that is being modified by the server at the same time

MyISAM Table Corruption

- Symptoms of a corrupt table are:
 - Incorrect key file for table: '...'. Try to repair it
 - Queries don't find rows or return incomplete results
- Use CHECK TABLE statement, and REPAIR TABLE, when mysqld is not running, use myisamchk utility

ULB

InnoDB

- Transaction-safe (ACID compliant) storage engine with commit, rollback, and crash recovery capabilities and supports FOREIGN KEY constraints
- Designed for maximum performance when processing large data volumes
- CPU efficiency is probably not matched by any other disk-based relational database engine

InnoDB

Multi-versioning and ACID

- Old versions of rows are kept in a rollback segment
- Internally, InnoDB adds two fields to each row stored:
 - the transaction identifier for the last transaction that inserted or updated the row
 - the roll pointer pointing to an undo log record written to the rollback segment (contains the information necessary to rebuild the content of the row before it was updated)
- InnoDB uses the rollback segment for undo operations in a transaction rollback and for earlier versions of a row for a consistent read
- Commit transactions regularly, including for consistent reads for InnoDB to purge its rollback segment

TTT

Memory aka HEAP

- Contents that are stored in memory
- One disk file: table_name.frm
- Use hash indexes by default thus very fast
- Used for temporary tables
- No persistence: empty when the server restarts.

- Use a fixed-length row storage format, no BLOB nor TEXT
- max_heap_table_size: impose a maximum size on MEMORY tables
- Needs sufficient memory to maintain all MEMORY tables that are in use at the same time
- Execute DELETE or TRUNCATE TABLE, or remove the table altogether using DROP TABLE when no more needed

Storage Engines

- ISAM: deprecated original storage engine
- ARCHIVE: storing large amounts of data without indexes with a very small footprint
- CSV: stores data in text files using comma-separated values format

Storage Engines

- NDB Cluster: MySQL Cluster Engine, manage tables partitioned over many computers (Only Unix for now)
- EXAMPLE: "stub" engine that does nothing
- BLACKHOLE: accepts but does not store data and retrievals always return an empty set
- FEDERATED: stores data in a remote database, works with MySQL only, in future releases, intends to connect to other data sources using other drivers or client connection methods (transparent gateway?)

UΙ

Administrator

- Configuring, monitoring and starting and stopping a MySQL server, managing users and connections, performing backups, and a number of other administrative tasks
- Its graphical user interface makes it more intuitive
- It provides a better overview of the settings that are crucial for the performance, reliability, and security of your MySQL servers
- It displays performance indicators graphically, thus making it easier to determine and tune server settings
- MySQL Administrator is designed to work with MySQL versions 4.0 and higher
- http://dev.mysql.com/doc/administrator/en/index.html

ULB

Formation Continue

Query Browser

- Creating, executing, and optimizing queries in a graphical environment
- Intuitive GUI
- MySQL versions 4.0 and higher.
- For MySQL Query Browser, there's a dedicated forum available on <u>http://forums.mysql.com/list.php?108</u>.
- http://dev.mysql.com/doc/query-browser/en/index.html

PHPMyAdmin

• Admin + Query ! :-)

User Management

ULB

Access Control Roles

- Identification: user_name and host
- Authentication: identification and password
- Authenticate users, associate privileges
- Control access:
 - Stage I: connection access
 - Stage 2: each statement against user privileges

Connection Privileges

Examples

Host	User	Allowable Connections
'thomas.loc.gov'	'fred'	fred from host thomas.loc.gov
'thomas.loc.gov'	"	any user from host thomas.loc.gov
·%'	'fred'	fred from anywhere
·%'	~	anyone fro <mark>m anywhe</mark> re
'%.loc.gov'	'fred'	fred from anything.loc.gov
ʻx.y.%'	'fred'	fred from host x.y.net, x.y.org
ʻI44.I55.I66.%'	'fred'	fred from 144.555.166.something
'144.155.166.0/255/255/255/0'	'fred'	same as previous

Access Control Tables Used

- mysql.user, mysql.db, and mysql.host tables at both stages of access control
- mysql.tables_priv and mysql.columns_priv tables provide finer privilege control at the table and column levels
- For verification of requests that involve stored routines, the server may consult the procs_priv table.

Access Control Statements

- Account management statements: grant, revoke, create user, drop user...
- Syntax: http://dev.mysql.com/doc/refman/5.0/en/accountmanagement-sql.html
- Or directly with: update, insert, delete in the mysgl.* tables
- Consult privileges: mysql> SHOW GRANTS FOR 'bob'@'pc84.example.com
- mysqlaccess: shell> mysqlaccess --help

Access Control Limiting Account Resources

ULB

31

- The number of:
 - queries per hour
 - updates per hour
 - times an account can connect per hour
 - simultaneous connections

mysql>	GRANT ALL ON customer.* TO	mysql>	GRANT USAGE ON *.* TO 'francis'@'localhost'
'franci	is'@'localhost'	->	WITH MAX_CONNECTIONS_PER_HOUR 0;
->	IDENTIFIED BY 'frank'		
->	WITH MAX_QUERIES_PER_HOUR 20		
->	MAX_UPDATES_PER_HOUR 10		
->	MAX_CONNECTIONS_PER_HOUR 5		
->	MAX_USER_CONNECTIONS 2;		

Access Control Statements MySQL vs Standard SQL

- Identification: hostname and username vs only a username.
- Standard SQL does not have global or database-level privileges, nor does it support all the privilege types that MySQL supports.
- MySQL does not support the standard SQL TRIGGER or UNDER privileges.
- In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL, when you revoke a privilege, all privileges that were granted based on that privilege are also revoked. In MySQL, privileges can be dropped only with explicit REVOKE statements or by manipulating values stored in the MySQL grant tables.
- In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this case, you can still execute INSERT statements on the table, provided that you omit those columns for which you do not have the INSERT privilege. The omitted columns are set to their implicit default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on all columns.)

When privileges takes effects

- When mysqld starts, it reads all grant tables into memory
- When the server reloads the grant tables it takes effect:
 - table and column privilege: the client's next request
 - database privilege: next use db_name statement
 - changes to global privileges and passwords: next time the client connects
- grant, revoke,... reloads grant tables
- update, insert,... does not => use flush privileges or mysqladmin reload

TTT

- General guidelines
- Secure against attackers
 - mysqld security options
- Security issue with LOAD Data

- MySQL security is based on Access Control Lists (ACLs) for connections, queries, and other operations
- SSL-encrypted connections between MySQL clients and servers

Security General Guidelines

- Fully protect the entire server host (not just the MySQL server): eavesdropping, altering, playback, and denial of service
- root only has access to user table in the mysql database! This is critical.
- Do not grant more privileges than necessary. Never grant privileges to all hosts.
- Use the SHOW GRANTS statement to check which accounts have access to what

UΙ

Security Password

- Do not choose passwords from dictionaries. Special programs exist to break passwords.
- Check password of root and anonymous users
- Do not store any plain-text passwords in your database, use MD5(), SHA1(), or some other one-way hashing function and store the hash value

Security Web Development

- Do not trust any data entered by users of your applications: special or escaped character sequences in Web forms, URLs, or whatever application you have built: "; DROP DATABASE mysql;".
- A common mistake is to protect only string data values. Remember to check numeric data as well.
- Example of denial of service:

SELECT * FROM table WHERE ID=234 when a user enters the value 234, the user can enter the value 234 OR 1=1 TTT

Security Application Development

- Checklist:
 - Try to enter single and double quote marks (" and "") in all of your Web forms
 - Try to modify dynamic URLs by adding %22 (""), %23 ('#'), and %27 ("")
 - Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your application should remove them before passing them to MySQL or else generate an error. Passing unchecked values to MySQL is very dangerous!
 - Check the size of data before passing it to MySQL
 - Have your application connect to the database using a username different from the one you use for administrative purposes. Do not give your applications any access privileges they do not need

Security Application Development

- Encrypt data over the Internet, use an encrypted protocol such as SSL or SSH
- Use tcpdump and strings utilities:

shell> tcpdump -1 -i eth0 -w - src or dst port 3306 | strings

- Never run the MySQL server as the Unix root user (user with the FILE privilege can create files as root e.g. ~root/.bashrc
- mysqld refuses to run as root unless: --user=root option.
- mysqld should be run as an ordinary, unprivileged user instead

[mysqld]

user=mysql

• Make sure that the only Unix user with read or write privileges in the database directories is the user that mysqld runs as

UΙ

- Do not grant the PROCESS or SUPER privilege to non-administrative users. The output of mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements currently being executed
- mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root user can log in and check server activity even if all normal connections are in use
- The SUPER privilege can terminate client connections, change system variables, control replication servers

- If you do not trust your DNS, use IP numbers rather than hostnames in the grant tables. Don't grant table entries using hostname values that contain wildcards
- Limit user resources
- --ss1*: options that begin with --ss1 specify whether to allow clients to connect via SSL and indicate where to find SSL keys and certificates

Security mysqld Options

- --secure-auth: disallow authentication for accounts that have old (pre-4.1) passwords.
- --skip-grant-tables: server don't use the privilege system at all, anyone with access to the server has unrestricted access to all databases. Revert with mysgladmin flush-privileges
- --skip-name-resolve: hostnames are not resolved. All Host column values in the grant tables must be IP numbers or localhost
- --skip-networking: do not allow TCP/IP connections over the network. All connections to mysgld must be made via Unix socket files
- --skip-show-database: SHOW DATABASES only if SHOW DATABASES privilege, displays all database names. Without this option, SHOW DATABASES is allowed to all users, displays each database name the user has the SHOW DATABASES privilege for or some other privilege. Any global privilege is a privilege for the database.

Falcon Storage Engine

- InnoDB and BDB storage engine most used in MySQL, best transactional engine for MySQL today. Both bought by... Oracle!
- True Multi Version Concurrency Control (MVCC) enables records and tables to be updated without the overhead associated with row-level locking mechanisms. The MVCC implementation virtually eliminates the need to lock tables or rows during the update process.
- Flexible locking, including flexible locking levels and smart deadlock detection keep data protected and transactions and operations flowing at full speed.
- Optimized for modern CPUs and environments to support multiple threads allowing multiple transactions and fast transaction handling.

Falcon Storage Engine

- Transaction-safe (fully ACID-compliant) and able to handle multiple concurrent transactions.
- Serial Log provides high performance and recovery capabilities without sacrificing performance.
- Advanced B-Tree indexes.
- Data compression stores the information on disk in a compressed format, compressing and decompressing data on the fly. The result is in smaller and more efficient physical data sizes.