Course Notes on
The Logical Structure of Relational Query Languages

The Logical Structure of Relational Query Languages: Topics
- Overview
- First-order logic
- Tuple Relational Calculus (TRC)
- Domain Relational Calculus (DRC)

On the Way to SQL: Relational Calculi
- Historically, SQL was a major advance over older database languages (like DL/I of IMS or DDL, DML of CODASYL DBTG) because SQL is far easier to use
- To effectively master and use SQL up to relational completeness, first mastering first-order logic makes things significantly easier

Logic as a Basis for Database Languages
- First-order logic (predicate calculus) is simple at the level needed for relational languages
- Strong historical prejudice against logic (and theory) in the user world
- Formal definitions have many advantages
 ◦ the ultimate reference document
 ◦ test of language consistency during design
 ◦ need not be shown to everybody
- Logic has become a basic formalism in informatics for e.g.,
 ◦ assertions in programming
 ◦ integrity formulation and maintenance in DBMS
 ◦ data models of DBMS
 ◦ semantics of programming languages
Relational Calculi

- More used than the algebra as a basis for user languages
- Directly based on first-order logic ⇒ regular, systematic structure
- Less procedural than the algebra: what versus how
- Relational completeness:
 - DRC, TRC, and algebra have same expressive power
 - SQL is slightly more powerful: some computation, ordering, etc.

A Simple Introduction to Logic

- General form of first-order logic is not necessary
- Logic is applied to a fixed domain of reference: the DB extension
- Formal system =
 \[
 \text{formal language (syntax + semantics)} \quad \text{deductive mechanisms}
 \]
- Here we basically need the syntax of logic, and a simple “applied” semantics linked to the DB extension
- The language of logic is used to combine elementary DB facts

TRC and DRC

- Domain Relational Calculus (DRC)
 - Most similar to logic as a modeling language
 - Typical modeling formalism in AI and natural-language studies: data is viewed as objects with properties
- Tuple Relational Calculus (TRC)
 - Reflects traditional pre-relational file structures
 - Closer to a view of relations implemented as files
The Structure of First-Order Logic

• The universe of reference is the current database
• Elementary propositions express assertions that are true or false in the universe
• Propositional connectives (\land, \lor, \neg, \rightarrow, \leftrightarrow) combine propositions

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \rightarrow Q$</th>
<th>$\neg P$</th>
<th>$P \leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

• Elementary propositions:
 ◦ P_1: Smith was born on 09-Jan-55 is true in the current state of the world (i.e., of the database)
 ◦ P_2: Smith is female is false

• Compound propositions:
 ◦ $P_1 \land P_2 \Rightarrow$ Smith was born on 09-JAN-55 \land Smith is female is false
 ◦ $\neg P_2 \Rightarrow$ Smith is not female is true

• Much of the problem with the intuition of logic comes from implication, namely, with the fact that $P \rightarrow Q$ is true when P is false

Quantifiers

• Use variables to express more general assertions about the DB:
 F_1: there exists an employee who was born on 09-Jan-55 is true
 F_2: all employees were born on 09-Jan-85 is false, or there is at least one employee who was not born on 09-Jan-85 is true
 F_3: all employees born after 1950 earn more than 40k is false, or there is at least one employee born after 1950 who earns less than 40k is true

• More formally
 F_1: $\exists e (e$ is an employee $\land e$ was born on 09-Jan-55)$
 F_2: $\neg \forall e (e$ is an employee $\rightarrow e$ was born on 09-Jan-55), or $\exists e (e$ is an employee $\land e$ was not born on 09-JAN-55)$
 F_3: $\neg \forall e (e$ is an employee $\land e$ was born after 01-Jan-50 $\rightarrow e$ earns more than 40k), or $\exists e (e$ is an employee $\land e$ was born after 01-Jan-50 $\land e$ earns less than 40k)
∀ (for all) and ∃ (there exists)

if you cannot do everything ...

○ that does not mean that there is not anything that you can do ...
○ nor that there is anything that you cannot do ...

Queries

• Free variables of logic are used as query variables
• List the employees who were born on 09-Jan-55
 \{ e \mid e \text{ is an employee} \land e \text{ was born on 09-Jan-55} \}

• The \{ e \mid P(e) \} syntax evokes set theory
• A more fancy syntax for the same expression (see later)
 SELECT ... FROM ... WHERE ...

Equivalence Rules

• Allow to replace a formula by another one
 \begin{align*}
 P \rightarrow Q & \quad \text{is equivalent to} \quad \neg P \lor Q \\
 \neg(P \land Q) & \quad \text{is equivalent to} \quad \neg P \lor \neg Q \\
 \neg(P \lor Q) & \quad \text{is equivalent to} \quad \neg P \land \neg Q \\
 \forall x \ P(x) & \quad \text{implies that} \quad \exists x \ P(x) \\
 \forall x \ P(x) & \quad \text{implies that} \quad \exists x \ P(x) \\
 \exists x \ P(x) & \quad \text{implies that} \quad \forall x \ P(x) \\
 \exists x \ P(x) & \quad \text{implies that} \quad \forall x \ P(x) \\
 \end{align*}

• Implication rules for quantifiers
 \begin{align*}
 \forall x \ P(x) & \quad \text{implies that} \quad \exists x \ P(x) \\
 \exists x \ P(x) & \quad \text{implies that} \quad \forall x \ P(x) \\
 \end{align*}

but not the converse

• This is about all the logic that is needed to master languages of traditional relational systems
Tuple Relational Calculus (TRC)

- **Tuple variables**:
 - range over (takes as values) tuples of a relation
 - are explicitly linked to a relation

- List employees who make more than 50k

 \(\{ t \mid \text{Employee}(t) \land t.\text{Salary} > 50k \} \)

 - \(\text{Employee}(t) \) is a "relation predicate”, it links TRC with the DB
 - \(t.\text{Salary} \) is a term whose value is the value of attribute \(\text{Salary} \) of tuple \(t \)

- List birthdate and address of employees called John Smith

 \(\{ t.\text{BDate}, t.\text{Address} \mid \text{Employee}(t) \land t.\text{FName} = 'John' \land t.\text{LName} = 'Smith' \} \)

General Structure of TRC Queries

\[\{ t_1.\mathcal{A}_1, t_2.\mathcal{A}_2, \ldots, t_n.\mathcal{A}_n \mid F(t_1, \ldots, t_n, t_{n+1}, \ldots, t_m) \} \]

- \(t_1, t_2, \ldots, t_m \): tuple variables each associated in \(F \) with a relation through a relation predicate
- \(\mathcal{A}_i \): attribute of the relation associated with \(t_i \)
- \(F \): logical formula containing variables \(t_1, t_2, \ldots, t_m \)
- \(t_{n+1}, \ldots, t_m \): free variables in \(F \) ("query variables")
- \(t_{n+1}, \ldots, t_m \): variables quantified in \(F \)

TRC Semantics

- \(F \) is evaluated for all possible values \(t_1, t_2, \ldots, t_n \) (= Cartesian product)
- If \(F \) is true for a tuple, then the projection \(t_1.\mathcal{A}_1, t_2.\mathcal{A}_2, \ldots, t_n.\mathcal{A}_n \) is included in the result
- Result = nameless relation with \(n \) attributes; rules must be specified for deciding attribute names (e.g., \(\mathcal{A}_i \)'s if they are all distinct)

Structure of TRC Formulas

- Formula \(F \) is defined with the recursive structure of first-order logic
 - \(R(t_i) \), where \(R \) is a relation name
 - \(t_i.\mathcal{A} \) comparison \(t_j, B \)
 - \(t_i.\mathcal{A} \) comparison constant
 - \(\neg F \)
 - \(F_1 \land F_2 \)
 - \(F_1 \lor F_2 \)
 - \(F_1 \rightarrow F_2 \)
 - \(F_1 \leftrightarrow F_2 \)
 - \(\exists t F(t) \)
 - \(\forall t F(t) \)
- Comparison: \(=, \neq, <, >, \leq, \geq \)
Join

- List name and address of employees who work for the Research department
 \[\{ e.\text{LName}, e.\text{Address} | \text{Employee}(e) \land \exists d (\text{Department}(d) \land d.\text{DName} = \text{Research} \land d.\text{DNumber} = e.\text{DNo}) \} \]

- “Join term” \(d.\text{DNumber} = e.\text{DNo} \) expresses a join between relation Department and relation Employee

\[\pi_{\text{LName}, \text{Address}}(\sigma_{\text{DName} = \text{Research}}(\text{Employee} \Join \text{Department})) \]

Relative Procedurality of Languages

- Two different algebraic formulations for the previous example:
 \[\pi_{\text{LName}, \text{Address}}(\sigma_{\text{DName} = \text{Research}}(\text{Employee} \Join \text{Department})) \]
 \[\pi_{\text{LName}, \text{Address}}(\text{Employee} \Join_{\text{DName} = \text{Research}} \text{Department}) \]

- Only one TRC formulation
 \[\{ e.\text{LName}, e.\text{Address} | \text{Employee}(e) \land \exists d (\text{Department}(d) \land d.\text{DName} = \text{Research} \land d.\text{DNumber} = e.\text{DNo}) \} \]

- The algebra is more procedural than TRC: in TRC, the relative order of join and selection is not an issue
- For casual users, TRC style is simpler than algebra style (less to think about)
- Efficiency is another issue

Efficiency:
- in most cases, the strategy that evaluates selection before joins is more efficient
- this is taken care of by the query optimizer of the DBMS

Two Joins

- For every project located in Brussels, list the project number, the controlling department number, and the name of the department manager
 \[\{ p.\text{PNumber}, p.\text{DNum}, m.\text{LName} | \text{Project}(p) \land \text{Employee}(m) \land p.\text{Location} = \text{Brussels} \land \exists d (\text{Department}(d) \land d.\text{DNumber} = p.\text{DNum} \land d.\text{MgrSSN} = m.\text{SSN}) \} \]

- Same conclusion about procedurality: algebra is more procedural

In this example, if \(p.\text{DNum} \) is replaced by \(d.\text{DNumber} \) in the target of the query, then the quantifier \(\exists d \) disappears, yielding a more symmetric formulation

\[\{ p.\text{PNumber}, d.\text{DNumber}, m.\text{LName} | \text{Project}(p) \land \text{Employee}(m) \land \text{Department}(d) \land p.\text{Location} = \text{Brussels} \land d.\text{DNumber} = p.\text{DNum} \land d.\text{MgrSSN} = m.\text{SSN} \} \]
Other Example with two Joins

- List the name of employees who work on some project controlled by department number 5

\[\{ e.\text{FName}, e.\text{LName} | \text{Employee}(e) \land \exists p \exists w \ (\text{Project}(p) \land \text{WorksOn}(w) \land p.\text{DNum} = 5 \land w.\text{ESSN} = e.\text{SSN} \land p.\text{PNumber} = w.\text{PNo}) \} \]

- Same conclusion about procedurality: algebra is more procedural

A “Complex” Query

- List project names of projects for which an employee whose last name is Smith is a worker or a manager of the department that controls the project

\[\{ p.\text{PName} | \text{Project}(p) \land \exists e \exists w \ (\text{Employee}(e) \land \text{WorksOn}(w) \land w.\text{PNo} = p.\text{PNumber} \land w.\text{ESSN} = e.\text{SSN} \land e.\text{LName} = \text{‘Smith’}) \lor \exists m \exists d \ (\text{Employee}(m) \land \text{Department}(d) \land d.\text{DNum} = p.\text{DNumber} \land d.\text{MgrSSN} = m.\text{SSN} \land m.\text{LName} = \text{‘Smith’}) \} \]

- Union of two queries in the algebra is expressed in TRC with disjunction

\[\{ x | P(x) \lor Q(x) \} \equiv \{ x | P(x) \} \cup \{ x | Q(x) \} \]

- Other version: factor out of the disjunction the repeated

\[\exists e \ (\text{Employee}(e) \land e.\text{LName} = \text{‘Smith’}) \]

Join of a Relation with Itself

- List the first and last name of each employee, and the first and last name of his/her immediate supervisor

\[\{ e.\text{FName}, e.\text{LName}, s.\text{FName}, s.\text{LName} | \text{Employee}(e) \land \text{Employee}(s) \land e.\text{SuperSSN} = s.\text{SSN} \} \]

- The attributes of the result relation have to be specified explicitly (if the result is to be used elsewhere, i.e., not just displayed) through some kind of assignment

\[F(\text{EmpFN}, \text{EmpLN}, \text{MgrFN}, \text{MgrLN}) \leftarrow \ldots \]

- Syntax is more difficult for the algebra, unless attributes are ordered
Other Example of Join of a Relation with Itself

• List the SSN of employees who have both a dependent son and a dependent daughter

\[\{ e.\text{ESSN} | \text{Dependent}(e) \land \exists d \ (\text{Dependent}(d) \land e.\text{ESSN} = d.\text{ESSN} \land d.\text{Relationship} = \text{Son} \land d.\text{Relationship} = \text{Daughter}) \} \]

Universal Quantifier

• List the name of employees who have at least one dependent

\[\{ e.\text{LName} | \text{Employee}(e) \land \exists d \ (\text{Dependent}(d) \land e.\text{SSN} = d.\text{ESSN}) \} \]

• List the name of employees who have no dependent

\[\{ e.\text{LName} | \text{Employee}(e) \land \forall d \ (\text{Dependent}(d) \rightarrow e.\text{SSN} \neq d.\text{ESSN}) \} \]

• “all projects” are those in relation Project

Various styles of universal quantification (for List the employees who work on all projects):

- logical formulation:
 \[\{ e \in \text{Employee} | \forall p (\text{Project}(p) \rightarrow \text{WorksOn}(e,p)) \} \]

- logic with range-coupled quantifiers:
 \[\{ e \in \text{Employee} | \forall p \in \text{Project} (\text{WorksOn}(e,p)) \} \]

- towards natural language (where quantification is “infix” rather than “prefix” as in logic, binary predicates are also infix rather than prefix, and variables are seldom used as such):
 \[\{ e \in \text{Employee} | \text{for all } p \in \text{Project} (e \text{ Workson } p) \} \]
 \[\{ e \in \text{Employee} | e \text{ Workson(all } p \in \text{Project}) \} \]
 \[\{ \text{Employee} \text{ Workson (all Project)} \} \]

Proof of equivalence of the formulations of List the name of employees who have no dependent by applying the equivalence rules of logic:

- \(~\exists d P(d) \equiv \forall d (\neg P(d))\)
- \(~\exists d (\text{Dependent}(d) \land e.\text{SSN} = d.\text{ESSN})\)
- \(\forall d (\neg\text{Dependent}(d) \land e.\text{SSN} = d.\text{ESSN})\)
- \(\forall d (\neg\text{Dependent}(d) \lor \neg(e.\text{SSN} = d.\text{ESSN}))\)
- \(\forall d (\neg\text{Dependent}(d) \lor e.\text{SSN} \neq d.\text{ESSN})\)
- \(\forall d (\text{Dependent}(d) \rightarrow e.\text{SSN} \neq d.\text{ESSN})\)
- \(\forall d \in \text{Dependent (e.SSN} \neq d.\text{ESSN})\)
Safe Use of Universal Quantification

- Universal quantification must always be associated with implication.
- Given relations \texttt{Prereq(Course, Pre)} and \texttt{Took(StudID, Course)}, give the names of students who took all prerequisites of the course Math210.
- Use of \(\land\) instead of \(\rightarrow\).
 \[
 \{s.\text{Name} \mid \text{Student}(s) \land \forall p. (\text{Prereq}(p) \land p.\text{Course} = 'Math210') \land \exists t. \text{Took}(t) \land t.\text{StudID} = s.\text{StudID} \land t.\text{Course} = p.\text{Pre})\}
 \]

- If Math210 has no prerequisites, the answer of the above query is always empty.
- Correct formulation.
 \[
 \{s.\text{Name} \mid \text{Student}(s) \land \forall p. (\text{Prereq}(p) \land p.\text{Course} = 'Math210') \rightarrow \exists t. \text{Took}(t) \land t.\text{StudID} = s.\text{StudID} \land t.\text{Course} = p.\text{Pre})\}
 \]

- If Math210 has no prerequisites, the answer will be the names of all students.

Safe TRC

- Formulas with quantifiers, negation, some comparisons must be restricted so at to be meaningful.
- Examples of ill-formed formulas with a comparison, a negation.
 - \(\{n \mid n \geq 3\}\)
 - \(\{e \mid \neg \text{Employee}(e)\}\)
- Existential quantifiers.
 - \(\exists t. F(t)\) must have the form \(\exists R(t) \land F'(t)\)
 - Other notation: \((\exists t \in R) F'(t)\)
- Universal quantifiers must always be associated with implication.
 - \(\forall t. F(t)\) must have the form \(\forall R(t) \rightarrow F'(t)\)
 - Other notation: \((\forall t \in R) F'(t)\)

- \((\exists t \in R)\) and \((\forall t \in R)\) are called range-restricted or ranged-coupled quantifiers, where \(R\) is a relation predicate that defines and restricts the range of \(t\).
- General form of safe use of universal quantifier: \((\forall t \in (R(t) \land F'(t))) F''(t)\) (\(F'(t)\) and \(F''(t)\) are any TRC formulas).
- Intuition: \(\forall t. F(t)\), where \(F(t)\) is a conjunction of database or comparison predicates, is meaningless (e.g., \(\forall t. \text{Employee}(t)\)).
Domain Relational Calculus (DRC)

- Domain variables range on (i.e., take as values elements of) DB domains
- Relations are preferably viewed as predicates expressing properties of objects, represented as values
- Relation predicates (extensional predicates)
 - realize the link between DRC and the DB
 - \(R(A_1 : x_1, \ldots , A_n : x_n) \) is associated with relation \(R(A_1 : D_1, \ldots , A_n : D_n) \)
 - \(R(A_1 : a_1, \ldots , A_n : a_n) \) is true if tuple \(\langle A_1 : a_1, \ldots , A_n : a_n \rangle \) belongs to relation \(R \)

- As for TRC, the only things specific to DRC are the choice of domain variables and the definition of the relational predicates
- DRC has the structure of logic, applied as a DB query/assertion language
- Restrictions for safety similar to those of TRC for quantified formulas apply to DRC

General Structure of DRC Queries

\[
\{ x_1, x_2, \ldots , x_m | F(x_1, \ldots , x_n, x_{n+1}, \ldots , x_m) \}
\]

- where formula \(F \) has the structure of first-order logic
 - \(R(A_1 : x_1, \ldots , A_j : x_j) \), where \(R \) is a relation name
 - \(x_i \) comparison \(x_j \)
 - \(x_i \) comparison constant
 - \(\neg F \)
 - \(F_1 \land F_2 \)
 - \(F_1 \lor F_2 \)
 - \(F_1 \rightarrow F_2 \)
 - \(F_1 \leftrightarrow F_2 \)
 - \(\exists x \ F(x) \)
 - \(\forall x \ F(x) \)

- Predicate \(\text{WorksOn(ESSN:123456789, PNo:1, Hours:32.5)} \) is true because tuple \(\langle \text{ESSN:123456789, PNo:1, Hours:32.5} \rangle \) belongs to relation \(\text{WorksOn} \)
- In \(\text{WorksOn(ESSN:123456789, PNo:1, Hours:32.5)} \):
 - \(\text{WorksOn(ESSN, PNo, Hours:)} \) is the predicate name
 - 123456789, 1 and 32.5 are the arguments
Simplification of Notation

- List the birth date and address of employees named John Smith

\[\{ dn, a \mid \exists fn, m, ln, ssn, sex, sal, ss, d \]
\[\text{Employee(FName : } fn, \text{ MInit : } m, \text{ LName : } ln, \text{ Address : } a, \text{ BDate : } dn, \]
\[\text{ESSN : ssn, Sex : sex, Sal : sal, MgrSSN : ss, DNo : d} \]
\[\land fn = 'John' \land ln = 'Smith' \} \]

- Many variables! Suppress variables that only appear in a relational predicate under \(\exists \)

\[\{ dn, a \mid \exists fn, ln \]
\[\text{Employee(FName : } fn, \text{ LName : } ln, \text{ Address : } a, \text{ BDate : } dn) \land \]
\[fn = 'John' \land ln = 'Smith' \} \]

- \(2^n - 1 \) predicates are associated with each relation with \(n \) attributes

Further Simplification

- Suppress variables that only appear in a relation predicate and in a test for equality with a constant in a conjunction (\(\land \))

\[\{ dn, a \mid \text{Employee(FName : 'John', LName : 'Smith', Address : a, BDate : dn)} \} \]

- Corresponds to projection + selection on equality in the algebra
- The rest of DRC has the structure of logic

Selection + Projection

List the name of employees with a salary greater than 50k

\[\{ fn, ln \mid \exists sal \]
\[\text{Employee(FName : } fn, \text{ LName : } ln, \text{ Salary : } sal) \land \text{sal} > 50k \} \]

Could also conceivably be written

\[\{ fn, ln \mid \text{Employee(FName : } fn, \text{ LName : } ln, \text{ Salary : } > 50k) \} \]
Join

- List name and address of employees who work in the Research department

\{ fn, ln, a | 3d (∃ Employee(FName : fn, LName : ln, Address : a, DNo : d) ∧ Department(DName : 'Research', DNumber : d)) \}

- A join is expressed through the occurrence of the same domain variable in two (or more) relation predicates in a conjunction (∧)

- In TRC, a join is signaled by an explicit “join condition”

\{ e.FName, e.LName, e.Address | Employee(e) ∧ 3d (Department(d) ∧ d.DName = 'Research' ∧ d.DNumber = e.DNo) \}

Double Join

- For every project located in Brussels, list the project number, the controlling department number, and the name of the department manager

\{ pn, d, mfn, mln | 3e (Project(PNumber : pn, PLocation : 'Brussels', DNum : d) ∧ Department(MgrSSN : e, DNumber : d) ∧ Employee(SSN : e, FName : mfn, LName : mln)) \}

“Complex” Query

- List project number of projects for which an employee whose last name is Smith is a worker or a manager of the department that controls the project

\{ p | Project(PNumber : p) ∧ 3e Employee(SSN : e, LName : 'Smith') ∧ [WorksOn(ESSN : e, PNo : p) ∨ 3d (Department(MgrSSN : e, DNumber : d) ∧ Project(PNumber : p, DNum : d))] \}

- Many variants

Join of a Relation with itself

- List first and last name of employees, and first and last name of their immediate supervisor

\{ efn, eln, mfn, mln | 3m (Employee(FName : efn, LName : eln, SuperSSN : m) ∧ Employee(SSN : m, FName : mfn, LName : mln)) \}

- Like for the algebra and TRC, attribute names for the result have to be explicitly specified through some kind of assertion

RES(EmpFN, EmpLN, SupFN, SupLN) ← \{ efn, eln, mfn, mln | ... \}
Universal Quantifier

• List the name of employees who work on all projects

 \{fn, ln | \exists e \text{Employee(FName : fn, LName : ln, SSN : e)} ∧
 \forall p \text{Project(PNumber : p) → WorksOn(PNo : p, ESSN : e)}\}\n
Universal Quantifier

• List the name of employees who have no dependent

 \{name | \exists s \text{Employee(LName : name, SSN : s)} ∧
 \neg \text{Dependent(ESSN : s)}\}\n
 \{name | \exists s \text{Employee(LName : name, SSN : s)} ∧
 \not\exists m \text{Dependent(ESSN : m) ∧ m = s}\}\n
 \{name | \exists s \text{Employee(LName : name, SSN : s)} ∧
 \forall m \text{Dependent(ESSN : m) → m ≠ s}\}\