Course Notes on Relational Algebra

Relational Algebra: Summary

• Operators

 \diamond Selection

♦ Projection

 \diamond Union, Intersection, Difference

 \diamond Cartesian Product

🔷 Join

♦ Division

• Equivalences

- Outer Join, Outer Union
- Transitive Closure

1

What is the Relational Algebra?

- $\diamond\,$ a collection of operations each acting on one or two relations and producing one relation as result, and
- $\diamondsuit\,$ a language for combining those operations
- The algebra has played a central role in the relational model: algebraic operations characterize high-level set-at-a-time access
- The algebra in practice
 - \diamond it was never a real user language (calculus-based languages and SQL are simpler)
 - $\diamond\,$ its semantics is clear and a de facto standard
 - $\diamondsuit\,$ a precise syntax for the algebra is more complicated than its semantics

$\mathbf{2}$

Employ												a	
FName			ame		<u>SSN</u>	-	Date	Address		ex	Salary	SuperSSN	D
John	B		nith		456789		Jan-55			N	30000	333445555	5
Frankli			ong		445555		Dec-45			M	40000	888665555	5
Alicia	J		laya		887777		Jul-58			F	25000	987654321	4
Jennife Ramesl			llace		654321 884444		Jul-31			F	43000 38000	888665555	4
	A		ayan		584444 453453		Sep-52 Jul-62			VI F	25000	333445555 333445555	5
Joyce			glish obar				Jui-62 Mar-59			e Vî	25000	333445555 987654321	
James	E		org				Mar-59 Nov-27			VI VI	25000	987654321 null	4
-	Number 5 4 1	Re Admi	Name esearch inistrat lquarte	ion	MgrS 333445 987654 888665	555 321	22-M 01-J	artDate lay-78 an-85 un-71			DNumber 1 4 5 5	DLocation Houston Stafford Bellaire	
		ſ	Proje PNu			PNam	e	PLocatio	on		5	Sugarland Houston	
		ł	1		Pi	oduc	tX	Bellair		5			
			2	2	Pi	oduc	tY	Sugarla	nd	5			
			3	3	Pi	roduc	tZ	Housto	n	5			
			1	0	Comp	uteri	zation	Staffor	1	4			
			2	0		ganiz		Housto	n	1			
			3	0	No	whene	fite	Staffor	4	4			

			011 01 011	e Database	5 (4
	WorksOn				
	ESSN	PNo	Hours		
	123456789	1	32.5		
	123456789	2	7.5		
	666884444	3	40		
	453453453	1	20		
	453453453	2	20		
	333445555	2	10		
	333445555	3	10		
	333445555	10	10		
	333445555	20	10		
	999887777	30	30.0		
	999887777	10	10.0		
	987987987	10	35.0		
	987987987	30	5.0		
	987654321	30	20.0		
	987654321	20	15.0		
	888665555	20	null		
Dependent					
ESSN	DependentName	Sex	BDate	Relationship	
333445555	Alice	F	05-Apr-76	Daughter	
333445555	Theodore	Μ	25-Oct-73	Son	
333445555	Joy	F	03-May-48	Spouse	
987654321	Abner	Μ	29-Feb-32	Spouse	
123456789	Michael	Μ	01-Jan-78	Son	
123456789	Alice	Μ	31-Dec-78	Daughter	
123456789	Elizabeth	F	05-May-57	Spouse	

			a conditio	n					
			a contantio						
		σ_{co}	ndition (R)	$= \{r \in$	$R \mid \text{condi}$	tion(r	·)}		
							· ·		
		(1)							
 Example 	e: $\sigma_{\text{DNo}=}$	5(Empl	loyee)						
SSN	FName	MInit	LName	BDate	Address	Sex	Salary	SuperSSN	DN
123456789	John	В	Smith			Μ	30000	333445555	5
333445555	Franklin	т	Wong			Μ	40000	888665555	5
666884444	Ramesh	K	Narayan			M	38000	333445555	5
453453453	Joyce	Α	English			F	25000	333445555	5
T			<i>(</i> 1 · · · ·						
	n: selecti	on 1s a	"horizont	al" slice	of relation	on Em	ployee		
• Intuition									
• Intuitio									
	onel mee	ning +	he condit	ion io o	nulled to	0110111	tuplor	if it is setio	fod
	onal mea	ning: t	he condit	ion is a	pplied to	every	tuple;	if it is satis	fied

6

 $\mathbf{5}$

	Pro	jection		
Retain a subset of the a	ttributes (c	columns) of	a relation	
	π_{attri}	_{butes} (relatio	on)	
• Example: $\pi_{\text{LName,FName}}$	_{,Salary} (Emp	loyee)		
	LName	FName	Salary	
	Smith	John	30000	
	Wong	Franklin	40000	
	Zelaya	Alicia	25000	
	Wallace	Jennifer	43000	
	Narayan	Ramesh	38000	
	English	Joyce	25000	
	Jabbar	Ahmad	25000	
			55000	

• What is wrong with duplicate tuples?

- ◇ "If something is true, then saying it twice does not make it more true" (Codd) Even if repetition is a proven pedagogical technique :-)
- $\diamond\,$ Identical things are indistinguishable, there is no need to represent them twice
- "Objects in the real world have only one thing in common: they are all different" (anonymous, A. Taivalsaari, JOOP, Nov. 1997)
- $\diamond~$ Distinct things should have some value to distinguish them
- $\diamond\,$ It is difficult to manipulate "duplicate tuples" unless for counting, averaging, etc
- $\diamond~$ The obvious modeling of identical objects is as a common description plus the number of copies of the object
- Duplicate removal (from a multiset to a set) can be expensive; it can be done with
 - \diamond nested loops
 - \diamond sort/merge
 - ♦ hashing

A Precise Definition of the Relational Algebra

- Algebraic operations:
 - $\diamond\,$ operate on one or two relations and produce a relation as result
 - $\diamond\,$ the result relation has no name
 - $\diamond\,$ rules are needed to specify the attribute names in the result of algebraic operations with two operands

10

 For a precise syntax and semantics of the algebra, see A Precise Definition of Basic Relational Notions and the Relational Algebra, A. Pirotte, ACM SIGMOD Record, 13-1, 1982, pp. 30-45.

Nesting or Sequencing Operations

- Several relational algebra operations may be needed to express a given request:
- $\diamond\,$ by nesting several algebraic operations within a single relational algebra expression
- ◊ by applying operations one at a time in a sequence of steps and creating named intermediate relations by assignment operations
- $\diamond~$ the correspondence between nested form and sequential form is immediate

• Nesting and closure

- $\diamond~$ the result of an algebraic operation is a relation
- \diamond algebraic operations can be nested like functions
- $\diamond~$ closure is essential for the full power of the algebra

12

• Nesting

 \diamond nesting = classical functional composition:

*
$$Y_3 \rightarrow f_3(f_1(X_1, X_2), X_4, f_2(X_3))$$
, is equivalent to the sequence

$$\cdot Y_1 \to f_1(X_1, X_2)$$

- $\cdot Y_2 \to f_2(X_3)$
- $Y_3 \rightarrow f_3(Y_1, X_4, Y_2)$

• Closure

- ◇ closure = make nesting freely usable for combining operations, i.e., the result of every algebraic operation is a relation and it can be used as operand of another algebraic operation
- \diamond closure can be violated by
 - * the definition of language structure (SQL does)
 - * operations whose result is not a relation (e.g., "relations" with duplicate tuples)
- ♦ What is really needed is **"compositionality**"
 - * the result of a query can be used as argument for another query
 - * this is a version of what is called **orthogonality** (i.e., the generality of combining pieces of the definition of a language)

Set-Theoretical Operations

- Standard operations on sets are automatically applicable to relations
- Union compatibility
 - \diamondsuit relations have to be defined on the same domains
 - ♦ **type compatibility** would be more adequate
 - \diamond more precise definition: two relations R and S are union-compatible if there is a one-to-one correspondence between attributes of R and attributes of Ssuch that corresponding attributes are associated with the same domain
- A mechanism for defining the attribute names of the result is needed

13

• A relation is a set of tuples

 \bullet Union, intersection, and difference on union-compatible relations R and S have their usual meaning:

- $\diamond R \cup S$ = all tuples (without duplication) in R, in S, or in both
- $\diamondsuit \ R \cap S = \text{all tuples in both } R \text{ and } S$
- $\diamond R S =$ all tuples in R but not in S
- Union compatibility is similar to type checking in programming languages

- Rules must be stated to specify the attribute names of the result; for example
 - $\diamondsuit\,$ the attributes of the first oper and
 - $\diamondsuit\,$ the attributes of the second oper and
 - \diamond explicitly-specified attributes, e.g., $R_1(FN, LN) \leftarrow Student \cup Prof$

	Ca	artesian I	Product		
	$\mathrm{Temp} \leftarrow$	Department	× DeptLocations		
DNumber	DName	MgrSSN	MgrStartDate	DNo	DLocation
5	Research	333445555	22-May-78	1	Houston
4	Administration	987654321	01-Jan-85	1	Houston
1	Headquarters	888665555	19-Jun-71	1	Houston
5	Research	333445555	22-May-78	4	Stafford
4	Administration	987654321	01-Jan-85	4	Stafford
1	Headquarters	888665555	19-Jun-71	4	Stafford
5	Research	333445555	22-May-78	5	Bellaire
4	Administration	987654321	01-Jan-85	5	Bellaire
1	Headquarters	888665555	19-Jun-71	5	Bellaire
5	Research	333445555	22-May-78	5	Sugarland
4	Administration	987654321	01-Jan-85	5	Sugarland
1	Headquarters	888665555	19-Jun-71	5	Sugarland
5	Research	333445555	22-May-78	5	Houston
4	Administration	987654321	01-Jan-85	5	Houston
1	Headquarters	888665555	19-Jun-71	5	Houston

- 15
- The Cartesian product associates every tuple of the first relation with every tuple of the second one
- The result relation has all the attributes of the operand relations: if the attributes of the operand relations are not all distinct, some of them must be renamed
- The relational algebra thus needs a **renaming** operation, with as a possible syntax:
 - \diamond rename (relation name, (oldname \rightarrow newname, ...))
 - $\diamond~{\rm in~the~example:}~{\sf rename}({\sf DeptLocations},({\sf DNumber}{\rightarrow}{\sf DNo})$

	Semantics of	of Cartesia	an Product	
he other (th	n product associat is is not a very use	eful operation		with every tuple
the following	g operation is more	e useful		
			(-	$(\mathbf{T}_{amam}))$
π_{DNumber}	DName,MgrSSN,Mgr	StartDate,DLoca	tion (ODNumber=DN	^{to} (temp))
π_{DNumber} DNumber	DName,MgrSSN,MgrSDName	StartDate,DLoca	tion (⁰ DNumber=DN MgrStartDate	DLocation
	DName	MgrSSN	MgrStartDate	DLocation
DNumber 1	DName Headquarters	MgrSSN 888665555	MgrStartDate 19-Jun-71	DLocation Houston
DNumber 1 4	DName Headquarters Administration	MgrSSN 888665555 987654321	MgrStartDate 19-Jun-71 01-Jan-85	DLocation Houston Stafford

• The result is a **join** of relations Department and DeptLocations, that associates each department with its locations

16

- The restriction retains only the tuples of the Cartesian product where the values of DNumber and of DNo are equal
- The projection suppresses the DNo attribute
- All these operations (Cartesian product, selection, and projection) can can be expressed as a single algebra operation: the **join**
- The join is a fundamental operation for meaningfully creating bigger relations from smaller ones: but it is not always the inverse of projection (see later)

		Join					
\diamond Joir	n (⊠) combines tw	o relations in	to one on the bas	sis of a	condition		
	$R \bowtie_{\text{condition}} S$	$S = \{\text{concat}(\mathbf{r})\}$	s) $\mid r \in R \land s \in I$	$S \wedge \operatorname{con}$	dition(r, s)		
bhA ◊	the location infor	motion to th	o information ab	ut dop	ortmonte		
V Add	the location infor	mation to th	e mormation abo	Jut dep	artments		
	$DeptLocs \leftarrow Depa$	$\mathbf{M}_{\mathrm{DNu}}$	mber=DNo DeptLo	ocations			
Number	DName	MgrSSN	MgrStartDate	DNo	Location		
5	Research	333445555	22-May-78	5	Bellaire		
5	Research	333445555	22-May-78	5	Sugarland		
5	Research	333445555	22-May-78	5	Houston		
4	Administration	987654321	01-Jan-85	4	Stafford		
1 Headquarters 888665555 19-Jun-71 1 Houston							
	*						

- 17
- $\diamond~$ Remember that, if R and S have an attribute in common, then some attributes of R and/or S have to be renamed
- $\,\diamond\,$ The condition can be more general than a test for equality of 2 attribute values
 - * simple condition = $\langle R's attribute \rangle \langle comparison \rangle \langle S's attribute \rangle$
 - * comparison: $=, \neq, <, \leq, >, \geq$
 - * condition: combination of simple conditions with AND

\diamond Two ways of defining the semantics of joins

- * **declarative**: create a tuple in the result for each pair of tuples in the relation arguments that satisfy the condition
- * **operational** (evaluation strategy): the condition is applied to every tuple of the Cartesian product; if it is satisfied, the tuple is kept in the answer
- ◇ As seen above, the join can be evaluated as a combination of Cartesian product, selection, and projection but this is not an efficient evaluation strategy; there are various strategies for implementing joins (see later); a basic method to implement the operation definition above is with nested loops:

```
\begin{split} R \bowtie_{A=B} S = \\ & \text{for each } r \in R \\ & \text{do} \\ & \text{ for each } s \in S \\ & \text{ do} \\ & \text{ if } r.A = s.B \\ & \text{ then concat}(r,s) \Rightarrow \text{ result} \\ & \text{ fi} \\ & \text{ end} \\ & \text{end} \end{split}
```

• Kinds of joins

- theta join: it is the general join (when all the attributes of the operand relations appear in the result of the join and the join condition is not simply a test of equality of 2 attributes)
- \diamond equijoin: when the join condition is a simple equality (e.g., A = B)
- \diamond **natural Join** = equijoin + only one of the attributes tested for equality is included in the result
 - * $R *_{A=B} S$: only one of A and B (say, A) is retained in the result
 - * R * S: an equijoin is performed that tests equality of the attributes that have the same name in R and S, and only one of them is retained in the result (this version of join does not require the attributes of R and S to be all different)

Natural Join							
Add the loca	tion information t	o the informa	ation about depa	rtments (wi			
ONumber att	ribute of DeptLoc	s renamed as	DNo)				
De	$ptLocs \leftarrow Departn$	$nent *_{DNumber}$	=DNo DeptLocati	ions			
DNumber	DName	MgrSSN	MgrStartDate	Location			
5	Research	333445555	22-May-78	Bellaire			
5	Research	333445555	22-May-78	Sugarland			
5	Research	333445555	22-May-78	Houston			
4	Administration	987654321	01-Jan-85	Stafford			
1	Headquarters	888665555	19-Jun-71	Houston			

18

Other Example of Natural Join

• Create a relation associating project information with information about the department from which the projects depend

$ProjDept \leftarrow Project * Department$

<u>PNumber</u>	PName	PLocation	DNum	DName	MgrSSN	MgrStartDate
1	ProductX	Bellaire	5	Research	333445555	22-May-78
2	ProductY	Sugarland	5	Research	333445555	22-May-78
3	ProductZ	Houston	5	Research	333445555	22-May-78
10	Computerization	Stafford	4	Administration	987654321	01-Jan-85
20	Reorganization	Houston	1	Headquarters	888665555	19-Jun-71
30	NewBenefits	Stafford	4	Administration	987654321	01-Jan-85

• The join condition test equality of DNumber values in Project and Department

• It can also be written Project *_{DNumber=Dnumber} Department

19

About query optimization

- The two formulations of the query above are equivalent (it should be clear that they produce the same result)
- The first one does the selection *before* the join (i.e., the result of the selection serves as operand of the join), while the second one evaluates the selection on the result of the join
- Such equivalences are frequent in the relational algebra
- If the algebraic formulation was taken as guidance for actual evaluation, then in general there would be differences in performance (in the example above, the first formulation would probably produce a more efficient execution, as the selection on DName in Department produces a small relation before the join is evaluated)
- Query optimizers of current relational technology are able to perform comparative evaluation of performance and select a good strategy
- Query optimizers for SQL will not beat the best Cobol programmer, but
 - ◊ good programmers are scarce and differences in individual productivity are enormous compared to other human activities
 - \diamond it is impossible, in practice and in theory, to similarly optimize the compilation of programs in imperative languages (e.g., Cobol or C)
 - $\diamond\,$ the best strategy selected depends on the database populations; if populations change so much that the best evaluation strategy ceases to be the best
 - * Cobol programs have to be rewritten to adjust to the new situation and remain optimum
 - * SQL optimization is redone dynamically by the DBMS: they can be optimized without being rewritten
- Demonstrates the clear superiority of nonprocedural approaches over imperative ones: this was a key factor in establishing the relational model
- For actual evaluation, a useful heuristics is to perform selections before joins, because joins are expensive operations that should be evaluated on operands as small as possible
- The user has to choose one of the two algebraic formulations (but the query optimizer may decide to evaluate the query with the other one)

An Example with Two Joins

For every project located in 'Brussels', list the project number, the controling department number, and the department manager's last name, address, and birth date

• The result of joining Project and Department is joined with Employee

 $\begin{array}{l} BrusselsProjs \leftarrow \sigma_{PLocation=`Brussels'}(Project) \\ ProjDept \leftarrow BrusselsProjs \Join_{DNum=DNumber} Department \\ ProjDeptMgr \leftarrow ProjDept \Join_{MgrSSN=SSN} Employee \\ Result \leftarrow \pi_{PNumber,DNum,LName,Address,BDate}(ProjDeptMgr) \end{array}$

• The result of joining Department and Employee is joined with Project

 $\begin{array}{l} BrusselsProjs \leftarrow \sigma_{PLocation=:Brussels'}(Project)\\ DeptMgr \leftarrow Department \Join_{MgrSSN=SSN} Employee\\ ProjDeptMgr \leftarrow BrusselsProjs \Join_{DNum=DNumber} (DeptMgr)\\ Result \leftarrow \pi_{PNumber,DNum,LName,Address,BDate}(ProjDeptMgr) \end{array}$

- The query requires two binary joins and formulations differ in the ordering of those joins
- For actual evaluation, the query optimizer will choose the most efficient order (in this case, most probably the second one).
- A third formulation would express a product of Employee and Project, and would join the result with Department

- The join Employee *_{SSN=ESSN} Dependent illustrates the loss of information in a join (see later, outer join)
- The join MgrsWithDeps * Employee is sometimes called a semi-join, it is similar to a selection: it selects the tuples of Employee whose SSN appears in the one-attribute relation MgrsWithDeps.

• **Operational semantics** of division:

- $\diamond\,$ partition relation SSNPNos in classes of tuples with the same value of ESSN
- $\diamond\,$ relation SSNS is the result of the division SSNPNos \div SmithPNos, i.e., the set of ESSN values that occur in a class with at least the PNo values of SmithPNos
- \diamond Relation Result is the result of the query

• Include in T each a_i such that the set of B values associated with a_i contains S

28

30

Equivalences (Theory)

- Not all operations of the algebra are independent
- $\{\sigma, \pi, \cup, -, \times\}$ is a complete set, i.e., it has all the expression power of the algebra
- \cap , \bowtie , and \div can be derived from them
- $R \cap S = (R \cup S) ((R S) \cup (S R))$
- $R \bowtie_{\text{condition}} S = \sigma_{\text{condition}}(R \times S)$
- $R *_{\text{condition}} S = \pi_{\text{attr}}(\sigma_{\text{condition}}(R \times S))$
- $R \div S = T$ can be reexpressed with difference and Cartesian product

- 32
- T₁ contains all the candidate a-values, the answer is a subset of T₁
- $T_1 \times S$ associates each a-value with all b-values of S
- if an a-value is in T_2 , this means that a-value is associated in R with fewer b-values than the b-values with which it is associated in $T_1 \times S$: that a-value should not be part of the result

- 33
- (1) Break conjunctive selection $\sigma_{c_1 \wedge c_2}(R) = \sigma_{c_1}(\sigma_{c_2}(R))$
- (2) Commute selections $\sigma_{c_1}(\sigma_{c_2}(R)) = \sigma_{c_2}(\sigma_{c_1}(R))$ Used for
 - applying the most selective join first for efficiency
 - commute a simple selection with another operation (join, projection)
- (3) Sequence partial projections: if $A \subseteq A_1$, then $\pi_A(R) = \pi_A(\pi_{A_1}(R))$
- (4) Commute selection and projection:
 - $\pi_A(\sigma_c(R)) = \sigma_c(\pi_A(R))$, if attributes in $c \subseteq$ attributes in A
 - $\sigma_c(\pi_A(R))$ can be evaluated as $\pi_A(\sigma_c(R))$ (but not the other way around)
- (5) Enter selection into join: if attributes in $c \subseteq$ attributes in R, then $\sigma_c(R \bowtie S) = \sigma_c(R) \bowtie S$
- (6) Enter projection into join: if c involves only attributes in A of R and in B of S, then $\pi_{A,B}(R \Join_c S) = \pi_A(R) \Join_c \pi_B(S)$
- (7) Enter projection into join (general case):
 - if c involves attributes in A, A_1 of R and in B, B_1 of S, then $\pi_{A,B}(R \bowtie_c S) = \pi_{A,B}(\pi_{A,A_1}(R) \bowtie_c \pi_{B,B_1}(S))$
 - the attributes of R (idem for S) comprise A, A₁, and A₂; A is needed in the result, A₁ participates in the join but is not needed in the result; A₂ does not participate at all

(8) Associate, commute joins (also valid for set-theoretic operations) $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$ $R \bowtie S = S \bowtie R$

Used for choosing the order of joins for efficiency

- (9) Enter selection into union (also intersection, difference) $\sigma_c(R \cup S) = \sigma_c(R) \cup \sigma_c(S)$
- (10) Enter projection into union (also intersection, difference) $\pi_A(R \cup S) = \pi_A(R) \cup \pi_A(S)$

Motivation for Outer Joins: Ordinary Joins are often Lossy

- $\pi_{\text{FName},\dots,\text{DNo}}(\text{Employee} \Join_{\text{SSN}=\text{MgrSSN}} \text{Department}) \subseteq \text{Employee}$
- $\pi_{\text{FName},\dots,\text{DNo}}(\text{Employee} \sqsupset \aleph_{\text{SSN}=\text{MgrSSN}} \text{Department}) = \text{Employee}$
- $\pi_{FName,...,DNo}(\sigma_{DName \neq null}(Employee \supset \forall_{SSN=MgrSSN} Department) = \pi_{FName,...,DNo}(Employee \bowtie_{SSN=MgrSSN} Department)$

34

- "Lossy" = information is lost in the result of the join (e.g. employees who are not department managers disappear in Employee ⋈_{SSN=MgrSSN} Department)
- In R ⋈ S, only tuples satisfying the join condition contribute to the result and information may be lost (projections of R ⋈ S on R or S may be smaller than R or S)

Example of Outer Join

• Retrieve the name of all employees, plus the name of the departments that they manage (if any)

 $\begin{array}{l} \text{Temp} \leftarrow \text{Employee} \ \exists \bowtie_{\text{SSN}=\text{MgrSSN}} \ (\text{Department}) \\ \text{Result} \leftarrow \pi_{\text{FName},\text{MInit},\text{LName},\text{DName}}(\text{Temp}) \end{array}$

Result			
FName	MInit	LName	DName
John	В	Smith	null
Franklin	Т	Wong	Research
Alicia	J	Zelaya	null
Jennifer	S	Wallace	Administration
Ramesh	Κ	Narayan	null
Joyce	Α	English	null
Ahmad	V	Jabbar	null
James	Е	Borg	Headquarters

Outer Union

- Union of tuples from two **partially compatible** relations (only some of their attributes are union compatible)
- Attributes that are not union compatible from either relation are kept in the result, and tuples with no values for these attributes are padded with null values
- Outer union of

Student(Name,SSN,Department,Advisor) Professor(Name,SSN,Department,Rank)

is a relation R(Name,SSN,Department,Advisor,Rank) obtained from

 $\begin{array}{l} {\rm Student} * {\rm Professor} \cup \\ {\rm Professors \ that \ are \ not \ students \ (with \ null \ for \ Advisor)} \cup \\ {\rm Students \ that \ are \ not \ professors \ (with \ null \ for \ Rank)} \end{array}$

• All tuples of the operand relations appear as a subtuple of the result

37

Transitive Closure

- Natural and frequent operation for exploring nested structures (e.g., part-subpart composition)
- Natural in algebra style but not available
- Applies to a **recursive relationship** between tuples of the same relation, e.g., between employee and supervisor in relation Employee

Example

- Retrieve all employees supervised by James Borg
 - = all employees directly supervised by James Borg
 - + all employees directly supervised by the previous ones
 - + ...
- Although it is possible to specify each level in relational algebra, the number of levels is not known since it depends on the extension

- Remember that the relational algebra (nor TRC, DRC, SQL see later) is not computational complete (= does not have the expressive power of algorithmic languages)
- Computational completeness = Church-Turing thesis
 - $\diamond~$ thesis = any algorithm that you can think of can be formulated with any of the popular programming languages
 - $\diamond\,$ revised with Gödel theorem and undecidable problems

More about recursion ...

• A dictionary definition:

◊ recursive: see "recursive"

- "Anything in computer science that is not recursive is no good" (Jim Gray?)
- Recursion = fundamental linguistic tool (like iteration) for expressing, in a well-defined finite way, patterns of action that repeat an unknown number of times (in natural language: "and so on", "etc.", "...")

Incomplete Algebra Solution for Transitive Closure

 $\begin{array}{l} \operatorname{BorgSSN} \leftarrow \pi_{\operatorname{SSN}}(\sigma_{\operatorname{FName='James' \land LName='Borg'}}(\operatorname{Employee})) \\ \operatorname{Supervision}(\operatorname{SSN1}, \operatorname{SSN2}) \leftarrow \pi_{\operatorname{SSN}, \operatorname{SuperSSN}}(\operatorname{Employee}) \\ \operatorname{Result1}(\operatorname{SSN}) \leftarrow \pi_{\operatorname{SSN1}}(\operatorname{Supervision} \bowtie_{\operatorname{SSN2=SSN}} \operatorname{BorgSSN}) \\ \operatorname{Result2}(\operatorname{SSN}) \leftarrow \pi_{\operatorname{SSN1}}(\operatorname{Supervision} \bowtie_{\operatorname{SSN2=SSN}} \operatorname{Result1}) \end{array}$

41

