
Object Constraint Language (OCL)

• A UML diagram (e.g., a class diagram) does not provide all relevants aspects of
a specification

• It is necessary to describe additional constraints about the objects in the model

• Constraints specify invariant conditions that must hold for the system being
modeled

• Constraints are often described in natural language and this always result in
ambiguities

• Traditional formal languages allow to write unambiguous constraints, but they
are difficult for the average system modeler

• OCL: Formal language used to express constraints, that remains easy to read
and write

1

Object Constraint Language (OCL)

• Pure expression language: expressions do not have side effet

3 when an OCL expression is evaluated, it returns a value

3 its evaluation cannot alter the state of the corresponding executing system

3 an OCL expression can be used to specify a state change (e.g., in a post-
condition)

• Not a programming language

3 it is not possible to write program logic or flow of control in OCL

3 cannot be used to invoke processes or activate non-query operations

• Typed language: each expression has a type

3 well-formed expressions must obey the type conformance rules of OCL

3 each classifier defined in a UML model represents a distinct OCL type

3 OCL includes a set of supplementary predefined types

• The evaluation of an OCL expression is instantaneous

3 the state of objects in a model cannot change during evaluation

2

Object Constraint Language, May 12, 2008 – 1

Where to Use OCL

• To specify invariants on classes and types in the class model

• To specify type invariants for stereotypes

• To describe pre- and post-conditions on operations and methods

• To describe guards

• As a navigation language

• To specify constraints on operations

• OCL is used to specify the well-formedness rules of the UML metamodel

3

Basic Values and Types

• A number of basic types are predefined in OCL

• Examples of basic types and their values

Type Values
Boolean true, false
Integer 1, -5, 2564, ...
Real 1.5, 3.14, ...
String ‘To be or not to be’, ...

• A number of operations are defined on the predefined types

Type Operations
Boolean and, or , xor, not, implies, if-then-else-endif
Integer +, -, *, /, abs, div, mod, max, min
Real +, -, *, /, abs, floor, round, max, min, <, >, <=, >=
String size, concat, substring, toInteger, toReal

4

Object Constraint Language, May 12, 2008 – 2

Collections

• Collection: an abstract type with four concrete collection types

3 Set: the mathematical set (without duplicate elements)
Set {1 , 2 , 5} Set {‘apple’, ‘orange’, ‘strawberry’}

3 OrderedSet: a set in which the elements are ordered by their position
OrderedSet {5, 4, 3, 2, 1}

3 Bag: a set that may contain duplicate elements
Bag {1, 2, 5, 2}

3 Sequence: a bag in which the elements are ordered
Sequence {1, 2, 5, 10} Sequence {‘ape’, ‘nut’}

• Notation ‘..’ used for a sequence of consecutive integers

3 Sequence {1..5} is the same as Sequence {1, 2, 3, 4, 5}

• Elements of collections may be collections themselves
Set { Sequence {1, 2, 3, 4}, Sequence {5, 6} }

• Collections have a set of predefined operations

3 They are accessed using the -> notation

5

Common Operations for All Collections

• C, C1, C2 are values of type Collection(t), v is a value of type t

Signature Semantics
size Collection(t)→ Integer | C |
count Collection(t)× t→ Integer | C ∩ {v} |
includes Collection(t)× t→ Boolean v ∈ C

excludes Collection(t)× t→ Boolean v 6∈ C

includesAll Collection(t)× Collection(t)→ Boolean C2 ⊆ C1

excludesAll Collection(t)× Collection(t)→ Boolean C2 ∩ C1 = ∅
isEmpty Collection(t)→ Boolean C = ∅
notEmpty Collection(t)→ Boolean C 6= ∅
sum Collection(t)→ t

∑|C|
i=1 vi

6

Object Constraint Language, May 12, 2008 – 3

Set Operations

• S, S1, S2 are values of type Set(t), B is a value of type Bag(t), v is a value of
type t

Signature Semantics
union Set(t)× Set(t)→ Set(t) S1 ∪ S2

union Set(t)× Bag(t)→ Bag(t) S ∪B

intersection Set(t)× Set(t)→ Set(t) S1 ∩ S2

intersection Set(t)× Bag(t)→ Set(t) S ∩B

- Set(t)× Set(t)→ Set(t) S1 − S2

symmetricDifference Set(t)× Set(t)→ Set(t) (S1 − S2) ∪ (S2 − S1)
including Set(t)× t→ Set(t) S ∪ {v}
excluding Set(t)× t→ Set(t) S − {v}
asSet Set(t)→ Set(t)
asOrderedSet Set(t)→ OrderedSet(t)
asBag Set(t)→ Bag(t)
asSequence Set(t)→ Sequence(t)

• Operations asOrderedSet and asSequence are nondeterministic
⇒ Result contains the elements of the source set in arbitrary order

7

Bag Operations

• B, B1, B2 are values of type Bag(t), S is a value of type Set(t), v is a value of
type t

Signature Semantics
union Bag(t)× Bag(t)→ Bag(t) B1 ∪B2

union Bag(t)× Set(t)→ Bag(t) B ∪ S

intersection Bag(t)× Bag(t)→ Bag(t) B1 ∩B2

intersection Bag(t)× Set(t)→ Set(t) B ∩ S

including Bag(t)× t→ Bag(t) S ∪ {{v}}
excluding Bag(t)× t→ Bag(t) S − {{v}}
asSet Bag(t)→ Set(t)
asOrderedSet Bag(t)→ OrderedSet(t)
asBag Bag(t)→ Bag(t)
asSequence Bag(t)→ Sequence(t)

8

Object Constraint Language, May 12, 2008 – 4

Sequence Operations

• S, S1, S2 are values of type Set(t), v is a value of type t, operator ◦ denotes
the concatenation of lists, πi(S) projects the ith element of a sequence S, πj

i (S)
is the subsequence of S from the ith to the jth element

Signature Semantics
union Sequence(t)× Sequence(t)→ Sequence(t) S1 ◦ S2

append Sequence(t)× t→ Sequence(t) S ◦ 〈v〉
prepend Sequence(t)× t→ Sequence(t) 〈v〉 ◦ S

subSequence Sequence(t)× Integer× Integer
→ Sequence(t)

πj
i (S)

at Sequence(t)× Integer→ Sequence(t) πi(S)
first Sequence(t)→ t π1(S)
last Sequence(t)→ t π|S|(S)
including Sequence(t)× t→ Sequence(t) S ◦ 〈v〉
excluding Sequence(t)× t→ Sequence(t) S − {v}
asSet Sequence(t)→ Set(t)
asOrderedSet Sequence(t)→ OrderedSet(t)
asBag Sequence(t)→ Bag(t)
asSequence Sequence(t)→ Sequence(t)

9

Type Conformance

• OCL is a typed language, the basic value types are organized in a type hierarchy

• The hierarchy determines conformance of the different types to each other

• Type type1 conforms with type type2 when an instance of type1 can be
substituted at each place where an instance of type2 is expected

• Valid expression: OCL expression in which all types conform

10

Object Constraint Language, May 12, 2008 – 5

Type Conformance Rules

• Type1 conforms to Type2 when they are identical

• Type1 conforms to Type2 when it is a subtype of Type2

• Collection(Type1) conforms to Collection(Type2) when Type1 conforms to
Type2

• Type conformance is transitive: if type1 conforms with type2 and type2 con-
forms with type3, then type1 conforms with type3

• Example: If Bicycle and Car are subtypes of Transport

3 Set(Bicycle) conforms to Set(Transport)

3 Set(Bicycle) conforms to Collection(Bicycle)

3 Set(Bicycle) conforms to Collection(Transport)

3 Set(Bicycle) does not conform to Bag(Bicycle)

11

Class Diagram Example

Bank

accountNo: Integer

firstName: String
lastName: String
gender: Gender
birthDate: Date
age: Integer
isMarried: Boolean
maidenName: String [0..1]
isUnemployed: Boolean

Person

0..*

0..1customer

income(): Integer
currentSpouse(): Person
descendants(): Set

husband

wife

0..*

0..*

name:String
/noEmployees: Integer

Company

stockPrice(): Real
hireEmployee(p: Person)

manager managedCompanies

0..*1

employee employer

0..*0..*

title: String
startDate: Date
salary: Integer

Job

place: String
date: Date
ended: Boolean

Marriage

male
female

«enumeration»
Gender

children

parents

0..1

0..*

12

Object Constraint Language, May 12, 2008 – 6

Comments, Infix Operators

Comments

• Denoted by --

-- this is a comment

Infix Operators

• Use of infix operators (e.g., +, -, =, <, . . .) is allowed

• Expression a + b is conceptually equivalent to a.+(b), i.e., invoking the + op-
eration on a with b as parameter

• Infix operators defined for a type must have exactly one parameter

13

Context and Self

• All classifiers (types, classes, interfaces, associations, datatypes, . . .) from an
UML model are types in the OCL expressions that are attached to the model

• Each OCL expression is written in the context of an instance of a specific type
context Person
...

• Reserved word self is used to refer to the contextual instance

• If the context is Person, self referes to an instance of Person

14

Object Constraint Language, May 12, 2008 – 7

Object and Properties

• All properties (attributes, association ends, methods and operations without
side effects) defined on the types of a UML model can be used in OCL expressions

• The value of a property of an object defined in a class diagram is specified by a
dot followed by the name of the property

• If the context is Person, self.age denotes the value of attribute age on the
instance of Person identified by self

• The type of the expression is the type of attribute age, i.e., Integer

• If the context is Company, self.stockPrice() denotes the value of operation
stockPrice on the instance identified by self

• Parentheses are mandatory for operations or methods, even if they do not have
parameters

15

Invariants

• Determine a constraint that must be true for all instances of a type

• Value of attribute noEmployees in instances of Company must be less than or
equal to 50

context Company inv:
self.noEmployees <= 50

• Equivalent formulation with a c playing the role of self, and a name for the
constraint

context c: Company inv SME:
c.noEmployees <= 50

• The stock price of companies is greater than 0
context Company inv:
self.stockPrice() > 0

16

Object Constraint Language, May 12, 2008 – 8

Pre- and Post-conditions

• Constraints associated with an operation or other behavioral feature

• Pre-condition: Constraint assumed to be true before the operation is executed

• Post-condition: Constraint satisfied after the operation is executed

• Pre- and post-conditions associated to operation income in Person

context Person::income(): Integer
pre: self.age >= 18
post: result < 5000

• self is an instance of the type which owns the operation or method

• result denotes the result of the operation, if any

• Type of result is the result type of the operation (Integer in the example)

• A name can be given to the pre- and post-conditions
context Person::income(): Integer
pre adult: self.age >= 18
post resultOK: result < 5000

17

Previous Values in Postconditions

• In a postcondition, the value of a property p is the value upon completion of the
operation

• The value of p at the start of the operation is referred to as p@pre
context Person::birthDayHappens()
post: age = age@pre + 1

• For operations, ‘@pre’ is postfixed to the name, before the parameters
context Company::hireEmployee(p: Person)
post: employee = employee@pre->including(p) and

stockPrice() = stockPrice@pre() + 10

• The ‘@pre’ postfix is allowed only in postconditions

• Accessing properties of previous object values

3 a.b@pre.c: the new value of c of the old value of b of a

3 a.b@pre.c@pre: the old value of c of the old value of b of a

18

Object Constraint Language, May 12, 2008 – 9

Body Expression

• Used to indicate the result of a query operation

• Income of a person is the sum of the salaries of her jobs
context Person::income(): Integer
body: self.job.salary->sum()

• Expression must conform to the result type of the operation

• Definition may be recursive: The right-hand side of the definition may refer to
the operation being defined

• A method that obtains the direct and indirect descendants of a person
context Person::descendants(): Set
body: result = self.children->union(

self.children->collect(c | c.descendants()))

• Pre-, and postconditions, and body expressions may be mixed together after one
operation context

context Person::income(): Integer
pre: self.age >= 18
body: self.job.salary->sum()
post: result < 5000

19

Let Expression

• Allows to define a variable that can be used in a constraint
context Person inv:
let numberJobs: Integer = self.job->count() in
if isUnemployed then

numberJobs = 0
else

numberJobs > 0
endif

• A let expression is only known within its specific expression

20

Object Constraint Language, May 12, 2008 – 10

Definition Expressions

• Enable to reuse variables or operations over multiple expressions

• Must be attached to a classifier and may only contain variable and/or operation
definitions

context Person
def: name: String = self.firstName.concat(‘ ’).concat(lastName)
def: hasTitle(t: String): Boolean = self.job->exists(title = t)

• Names of the attributes/operations in a def expression must not conflict with
the names of attributes/association ends/operations of the classifier

21

Initial and Derived Values

• Used to indicate the initial or derived value of an attribute or association end

• Attribute isMarried in Person is initialized to false

context Person::isMarried: Boolean
init: self.isMarried = false

• Attribute noEmployees in Company is a derived attribute
context Company::noEmployees: Integer
derive: self.employee->size()

• For an attribute: expression must conform to the attribute type

• For an association end: conformance depends on multiplicity

3 at most one: expression must conform to the classifier at that end

3 may be more than one: expression must conform to Set or OrderedSet

22

Object Constraint Language, May 12, 2008 – 11

Enumeration Types

male
female

«enumeration»
Gender

gender: Gender
isMarried: Boolean
maidenName: String [0..1]
...

Person

• Define a number of literals that are the possible values of the enumeration

• An enumeration value is referred as in Gender::female

• Only married women can have a maiden name
context Person inv:
self.maidenName <> ‘’ implies
self.gender = Gender::female and self.isMarried = true

23

Packages

• Within UML, types are organized in packages

• Previous examples supposed that the package in which the classifier belongs is
clear from the environment

• The package and endpackage statements can be used to explicitly specify this
package Package::SubPackage

context X inv:
... some invariant ...

context X::operationName(...): ReturnType
pre: ... some precondition ...

endpackage

• For referring to types in other packages the following notations may be used
Packagename::Typename
Packagename1::Packagename2::Typename

24

Object Constraint Language, May 12, 2008 – 12

Undefined Values

• One or more subexpressions in an OCL expression may be undefined

• In this case, the complete expression will be undefined

• Exceptions for Boolean operators

3 true or anything is true

3 false and anything is false

3 false implies anything is true

3 anything implies true is true

• The first two rules are valid irrespective of the order of the arguments and
whether or not the value of the other sub-expression is known

• Exception for if-then-else expression: it will be valid as long as the chosen
branch is valid, irrespective of the value of the other branch

25

Navigating Associations (1)

isUnemployed: Boolean
...

Person

noEmployees:Integer
...

Company
employer

0..*0..*

employee

manager managedCompanies

0..*1

• From an object, an association is navigated using the opposite role name
context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty()

• Value of expression depends on maximal multiplicity of the association end

3 1: value is an object

3 *: value is a Set of objects (an OrderedSet if association is {ordered})

• If role name is missing, the name of the type at the association end starting with
a lowercase character is used (provided it is not ambiguous)

context Person
inv: self.bank.balance >= 0

26

Object Constraint Language, May 12, 2008 – 13

Navigating Associations (2)

• When multiplicity is at most one, association can be used as a single object or
as a set containing a single object

• self.manager is an object of type Person

context Company inv:
self.manager.age > 40

• self.manager as a set
context Company inv:
self.manager->size() = 1

• For optional associations, it is useful to check whether there is an object or not
when navigating the association

context Person inv:
self.wife->notEmpty() implies self.gender = Gender::male and
self.husband->notEmpty() implies self.gender = Gender::female

• OCL expressions are read and evaluated from left to right

27

Association Classes

isUnemployed: Boolean
age: Integer
...

Person

noEmployees:Integer
...

Company
employer

0..*0..*

title: String
...

Job

employee

• For navigating to an association class: a dot and the name of the association
class starting with a lowercase character is used

context Person
inv: self.isUnemployed = false implies self.job->size() >= 1

• For navigating from an association class to the related objects: a dot and the
role names at the association ends is used

context Job
inv: self.employer.noEmployees >= 1
inv: self.employee.age >= 18

• This always results in exactly one object

28

Object Constraint Language, May 12, 2008 – 14

Recursive Association Classes (1)

gender: Gender
isMarried: Boolean
...

currentSpouse() : Person

husband

wife

0..*

0..*

place: String
date: Date
ended: Boolean

Marriage

Person

• Direction in which a recursive association is navigated is required

• Specified by enclosing the corresponding role names in square brackets

• A person is currently married to at most one person
context Person inv:
self.marriage[wife]->select(m | m.ended = false)->size()=1 and
self.marriage[husband]->select(m | m.ended = false)->size()=1

• May also be used for non-recursive associations, but it is not necessary
context Person inv:
self.job[employer] ...

29

Recursive Association Classes (2)

gender: Gender
isMarried: Boolean
...

currentSpouse() : Person

husband

wife

0..*

0..*

place: String
date: Date
ended: Boolean

Marriage

Person

• Operation that selects the current spouse of a person
context Person::currentSpouse() : Person
pre: self.isMarried = true
body:
if gender = Gender::male

self.marriage[wife]->select(m | m.ended = false).wife
else

self.marriage[husband]->select(m | m.ended = false).husband
end

30

Object Constraint Language, May 12, 2008 – 15

Qualified Associations

Bank

accountNo: Integer

Person
0..1

customer

*

• Qualified associations use one or more qualifier attributes to select the objects
at the other end of the association

• A bank can use the accountNumber attribute to select a particular customer

• Using qualifier values when navigating through qualified associations
context Bank
inv: self.customer[12345] ...
-- results in one Person, having account number 12345

• Leaving out the qualifier values
context Bank
inv: self.customer ...
-- results in a Set(Person) with all customers of the bank

31

Re-typing or Casting

• Allows an object to be re-typed as another type

• Expression o.oclAsType(Type2) re-types an object o of type Type1 into a an-
other type Type2

• Suppose Super is a supertype of type Sub

• Allows one to use a property of an object defined on a subtype of the currently
known type of the object

context Super inv:
self.oclAsType(Sub).p -- accesses the p property defined in Sub

• Can be used to access a property of a superclass that has been overriden
context Sub inv:
self.p
-- accesses the p property defined in Sub
self.oclAsType(Super).p
-- accesses the p property defined in Super

32

Object Constraint Language, May 12, 2008 – 16

Predefined Properties on All Objects

• Several properties apply to all objects

3 oclIsTypeOf(t: Type): Boolean is true if the type of self and t are the
same

3 oclIsKindOf(t: Type): Boolean is true if t is a direct/indirect type of
self

3 oclInState(s: State): Boolean is true if self is in the state s

3 oclIsNew: Boolean, in a postcondition, is true if self has been created
while performing the operation

• Example
context Person
inv: self.oclIsTypeOf(Person) -- is true
inv: self.oclIsTypeOf(Company) -- is false

33

Class Features

• Features of a class, not of its instances

• They are either used-defined or predefined

• Predefined feature allInstances holds on all types

• There are at most 100 persons
context Person inv:
Person.allInstances()->size() <= 100

• A user-defined feature averageAge of class Person
context Person inv:
Person.averageAge =

Person.allInstances()->collect(age)->sum()/
Person.allInstances()->size()

34

Object Constraint Language, May 12, 2008 – 17

Select Operation on a Collection

• Obtains the subset of elements of a collection satisfying a Boolean expression

• Alternative expressions for the select operation

3 collection->select(Boolean-expression)

3 collection->select(v | Boolean-expression-with-v)

3 collection->select(v: Type | Boolean-expression-with-v)

• A company has at least one employee older than 50
context Company inv:

self.employee->select(age > 50)->notEmpty()
context Company inv:

self.employee->select(p | p.age > 50)->notEmpty()
context Company inv:

self.employee->select(p: Person | p.age > 50)->notEmpty()

35

Reject Operation on a Collection

• Obtains the subset of all elements of the collection for which a Boolean expression
evalutes to False

• Alternative expressions for the reject operation

3 collection->reject(Boolean-expression)

3 collection->reject(v | Boolean-expression-with-v)

3 collection->reject(v: Type | Boolean-expression-with-v)

• The collection of employees of a company who have not at least 18 years old is
empty

context Company inv:
self.employee->reject(age>=18)->isEmpty()

• A reject expression can always be restated as a select with the negated ex-
pression

36

Object Constraint Language, May 12, 2008 – 18

Collect Operation on a Collection

• Derives a collection from another collection, but which contains different objects
from the original collection

• Alternative expressions for the collect operation

3 collection->collect(expression)

3 collection->collect(v | expression-with-v)

3 collection->collect(v: Type | expression-with-v)

• Collect of birth dates for all employees in the context of a Company object

3 self.employee->collect(birthDate)

3 self.employee->collect(p | p.birthDate)

3 self.employee->collect(p:Person | p.birthDate)

• Resulting collection above is a Bag: some employees may have the same birth
date

37

ForAll Operation on a Collection

• Specifies a Boolean expression that must be true for all elements in a collection

• Alternative expressions for the forall operation

3 collection->forAll(Boolean-expression)

3 collection->forAll(v | Boolean-expression-with-v)

3 collection->forAll(v: Type | Boolean-expression-with-v)

• The age of each employee is less than or equal to 65

context Company
inv: self.employee->forAll(age <= 65)
inv: self.employee->forAll(p | p.age <= 65)
inv: self.employee->forAll(p: Person | p.age <= 65)

• More than one iterator can be used in the forAll operation

• All instances of persons have unique names
context Person inv:
Person.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.name <> p2.name)

38

Object Constraint Language, May 12, 2008 – 19

Exists Operation on a Collection

• Specifies a Boolean expression that must be true for at least one element in
a collection

• Alternative expressions for the exists operation

3 collection->exists(Boolean-expression)

3 collection->exists(v | Boolean-expression-with-v)

3 collection->exists(v: Type | Boolean-expression-with-v)

• The firstName of at least one employee is equal to ‘Jack’

context Company
inv: self.employee->exists(firstName = ‘Jack’)
inv: self.employee->exists(p | p.firstName = ‘Jack’)
inv: self.employee->exists(p: Person | p.firstName = ‘Jack’)

39

Iterate Operation on a Collection

• Provides a generic mechanism to iterate over a collection

• Syntax
collection->iterate(elem: Type; acc: Type = <expression> |

expression-with-elem-and-acc)

3 elem: the iterator as in select, forAll, etc.

3 acc: the accumulator with an initial value <expression>

3 expression-with-elem-and-acc: is evaluated for each elem and its value is
assigned to acc

• The operations select, reject, forAll, exists, collect, can all be described
in terms of iterate

• For example, collection->collect(x: T | x.property) is identical to
collection->iterate(x: T; acc: T2 = Bag{} |

acc->including(x.property))

40

Object Constraint Language, May 12, 2008 – 20

Company Example: Class Diagram

1

4..*

Employee

SSN

firstName

lastName

birthDate

sex

salary

address

hireDate

Department

number

name

locations [1..*]

/nbrEmployees

Project

number

name

location

hours

1..*

1..*

1

0..1
0..*

supervisor

subordinates

startDate

0..*

1

Manages

WorksFor

Supervision

Controls
WorksOn

0..1

Dependent

name

relationship

sex

birthDate

1..*

1

dependents

age()

41

Company Example: Integrity Constraints (1)

• The age of employees must be greater than or equal to 18
context Employee inv:
self.age() >= 18

• The supervisor of an employee must be older than the employee
context Employee inv:
self.supervisor->notEmpty() implies

self.age() > self.supervisor.age()

The condition notEmpty must be tested since the multiplicity of the role is not
mandatory

• The salary of an employee cannot be greater than the salary of his/her supervisor
context Employee inv:
self.supervisor->notEmpty() implies

self.salary < self.supervisor.salary

• The hire date of employees must be greater than their birth date
context Employee inv:
self.hireDate > self.birthDate

42

Object Constraint Language, May 12, 2008 – 21

Company Example: Integrity Constraints (2)

• The start date of an employe as manager of a department must be greater than
his/her hire date

context Employee inv:
self.manages->notEmpty() implies
self.manages.startDate > self.hireDate

• A supervisor must be hired before every employee s/he supervises
context Employee inv:
self.subordinates->notEmpty() implies
self.subordinates->forall(e | e.hireDate > self.hireDate)

• The manager of a department must be an employee of the department
context Department inv:
self.worksFor->includes(self.manages.employee)

• The SSN of employees is an identifier (or a key)
context Employee inv:
Employee.allInstances->forAll(e1, e2 |

e1 <> e2 implies e1.SSN <> e2.SSN)

43

Company Example: Integrity Constraints (3)

• The name and relationship of dependents is a partial identifier: they are unique
among all dependents of an employee

context Employee inv:
self.dependents->notEmpty() implies
self.dependents->forAll(e1, e2 | e1 <> e2 implies

(e1.name <> e2.name or e1.relationship <> e2.relationship))

• The location of a project must be one of the locations of its department
context Project inv:
self.controls.locations->includes(self.location)

• The attribute nbrEmployees in Department keeps the number of employees that
works for the department

context Department inv:
self.nbrEmployees = self.worksFor->size()

• An employee works at most in 4 projects
context Employee inv:
self.worksOn->size() <= 4

44

Object Constraint Language, May 12, 2008 – 22

Company Example: Integrity Constraints (4)

• An employee may only work on projects controlled by the department in which
s/he works

context Employee inv:
self.worksFor.controls->includesAll(self.worksOn.project)

• An employee works at least 30h/week and at most 50 h/week on all its projects
context Employee inv:
let totHours: Integer = self.worksOn->collect(hours)->sum() in
totHours >= 30 and totHours <=50

• A project can have at most 2 employees working on the project less than 10
hours

context Project inv:
self.worksOn->select(hours < 10)->size() <= 2

45

Company Example: Integrity Constraints (5)

• Only department managers can work less than 5 hours on a project
context Employee inv:
self.worksOn->select(hours < 5)->notEmpty() implies
Department.allInstances()->collect(manages.employee)->

includes(self)

If the manager of a department must be an employee of the department (previous
contraint), this constraint can be specified as follows

context Employee inv:
self.worksOn->select(hours < 5)->notEmpty() implies
self.worksFor.manages.employee=self

• Employees without subordinates must work at least 10 hours on every project
they work

context Employee inv:
self.subordinates->isEmpty() implies
self.worksOn->forAll(hours >=10)

46

Object Constraint Language, May 12, 2008 – 23

Company Example: Integrity Constraints (6)

• The manager of a department must work at least 5 hours on all projects con-
trolled by the department

context Department inv:
self.controls->forall(p:Project | self.manages.

employee.worksOn->select(hours >= 5)->contains(p))

• An employee cannot supervise him/herself
context Employee inv:
self.subordinates->excludes(self)

• The supervision relationship must not be cyclic
context Employee
def: allSubordinates = self.subordinates->union(

self->subordinates->collect(e:Employee | e.allSubordinates))
inv: self.allSubordinates->exludes(self)

47

Object Constraint Language, May 12, 2008 – 24

