

In-Memory Databases
and Apache Ignite

Joan Tiffany To Ong Lopez 000457269 jtonglopez@gmail.com

Sergio José Ruiz Sainz 000458874 sergiers@opendeusto.es

18 December 2017

INFOH415 – In-Memory databases with Apache Ignite

2

Table of Contents
1 Introduction .. 5

2 Apache Ignite .. 5

2.1 Clustering .. 5

2.2 Durable Memory and Persistence .. 6

2.3 Data Grid ... 7

2.4 Distributed SQL ... 10

2.5 Compute Grid features ... 10

2.6 Other interesting features .. 10

3 Business domain ... 11

4 Database schema and data setup ... 11

5 Apache Ignite Walkthrough .. 13

5.1 Environment Setup ... 13

5.2 Cluster/Node startup .. 13

5.3 Domain Model generation .. 15

5.4 Loading caches .. 23

5.5 Computing cache data .. 24

6 Queries .. 25

6.1 Query 1: Multiple operations in a single procedure (generate invoices) 25

6.2 Query 2: Aggregate by sum according to a date range (compute revenue) 29

6.3 Query 3: Update all rows of a single column (apply discount) ... 30

7 Benchmark results .. 30

7.1 Query 1 result ... 30

7.2 Query 2 result ... 32

7.3 Query 3 result ... 33

7.4 Additional: Ignite cache loading.. 33

8 Development experience .. 34

8.1 Open source vs closed source ... 34

8.2 Developer community .. 35

8.3 Developer support .. 36

8.4 Documentation ... 37

8.5 Tooling... 37

9 Apache Ignite vs. other in-memory distributed databases .. 39

9.1 Feature comparisons .. 39

INFOH415 – In-Memory databases with Apache Ignite

3

9.2 Performance comparisons .. 39

10 Conclusion ... 40

11 Bibliography .. 41

List of Tables
Table 1 Size of generated data.. 12

Table 2 Indexed columns in RDBMS ... 13

Table 3 Query 1 benchmark results .. 30

Table 4 Query 2 benchmark results .. 32

Table 5 Query 3 benchmark results .. 33

Table 6 Ignite cache loading time ... 33

Table 7 Apache Ignite release dates ... 34

Table 8 Product Comparison - Apache Ignite vs other in-memory distributed databases 39

List of Figures

Figure 1 Ignite server and client node topology ... 6

Figure 2 Partitioned cache mode. Shards are distributed among nodes, one node is the primary

holder of the data while the rest contain backups ... 7

Figure 3 Replicated cache mode. All nodes possess all shards ... 8

Figure 4 Collocated joins (left) vs non-collocated joins (right) ... 8

Figure 5 ERD Schema .. 11

Figure 6 Node startup from command line .. 13

Figure 7 Node startup command line output ... 14

Figure 8 Code startup .. 14

Figure 9 Spring XML startup .. 14

Figure 10 Ignite Web Agent system diagram .. 15

Figure 11 Starting ignite-web-agent ... 15

Figure 12 Ignite Web Console ... 16

Figure 13 Remote node discovery methods ... 16

Figure 14 Add cluster .. 17

Figure 15 Adding the JDBC driver ... 17

Figure 16 Import domain model screen ... 18

Figure 17 Setting connection properties .. 18

Figure 18 Schema selection .. 19

Figure 19 Table selection .. 19

Figure 20 Additional configuration settings .. 20

Figure 21 Imported domain model ... 20

Figure 22 Cache configuration as Java code ... 21

Figure 23 Cache persistence configuration ... 21

Figure 24 Generated code in a Maven project ... 22

Figure 25 Configuration summary .. 22

INFOH415 – In-Memory databases with Apache Ignite

4

Figure 26 Console output on running ServerNodeCodeStartup ... 23

Figure 27 Loading the caches .. 24

Figure 28 Query 1 benchmark results (chart) ... 31

Figure 29 Ignite cache loading (chart)... 33

Figure 30 GridGain Pricing .. 35

Figure 31 GitHub Pulse Report on the Apache Ignite repository [15] .. 35

Figure 32 Contributions to master since Ignite open-sourcing in 2014 [16] .. 36

Figure 33 Commit frequency, year-to-date [17] ... 36

Figure 34 Most active contributors [16] ... 36

Figure 35 Searching for "ignite" in StackOverflow .. 37

Figure 36 Web Console Queries page ... 38

Figure 37 Querying the Ignite cache from DBeaver .. 38

Figure 38 GridGain vs Hazelcast Performance Summary ... 39

INFOH415 – In-Memory databases with Apache Ignite

5

1 Introduction
Acme Corp. is a fictitious company in the business of equipment rental to individuals as well as

businesses. The equipment they lease are electronic devices such as laptops, desktop computers,

projectors, multifunctional printers, monitors, tablets, servers, electronic blackboards,

videoconferencing systems, lab equipment and smartphones. At present, the company has more than

3 million of these “assets” under management, and regular intervals the company needs to generate

documents and reports out of this dataset. They are therefore exploring recent technologies like

distributed processing and in-memory databases to improve their existing operations, to scale up their

business and to explore other profitable ventures by extracting new business ideas from the data they

already have.

To this end the company has engaged a team of data analytics specialists to study and recommend

the most suitable technologies to use before they invest in new hardware, software and hiring. The

company is asking for a proof of concept with benchmarks in order to compare their database

management system (Microsoft SQL Server 2016) with an alternative solution that offers in-memory

and distributed processing. In this paper we explore Apache Ignite (version 2.2) as an in-memory

computing platform.

2 Apache Ignite
Apache Ignite is an open source in-memory distributed database and computing platform. It was

initially released in 2007 by GridGain Systems (Foster City, California), open-sourced in 2014 and

graduated from the Apache Incubator program in September 2015.

In this section we discuss the core features of Apache Ignite. More details can be found in the Apache

Ignite documentation [1].

2.1 Clustering
There are two types of cluster nodes in Ignite: server or client.

• Server nodes act as containers for data, processing of aggregation requests. These build up

the distributed database. The more server nodes, more RAM and CPU is available for the

workload.

• Client nodes are entry points from applications. They are embedded in application logic, they

function as a gateway to the cluster that is composed of the server nodes.

INFOH415 – In-Memory databases with Apache Ignite

6

Figure 1 Ignite server and client node topology

Node Discovery

Ignite provides several node discovery options, such as Multicast IP or Static IP discovery, or both.

Apart from Java or XML configuration, the filesystem can also be used to store the nodes’ IP addresses.

Similarly, node discovery can be configured in any of the cloud services that support Ignite.

Cluster Deployment Options

Ignite has flexible deployment options: it can be deployed on-premise or on-cloud, on physical servers

or virtual environments. Ignite can be deployed from Docker, Kubernetes or Mesos containers.

Additionally, images are available in both AWS (ignite-ami) and Google Compute (ignite-image) for

quickly deploying Ignite clusters on the cloud.

Other Features

The following list summarizes other features relating to Ignite’s clustering function:

• Cluster grouping: ability to create logical groups of nodes within the cluster, which provides

the ability to assign specific jobs or tasks to a subset of nodes only.

• Leader election: ability to select oldest or youngest nodes in a cluster, in situations a

coordinator node is needed for certain tasks.

• Peer classloading: a special distributed ClassLoader provides zero deployment by avoiding

explicit re-deployment of code to nodes every time it changes.

2.2 Durable Memory and Persistence
Ignite’s durable memory architecture allows storing and processing of data and indexes both on

memory and disk, similar to virtual memory of operating systems. Persistence is optional: Ignite can

be used as a pure in-memory store. However, built-in persistence called Ignite Native Persistence is

provided for writing data to disk, and transparently integrates with Ignite’s durable memory.

INFOH415 – In-Memory databases with Apache Ignite

7

2.3 Data Grid
In Apache Ignite’s distributed storage, each node owns a portion of the overall data. It stores data as

key-value pairs in a distributed partitioned hashmap, stored in-memory. The data grid implements the

JCache (JSR 107) specification which provides support for basic cache operations, ConcurrentMap

APIs, collocated processing, events and metrics, etc.

Cache Modes

Ignite supports three Cache Modes: partitioned, replicated or local cache.

• PARTITIONED: the most scalable distributed cache mode, and is the default cache mode. The

data set is divided into partitions (sharding) and all partitions are split equally between

participating nodes. The number of backup nodes can be configured for each cache. Updates

are applied to the primary node and the change is propagated at some point to the backup

nodes. Update performance is good because only one node needs to be updated, but read

performance may suffer because some nodes may have expired copies of the data. However,

this backup behavior can be configured to be fully synchronous.

Figure 2 Partitioned cache mode. Shards are distributed among nodes, one node is the primary holder of the data
while the rest contain backups

• REPLICATED: in this mode, all data is replicated in all nodes in the cluster. Good read

performance but updates are expensive because all changes need to be propagated to all

cache nodes.

INFOH415 – In-Memory databases with Apache Ignite

8

Figure 3 Replicated cache mode. All nodes possess all shards

• LOCAL: this is the most lightweight cache mode as no data is distributed to the other nodes.

This is ideal for read-only data or data that is only refreshed at a set frequency.

Distributed Joins

Ignite provides the ability to collocate compute with data or data with data to improve performance.

This is called affinity collocation. Cache key objects can be annotated with @AffinityKeyMapped to

mark the relationships to other objects that should be located in the same node. If affinity keys are

not set and distributed joins are not enabled, join results may not be complete because non-collocated

joins are disabled by default.

Figure 4 Collocated joins (left) vs non-collocated joins (right)

In distributed collocated joins, the join operation is performed locally per node and aggregated at the

client side. Because data is only joined locally, it is possible that only partial results are returned if the

corresponding key is not present on the same node. On the other hand, in distributed non-collocated

joins, each node will send broadcast requests to other nodes in the cluster to retrieve the missing

data. This is a more expensive join operation because it involves additional broadcast messaging and

data movement. Please see Figure 4 for an illustration of this concept.

INFOH415 – In-Memory databases with Apache Ignite

9

Cache Atomicity Modes

There are two cache atomicity modes in Ignite: atomic or transactional. In ATOMIC mode, atomicity

and consistency is guaranteed for a single operation. In TRANSACTIONAL mode it is possible to group

several operations into one logical grouping that cannot be interleaved and guarantees ACID

compliance.

Cache Querying

There are many ways to implement a cache query in Ignite, such as scan queries, SQL queries or text

queries.

• ScanQuery provides a way of querying the distributed cache according to a predicate in full

Java code. It can be in lambda form (Java 8) or anonymous functions (Java 7).

• SQLQuery provides a way to query using an SQL predicate.

• SQLFieldsQuery provides a way to query only specific fields from a distributed cache.

• SQLTextQuery provides a way to do a text search in any column in a cache.

Other Features

The following list summarizes other features relating to Ignite’s data grid function:

• Near Cache: smaller, local caches on client nodes that stores most recently or frequently

accessed data

• Cache grouping: merge caches into groups to reduce overhead and improve performance

• Pessimistic locks: enforce mutual exclusion through explicit locking

• Continuous queries: continuously query real-time listening of data modifications on Ignite

caches

INFOH415 – In-Memory databases with Apache Ignite

10

• Data rebalancing: Configurable automatic rebalancing of shards across nodes in a cluster in

response to changes in topology

2.4 Distributed SQL
Apache Ignite is a ANSI-99 compliant horizontally scalable and fault-tolerant distributed SQL database,

by full replication or partitioning. It supports both collocated and non-collocated distributed SQL joins

as already described in a previous section. It supports both DDL (Data Definition Language), for

example table creation), and DML (Data Manipulation Language) such as queries. Ignite ODBC and

JDBC drivers are available so you can use your SQL tool of choice, or establish a connection from your

source code.

The following list summarizes other features relating to Ignite’s distributed SQL function:

• Support for geospatial data (OGS Simple Features Specification)

• Ability to connect Tableau, Pentaho (data visualization tools) and Apache Zeppelin (data

analytics notebook tool) to analyze data stored in a distributed Ignite cluster

2.5 Compute Grid features
Ignite provides distributed parallel processing: computations and data processing are spread across a

set of nodes in the cluster. As already discussed in a previous section, it provides the ability to run

computation on the node where the data is to avoid data serialization.

The following list summarizes other features relating to Ignite’s compute grid function:

• In-memory MapReduce: Run MapReduce and ForkJoin jobs in memory

• Continuous mapping: Ability to generate new jobs on-the-fly for the Map step when

computation is already running

• Shared node state: Ability to share state between different jobs in a node

• Fault tolerance: Configurable job failover in case of node crash

• Load balancing: Configurable job distribution among cluster nodes

• Checkpointing: Ability to save an intermediate job state to protect from node failures

• Job Scheduling: Fine-grained control over scheduling of jobs that arrive at a node

2.6 Other interesting features
The following list summarizes other interesting features or integrations available in Ignite:

• Data streaming: ability to inject large amounts of continuous streams of data into Ignite

caches. Provides integration with major streaming technologies and frameworks such as

Kafka, Camel, Storm, Flume, Flink, MQ, among others

• Hibernate L2 cache: ability to be used as Hibernate’s second-level cache, caching of retrieved

data to avoid expensive database operations

• Machine Learning grid: run machine learning algorithms on data stored in Ignite caches and

avoid having to ETL data out into another system like Mahout or Spark

INFOH415 – In-Memory databases with Apache Ignite

11

3 Business domain
As mentioned above, Acme Corp. is in the business of leasing high value equipment to individuals and

businesses, who prefer to pay a weekly or monthly rate for the use of these assets in exchange for

convenience and flexibility as they will not need to maintain these assets, and to avoid the large up-

front cost of acquiring them. To start a lease a client fills out an information sheet and signs a contract

that indicates the terms of the lease, which include the start and end dates of the lease, the rental

rate, terms of rental rate adjustments, the billing interval, any charges for pre-terminating the

contract, charges for damages, etc. There are five types of billing periods: Weekly, monthly, quarterly,

semiannual and annual. Each client chooses the option that best fits their necessity.

At regular intervals, Acme Corp. generates an invoice by executing a batch job. The user logs into the

application, selects parameters and clicks on a button that will generate the invoices in PDF format.

These invoices are then sent out electronically to all clients.

Apart from this, the company also has other operations such as bulk insert and update of records, and

report generation. Due to the volume of data involved these jobs are typically ran overnight. This is

also a potential area for improvement if the in-memory computing solution shows significance

performance improvements versus a traditional database. We will also cover some of these queries

in this analysis.

4 Database schema and data setup
A subset of Acme Corp’s existing database schema can be seen in the Figure 5.

Figure 5 ERD Schema

We can see a mapping to the business domain in the schema. A Customer has a first name, a last name

and a billing address. The customer is associated with zero or many Contracts. These contracts have

a start date, an end date and a billing interval (as mentioned before, weekly, monthly, quarterly,

semiannual or annual). The contract contains one or many contract items. ContractItem is a table

for storing the rental rate of the items. It contains a price per day, and a discount rate. Every item

owned by Acme Corp is stored in the table ItemInstance. In this table we store the serial number of

the item, the purchase date, the purchase amount, and its condition (working or defective). Each type

INFOH415 – In-Memory databases with Apache Ignite

12

of item is stored in the table Item, and it contains the name of the item (this is, the commercial name

of the product, for example “Macbook”), the brand, the type (as mentioned before, laptops, desktop

computers, projectors, multifunctional printers, monitors, tablets, servers, electronic blackboards,

videoconferencing systems, lab equipment and smartphones). We also store the manufacturer and a

short description of the item. Each item instance has an accessory, stored in the table Accessory, with

a name.

Everything related with the billing is stored in two tables: InvoiceItem and Invoice. When we want

to calculate an invoice for a date and a specific billing period, we invoke a stored procedure that

calculates the amount for each item for each contract match the parameters. This is stored in

InvoiceItem (base amount, discount amount and net amount). Finally, the Invoice aggregates the

InvoiceItems computed for that billing period and contract.

For this this POC we have created a test database with randomly generated data. In our dummy

database we can find the following tables and their corresponding volume:

Table # of records

Customer 1,000,000

Contract 1,200,000

ContractItem 3,120,000

ItemInstance 3,120,000

Accessory 3,120,000

Item 1,000,000

Invoice 0

InvoiceItem 0
Table 1 Size of generated data

1 million customers have 1.12 million Contracts associated (the first 20,000 customers have two

active contracts, and the next 100,000 customers have one inactive contract and one active contract),

3.12 million ContractItems, 3.12 million ItemInstances (3 million working items, 120,000 defective

items) with 3.12 million Accessories and 1 million Items. Tables Invoice and InvoiceItem are

empty. As we said, this data is randomly generated by a script. The contracts are uniformly distributed

among the different billing_intervals.

As we can see, the main job of this database is to extract, compute and load invoices. No new records

will be inserted on tables Customer, Contract, ContractItem, ItemInstance, Accessory or Item.

Finally, below in Table 2 is a summary of the indexed columns, either from primary keys or index

definitions.

Table Indexed column By

Customer customer_id Primary key (clustered)

Contract contract_id Primary key (clustered)

Contract customer_id

Contract start_date, end_date, billing_interval

Accessory accessory_id Primary key (clustered)

Accessory item_instance_id

ContractItem contract_item_id Primary key (clustered)

ContractItem contract_id

INFOH415 – In-Memory databases with Apache Ignite

13

ContractItem item_instance_id

Item item_id Primary key (clustered)

ItemInstance item_instance_id Primary key (clustered)

ItemInstance item_id

Invoice invoice_id Primary key (clustered)

Invoice contract_id, billing_date

InvoiceItem contract_item_id, invoice_id Primary key (clustered)
Table 2 Indexed columns in RDBMS

5 Apache Ignite Walkthrough

5.1 Environment Setup
Download and install apache-ignite-fabric from https://ignite.apache.org/download.cgi.

Then add a IGNITE_HOME environment variable as well as to PATH (pointing to IGNITE_HOME/bin).

5.2 Cluster/Node startup
There are two ways to start an Ingite node: through Java code, or through command line. If there is

no existing cluster with the same node configuration, a new cluster will be created. Otherwise the new

node will join the existing cluster.

5.2.1 Via Command Line

To create a node, run ignite.[bat|sh] and provide the path of the XML configuration file. For

example:

Figure 6 Node startup from command line

https://ignite.apache.org/download.cgi

INFOH415 – In-Memory databases with Apache Ignite

14

Figure 7 Node startup command line output

5.2.2 From Java

Nodes can be started by calling Ignition.start(). Similar to command line, you can pass the path

of the XML configuration file, or use the Java configuration code. Both examples are shown below.

These files are provided in the auto-generated Maven project created from the Web Console,

described in section 5.3.

Figure 8 Code startup

Figure 9 Spring XML startup

INFOH415 – In-Memory databases with Apache Ignite

15

5.3 Domain Model generation
Once the database tables have been created, we can use Ignite’s Web Console [2] to automatically

generate the domain model from the database schema. The domain model, in Java or XML code, can

be downloaded as a Maven package and used in your application. The import is performed through a

wizard-style form with a live preview of the configuration code.

Web Console can be deployed locally, but for convenience, GridGain also hosts an instance that is

accessible for free on the internet through http://console.gridgain.com/.

To use the Web Console, one needs to download a web agent that establishes a connection between

the Ignite cluster and the Web Console [3]:

Figure 10 Ignite Web Agent system diagram

The link to download ignite-web-agent is provided from the Web Console interface, already pre-

configured with the appropriate security token. Unzip the package and run ignite-web-agent.bat.

At least one cluster node running from apache-ignite-fabric (command line) should be started

before running the agent.

Figure 11 Starting ignite-web-agent

If the connection is successful, Web Console will show the name of the cluster detected.

INFOH415 – In-Memory databases with Apache Ignite

16

Figure 12 Ignite Web Console

The first step is to configure an Ignite cluster. From the header, click on Configure and then the

Advanced tab. Click on the Add cluster button and give a name for the cluster. We will use the default

Multicast discovery method for finding remote nodes on the grid. Other available discovery methods

can be found by hovering over the (?) icon.

Figure 13 Remote node discovery methods

INFOH415 – In-Memory databases with Apache Ignite

17

Figure 14 Add cluster

As you modify some of these fields you will notice that the XML/Java code at the right side changes as

you type or modify selections. This is a useful feature that shows you exactly what your changes will

do to the configuration code, which you can use to look up in the Ignite API documentation or Javadoc

for more information on their behavior.

If you want other nodes in a remote host to connect to the cluster, you will need to check that the

firewall rules are not blocking the connection.1

Save the changes in the Clusters page and go to the Model section from the left side menu.

To import the database schema, a JDBC driver must be provided in the ignite-web-agent-*/jdbc-

drivers directory:

Figure 15 Adding the JDBC driver

1 For Windows Firewall please refer to https://technet.microsoft.com/en-us/library/cc749323(v=ws.10).aspx

https://technet.microsoft.com/en-us/library/cc749323(v=ws.10).aspx

INFOH415 – In-Memory databases with Apache Ignite

18

After doing so, click the Import from database button.

Figure 16 Import domain model screen

In the next screen specify the connection details to the database where the tables have been created.

Figure 17 Setting connection properties

In the next screen select the appropriate schema.

INFOH415 – In-Memory databases with Apache Ignite

19

Figure 18 Schema selection

In the next screen we select the tables to be imported. Select the appropriate tables. At the bottom

there is an option to choose different Cache Modes: PARTITIONED or REPLICATED – leave the defaults

for now and click Next.

Figure 19 Table selection

Accept defaults and click Save.

INFOH415 – In-Memory databases with Apache Ignite

20

Figure 20 Additional configuration settings

You will see that a list of caches has been generated with default settings. It is possible to modify the

configuration for each cache, such as setting the Cache Mode (PARTITIONED/REPLICATED/LOCAL) and

Cache Atomicity (ATOMIC/TRANSACTIONAL). Please refer to section 2.3 for a description of these

features.

Figure 21 Imported domain model

Click on the Java label to view the configuration as Java code.

INFOH415 – In-Memory databases with Apache Ignite

21

Figure 22 Cache configuration as Java code

Scrolling down under the Store section there are more configurable settings on persistence.

Figure 23 Cache persistence configuration

Once satisfied with the cache configuration, go to the Summary section. You will see a preview of the

configuration code based on selections made in the previous screens. The source code can be

downloaded as a ready-to-use Maven project. You can view the files and directories created by clicking

the Project Structure button.

INFOH415 – In-Memory databases with Apache Ignite

22

Figure 24 Generated code in a Maven project

Figure 25 Configuration summary

Click on the Download Project button and open pom.xml from your favorite Java IDE.

INFOH415 – In-Memory databases with Apache Ignite

23

Inside the src/main/java/startup directory there are startup classes which you can use to start

server or client nodes, based on either XML or Java configuration files.

Figure 26 Console output on running ServerNodeCodeStartup

5.4 Loading caches
After initializing the node, the caches can be accessed through the ignite.cache() or

ignite.getOrCreateCache() call. The only difference between these two is the cache() call will

return null if the cache does not exist, while the getOrCreateCache() will create the cache [4].

Once you have a handle to the cache, you may load the data by calling the loadCache() method. This

call reads from the tables in the database and loads them all into memory, automatically sharding the

data across nodes according to the configuration given in the Java or XML code. It already knows the

schema of your data when it auto-generated the domain model (as seen in section 5.3). The

connection is established according to the credentials given in secret.properties (also included in

the Maven project).

INFOH415 – In-Memory databases with Apache Ignite

24

Figure 27 Loading the caches

5.5 Computing cache data
Once the application has a reference to the cache with data already loaded, it is possible to run any of

the query types described in section 2.3. In section 6 we will discuss the different queries we

implemented for this POC. For additional examples you may refer to the Ignite documentation [1] or

the ignite-examples project [5].

INFOH415 – In-Memory databases with Apache Ignite

25

6 Queries
In this section we explain the queries that we developed in both SQL and Apache Ignite. These queries

are representative of the typical database operations that will be done in normal business processing.

6.1 Query 1: Multiple operations in a single procedure (generate invoices)
This job is a procedure that will generate invoices that will be sent out to clients regularly. As described

in section 3, improving the performance of this job is our main goal in this proof of concept. The job

can be broken down into the following:

Parameters:

• billing_date – date at which contracts are active to be picked up by the job

• billing_interval – billing interval of contracts to be picked up by the job

Steps:

1. Query the Contract and ContractItems tables to get a list of items that are billable

(according to given parameters)

2. Delete any existing InvoiceItem records for the given parameters

3. Delete any existing Invoice records for the given parameters

4. Insert new Invoice records for each distinct contract in Step 1

5. Insert new InvoiceItem records for each ContractItem returned in the Step 1 and set its

foreign key to Invoice, which are the values inserted in Step 4.

This procedure is roughly the same in both the SQL implementation and in Ignite, but could differ in

that in SQL it is possible to do an INSERT INTO SELECT that bulk-computes and bulk-inserts rows into

the table, whereas in Ignite we have to loop over each one.

6.1.1 SQL

Below is the code for generating invoices along the same steps described in the beginning of section

6.1.

Step 1: Query billable items

Step 2: Delete existing InvoiceItem records

INFOH415 – In-Memory databases with Apache Ignite

26

Step 3: Delete existing Invoice records

Step 4: Insert new Invoice records

Step 5: Insert new InvoiceItem records

INFOH415 – In-Memory databases with Apache Ignite

27

6.1.2 Apache Ignite

Below is the code for generating invoices along the same steps described in the beginning of section

6.1.

Step 1: Query billable items

The main things of interest here is the transaction boundaries around the getComputeCursor call (the

try() and tx.commit() statements). In the getComputeCursor call we can see that the query is SQL-

likem apart from the second line where we prefix the name of the ContractItemCache to the

ContractItem table. This is because the query is run against contractCache but it has a reference

to another cache. Also, note that we call setDistributedJoins to true. This is to ensure that we get

complete results – this behavior has been described in section 2.3 under distributed joins.

Step 2: Delete existing InvoiceItem records

This is similar to the previous query but a different SQL statement.

Step 3: Delete existing Invoice records

This is nearly identical to the query in Step 3, but against the Invoice table.

INFOH415 – In-Memory databases with Apache Ignite

28

Step 4: Insert new Invoice records

This operation is the code that generates the Invoice records. Some of these lines have been

discussed in previous steps. The thing to note here is the invoiceCache.put call – this is the act of

writing to the cache. As you can see we don’t need to write explicit SQL code – Ignite will manage the

persistence to SQL database.

Step 5: Insert new InvoiceItem records

This query does the work of the actual calculation of the InvoiceItem. The syntax is similar to what

is already seen in previous steps.

INFOH415 – In-Memory databases with Apache Ignite

29

6.2 Query 2: Aggregate by sum according to a date range (compute revenue)
In this example we will see how the revenue is computed in two ways, with SQL and with Apache

Ignite. We can calculate the total revenue in two ways. First one is to obtain all Invoices from a specific

period, and then, make a SUM aggregation in order to obtain the revenue. The other way is by Joining

Contracts, Invoices and InvoiceItems, and then, making the SUM aggregation in the

InvoiceItems, using the Invoice table as a bridge to obtain the billing period from the contract. As

we can see, this last option is more complex and it has approximately three times more data in our

database. Since we want to test our system, we decided to proceed with this last method.

6.2.1 SQL

In contrast with the previous query, we do not need to create a stored procedure.

As we can see, we project the billing interval and the sum of the individual net amounts of each

contractItem for the period between 1st of December 2017 and 31st of December 2017.

6.2.2 Apache Ignite

For querying the Ignite cache, we are going to use the Web Console application. As we can see in the

figure below, the syntax is very close to SQL. The only appreciable difference is that we need to specify

the cache name for Invoice and InvoiceItem in order to obtain the tables, because they reside in a

different cache.

The output result of the query can be found below.

INFOH415 – In-Memory databases with Apache Ignite

30

6.3 Query 3: Update all rows of a single column (apply discount)
In this query the aim is to explore the performance of an UPDATE statement on the entire table with

3,120,000 rows. We will update the entire ContractItem table and add a 5% discount to all items.

6.3.1 SQL

6.3.2 Apache Ignite

Since the query involves only a single cache, the same SQL can be executed as-is in Ignite’s Web

Console application.

7 Benchmark results
In the following section we summarize the benchmark results.

7.1 Query 1 result
The benchmark result of Query 1 is summarized in the table below.

ID Ran on Topology Time Total
rows
inserted

1 Ignite cluster 1 local node 0 m 50.4 s 292,780

2 Ignite cluster 2 local nodes 1 m 47.6 s 292,780

3 Ignite cluster 3 local nodes 2 m 44.7 s 292,780

4 Ignite cluster 4 local nodes 7 m 05.3 s 292,780

5 Ignite cluster 3 local nodes, 1 remote node 19 m 40.4 s 292,780

6 Ignite cluster 3 local nodes, 2 remote nodes 23 m 08.7 s 292,780

7 SQL Server Stored Procedure n/a 0 m 09.0 s 292,780
Table 3 Query 1 benchmark results

We ran Query 1 using a mix of topologies: some with remote nodes, some without, to compare the

performance as we modify the topology of the cluster.

INFOH415 – In-Memory databases with Apache Ignite

31

Figure 28 Query 1 benchmark results (chart)

1 Local node vs Stored Procedure comparison

As we can see, the best performance is seen on the SQL Server stored procedure, which ran for 9

seconds versus Ignite’s one-node execution (50.4 seconds) – see results {1, 7} in Table 3. We believe

it is due to the following reasons:

• The stored procedure was using an INSERT INTO SELECT query which just copies data from

one table to another with a simple computation inside (multiplication). On the other hand,

the Ignite implementation requires the use of cursors and looping over all results individually,

doing the calculation, and writing the result back.

• Second, the stored procedure is executing on the same database server as the data. On the

other hand, although the Ignite implementation is ran on the same machine as the SQL Server

database, we believe that the overhead in loading the data into Ignite’s in-memory data

structure is a contributing factor to its slower performance.

• Third, SQL Server caches the query plan the first time a query is executed. On the other hand,

ad-hoc queries can also be cached but may be evicted due to memory usage [6]. The

procedure was not defined with the WITH RECOMPILE option, which means that the stored

procedure’s query plan was cached. [7]

• Fourth, using Ignite involves overhead that do not apply to the stored procedure. For example,

data in Ignite caches all need to be SERIALIZABLE for transmission between nodes. This

marshalling-unmarshalling of data is just one of the overhead operations that do not apply to

the stored procedure implementation.

• Fifth, Microsoft SQL Server is a commercial database product in existence since 1989. Over

the decades it has been optimized to perform well in scenarios like this. In contrast, Apache

Ignite was launched in 2015 and could probably still be optimized to perform better.

INFOH415 – In-Memory databases with Apache Ignite

32

Local node only comparisons

Inspecting the results among the local Apache Ignite executions (see results {1, 2, 3, 4} in Table 3), we

can observe that the execution time rises proportionally with the number of nodes in the cluster. We

believe this is due to the following reason:

• The implementation of the domain objects is not collocated. We tried to implement affinity

keys but it requires an object key, whereas the generated key from Web Console is a simple

Integer, which does not satisfy the requirement for defining affinity keys. [8] This means that

any join performed requires multiple broadcast messages to retrieve the missing data, as

described in section 2.3 under Distributed Joins.

Local node and remote node comparisons

Lastly, inspecting the results between local nodes and remote nodes (see results {3, 4, 5, 6} in Table

3), we can see that adding a remote node increases the run time. We believe it is due to the following

reasons:

• Similar to the previous analysis, the main culprit is non-collocated joins.

• The first reason is worsened by the fact that the broadcast and data transfers are happening

over a network.

• The network over which the cluster nodes were connected is a Wi-Fi network. It is known that

Wi-Fi networks have higher latency and interference versus wired Ethernet. [9] We would be

interested to retest the benchmark over a wired network.

7.2 Query 2 result
The benchmark result of Query 2 is summarized in the table below.

ID Ran on Topology Time Total rows selected

1 Ignite cluster 3 local nodes 0m 05.9 s Inner join of 3 tables with
(1120000 x 1208713 x 408193)

rows

2 SQL Server Query n/a 0 m 02.3 s Inner join of 3 tables with
(1120000 x 1208713 x 408193)

rows
Table 4 Query 2 benchmark results

Here we find a similar scenario than in Query 1 wherein SQL Server is still faster than Apache Ignite.

This is due to the same results as in Query 1, namely: affinity keys are not defined; non-collocation of

query joins; serialized data for inter-node transmission.

INFOH415 – In-Memory databases with Apache Ignite

33

7.3 Query 3 result
The benchmark result of Query 3 is summarized in the table below.

ID Ran on Topology Time Total rows updated

1 Ignite cluster 2 local nodes 9 m 45.0 s 3,120,000

2 SQL n/a 0 m 25.4 s 3,120,000
Table 5 Query 3 benchmark results

Query 3 is a single table operation that updates a single column. We expect that the Ignite update

operation will take more time because it needs to update the cache in addition to the database

update. However, at almost 10 minutes in Ignite vs. 25 seconds in SQL Server, the time difference is

significant. We were not expecting the time difference to be this severe because the Ignite nodes were

in a local cluster, and there is no table join in this query. Because it is difficult to interpret these results,

we will need to run more tests to see if this behavior is consistent.

7.4 Additional: Ignite cache loading
As a side note we are listing some run times for loading the entire database into memory. Please refer

to Table 1 in section 0 for the amount of records in the database.

ID Ran on Topology Time

1 Ignite cluster 1 local node 3 m 04.0 s

2 Ignite cluster 2 local nodes 5 m 47.0 s

3 Ignite cluster 3 local nodes 9 m 03.0 s

4 Ignite cluster 4 local nodes 12 m 10.0 s

5 Ignite cluster 3 local nodes, 1 remote node 10 m 54.0 s
Table 6 Ignite cache loading time

Figure 29 Ignite cache loading (chart)

We definitely see a correlation between the number of nodes and the time it takes to load the cache.

We can observe this in runs {1, 2, 3, 4}. We can attribute this to load balancing of partitions/shards

across nodes in the cluster.

INFOH415 – In-Memory databases with Apache Ignite

34

However, the load time of {5}, where the topology includes 1 remote node, is not as severe as what

we saw in the benchmark results of Query 1 in section 7.1. We cannot draw a conclusion from this

behavior as yet; we will need to execute more tests to verify whether this is an intermittent

occurrence.

8 Development experience
As with any technology, the development experience is also an important consideration in a decision

to adopt any library. One should choose a library that not only satisfies your technical requirement,

but also aligns with other factors such as maintenance activity, ease-of-use, availability of developer

skills, etc. In this section we briefly go through these factors and give a rating in this aspect of

technology selection.

8.1 Open source vs closed source
In choosing a technology we must consider the how our dependency on the library will play out over

the long term. In closed-source projects one has to pay licensing fees, and there is a risk that the

company will end development and/or support to the product, which could be troublesome as it could

necessitate significant development work to eliminate the dependency when those events happen.

Therefore it is often a good idea to use open source libraries.

As mentioned in section 2, Ignite became an official Apache open source project since 2015. The latest

version (2.3.0) was released in 31 October 2017, one and a half months after the previous release

(2.2.0 in mid-September). Below is a summary of the last ten Ignite releases and their rc1 release dates

[10].

Version Release Date

2.3.0 (rc1) 2017 Oct 27

2.2.0 (rc1) 2017 Sep 11

2.1.0 (rc1) 2017 Jul 13

2.0.0 (rc1) 2017 Apr 28

1.9.0 (rc1) 2017 Feb 28

1.8.0 (rc1) 2016 Dec 1

1.7.0 (rc1) 2016 Aug 1

1.6.0 (rc1) 2016 May 18

1.5.0 (rc1) 2015 Dec 1

1.4.0 (rc1) 2015 Sep 24
Table 7 Apache Ignite release dates

As can be seen here, Apache Ignite releases a new version approximately every 2-3 months. This

frequency is at par with other “hot” libraries of today such as Apache Spark, or other popular in-

memory databases like Memcached [11] or Redis [12].

As a side note, GridGain Systems, Ignite’s original developer, operates a business around Apache Ignite

in two ways: selling enterprise-grade features or through support contracts. Below is a screenshot of

GridGain’s pricing model [13].

INFOH415 – In-Memory databases with Apache Ignite

35

Figure 30 GridGain Pricing

8.2 Developer community
In choosing a library or a technology it is important to also assess the activeness of the developer

community in implementing new features, upgrades or fixing issues. This can be measured through a

few metrics such as the number of commits, size and demographics of the community, etc. [14]

The following figures show the available data on the Apache Ignite GitHub repository in

https://github.com/apache/ignite.

Figure 31 GitHub Pulse Report on the Apache Ignite repository [15]

https://github.com/apache/ignite

INFOH415 – In-Memory databases with Apache Ignite

36

Figure 32 Contributions to master since Ignite open-sourcing in 2014 [16]

Figure 33 Commit frequency, year-to-date [17]

Figure 34 Most active contributors [16]

8.3 Developer support
Over the course of the development of our POC we had many questions that is not directly addressed

in the documentation. In times like these it is crucial to have a network of other developers who can

INFOH415 – In-Memory databases with Apache Ignite

37

respond to your questions, especially when working with a library that one has no prior experience in.

For this we turn to the popular Q&A site StackOverflow. Depending on the question we usually receive

a response within a few days. (Fun fact: the most frequent responder to our questions is a Lead

Architect from GridGain systems)

There are 6,001 questions relating to “ignite” in StackOverflow, which is less than a similar search for

other in-memory libraries such as Redis (47,128) or Memcached (24,073).

Figure 35 Searching for "ignite" in StackOverflow

GridGain Systems also hosts frequent webinars on Apache Ignite that are both technical and non-

technical on a range of topics, such as Ignite essentials, architecture, and specific use cases of in-

memory computing platforms. We found these webinars to be very useful and provide a chance to

ask Ignite questions to senior architects from GridGain. [18]

8.4 Documentation
The Apache Ignite documentation [1] is comprehensive and easy-to-read once you understand the

basic concepts behind distributed data storage. Any configuration is explained with an accompanying

code snippet in both Java and Spring XML. Additionally, the GitHub repository provides an ignite-

examples subproject which one can use as reference for complete code examples.

8.5 Tooling
As shown in section 5.3, the Web Console is a very useful tool in understanding the configuration

options behind an Ignite cluster and its caches. The live preview of form changes is particularly useful

INFOH415 – In-Memory databases with Apache Ignite

38

if one already has an existing project but would like to configure a specific feature without

regenerating the configuration files.

Additionally, the Queries section also works very well for ad-hoc querying of cache data. It provides

the ability to query the entire cluster, or specific nodes, and supports both collocated and non-

collocated joins.

Figure 36 Web Console Queries page

Apache Ignite also comes with a simple command-line tool called Ignite Visor which lets you do simple

monitoring on the cluster, such as printing the cluster topology, node statistics, CPU and memory

allocation, size of the caches; it also provides the ability to start or kill remote nodes.

We also tested using Ignite’s JDBC driver for querying cache contents. DBeaver is a universal SQL client

that connects to the caches through Ignite’s JDBC Driver. Results were spotty… sometimes it does not

work (we get a parsing error on the SQL statement). Moreover, browsing the database from the

Database Navigator is currently not yet supported.

Figure 37 Querying the Ignite cache from DBeaver

INFOH415 – In-Memory databases with Apache Ignite

39

As for the coding experience, writing lambda expressions for iterating over ScanQuery results has

been challenging because errors only show up during runtime, not in compile time. However, this may

be attributed to the developers’ relative inexperience with Java 8 lambda expressions in general.

9 Apache Ignite vs. other in-memory distributed databases
How does Apache Ignite stack up against other similar in-memory distributed databases? GridGain

Systems has a few studies on this topic, as well as benchmark results, which are summarized in the

sections below.

9.1 Feature comparisons
From GridGain’s product comparison page [19] we selected a few key features which are summarized

in the table below.

Apache
Ignite

(GridGain)
Hazelcast

Oracle
Coherence

Pivotal
GemFire

GigaSpaces

SQL Queries

Continuous Queries

Distributed SQL Joins

Query Consistency

Query Fault Tolerance

JDBC Driver

ODBC Driver

Data Streamer

Table 8 Product Comparison - Apache Ignite vs other in-memory distributed databases

As we can see from the above table, some core Ignite features is not even implemented in other in-

memory databases. We believe this makes Apache Ignite a strong candidate to be used as a general

purpose in-memory database.

9.2 Performance comparisons
The only available benchmark results on the GridGain website is against Hazelcast.

Figure 38 GridGain vs Hazelcast Performance Summary

INFOH415 – In-Memory databases with Apache Ignite

40

As can be seen in the figure above, GridGain asserts better performance over Hazelcast. For more

information please refer to the GridGain vs Hazelcast benchmark page [20].

10 Conclusion
Based on this study we have the following conclusions.

First, the benchmark results for Query 1 showed that SQL stored procedures still have an edge over

in-memory databases for this specific use case. However, we need to evaluate those results with a

grain of salt, because the implementation in this study does not use affinity collocation (see section

7.1). Other observations stem from the benchmark results in adding local nodes and remote nodes.

We can see that execution times are slower when more nodes are added, and significantly slower

when remote nodes are added. Local-only clusters perform faster than clusters with remote nodes.

This is due to several factors, as laid out in section 7. Given the hype around distributed processing in

recent years, we should not always assume that it is a one-size-fits-all solution that works well in any

use case. We think it is important to conduct a POC like this study to prototype key operations and

check actual results before making a decision to adopt a technology.

Additionally, in-memory distributed storage requires configuration that may add complexity to an

application. Each decision in the cluster and cache configuration needs to be assessed, because the

optimal configuration or topology may vary depending on the size and read/write frequency of the

data, as well as on compute job to be executed. Some jobs may require fast reads, and so a

REPLICATED cache mode may be best; on the other hand, other jobs may require fast updates, where

the PARTITIONED cache mode performs well. This needs to be balanced with the actual hardware

resources available on the cluster. Apache Ignite provides sophisticated configuration options to fine-

tune these settings but the design of the clusters and the caches need to be analyzed carefully to

arrive at the optimal configuration that balances performance and cost.

We like that Apache Ignite is an open source library that is also backed by a company who can provide

enterprise-grade features and support. In developing the prototype we appreciate the resources and

documentation found online. However, this information is mostly concentrated in one or two sites or

message boards, unlike more popular libraries where there are numerous blogs discussing the

technology. Some GridGain engineers are actively responding to StackOverflow questions, however

we wish that Apache Ignite would gain a larger following to increase the pool of developer support.

INFOH415 – In-Memory databases with Apache Ignite

41

11 Bibliography

[1] "What is Ignite? In-Memory Computing Platform," [Online]. Available:

https://apacheignite.readme.io/docs/.

[2] "Addons and Related Solutions for Apache Ignite," [Online]. Available:

https://ignite.apache.org/addons.html.

[3] "Apache Ignite Web Console - Getting Started," [Online]. Available: https://apacheignite-

tools.readme.io/docs/getting-started.

[4] "Apache Ignite difference between ignite.getOrCreateCache() vs ignite.cache()," [Online].

Available: https://stackoverflow.com/questions/47740611/apache-ignite-difference-between-

ignite-getorcreatecache-vs-ignite-cache.

[5] "Apache Ignite Code Examples," [Online]. Available:

https://github.com/apache/ignite/tree/master/examples.

[6] "Does SQL server optimize or pre-parse stored procedures?," [Online]. Available:

https://dba.stackexchange.com/questions/6534/does-sql-server-optimize-or-pre-parse-

stored-procedures.

[7] "Improving query performance with OPTION (RECOMPILE), Constant Folding and avoiding

Parameter Sniffing issues," [Online]. Available:

https://blogs.msdn.microsoft.com/robinlester/2016/08/10/improving-query-performance-

with-option-recompile-constant-folding-and-avoiding-parameter-sniffing-issues/.

[8] "Ignite @AffinityKeyMapped for cache keys that are integers," [Online]. Available:

https://stackoverflow.com/questions/47839555/ignite-affinitykeymapped-for-cache-keys-

that-are-integers.

[9] "Wi-Fi vs Ethernet: Which Internet Connection Is Better And Why?," [Online]. Available:

https://fossbytes.com/wi-fi-vs-ethernet-comparison-features/.

[10] "Apache Ignite Releases," [Online]. Available: https://github.com/apache/ignite/releases.

[11] "Memcached releases," [Online]. Available:

https://github.com/memcached/memcached/releases.

[12] "Redis releases," [Online]. Available: https://github.com/antirez/redis/releases.

[13] "The GridGain Enterprise Edition," [Online]. Available:

https://www.gridgain.com/products/software/enterprise-edition.

INFOH415 – In-Memory databases with Apache Ignite

42

[14] "Top 5 open source community metrics to track," [Online]. Available:

https://opensource.com/business/15/12/top-5-open-source-community-metrics-track.

[15] "Apache Ignite Pulse Report," [Online]. Available:

https://github.com/apache/ignite/pulse/monthly.

[16] "Apache Ignite - Contributions to master, excluding merge commits," [Online]. Available:

https://github.com/apache/ignite/graphs/contributors.

[17] "Apache Ignite Commit Activity," [Online]. Available:

https://github.com/apache/ignite/graphs/commit-activity.

[18] "Learn About In-Memory Computing," [Online]. Available:

https://www.gridgain.com/resources/webinars.

[19] "Compare GridGain and Apache® Ignite™ to Other In-Memory Computing Solutions," [Online].

Available: https://www.gridgain.com/resources/product-comparisons.

[20] "GridGain vs. Hazelcast® Benchmarks," [Online]. Available:

https://www.gridgain.com/resources/benchmarks/gridgain-vs-hazelcast-benchmarks.

