
Column Stores and HBase

Rui LIU, Maksim Hrytsenia

December 2017

Contents

1 Hadoop 2
1.1 Creation . 2

2 HBase 3
2.1 Column Store Database . 3
2.2 HBase Architecture . 5
2.3 Basic Commands for HBase . 5
2.4 Features . 6

3 Project Introduction 7
3.1 OS choice . 7
3.2 DataSet . 7
3.3 MySQL and Sqoop . 9

4 Application 11
4.1 Project Set Up . 11
4.2 Basic projects and commands using Java API 12
4.3 Data Loading . 13
4.4 HBase benchmark comparison . 16

5 Conclusion 17

1

Chapter 1

Hadoop

1.1 Creation

Nowadays many companies and people from IT are interested in Hadoop because
it allows to process big amounts of data. The Hadoop was introduced in 2006,
however, the idea of the Hadoop itself was presented to the public in 2003 by
company Google [6]. Following that, additional papers that reveal more concrete
topics were published [3] and [2]. Almost all of the solutions provided in the
paper were directed on handling processing of huge amount of data. Combined
this techniques provide the following advantages:

1. Scalability

2. High computing power

3. Fault tolerance

4. Storage and processing speed

5. Lowcost

6. Flexibility

2

Chapter 2

HBase

HBase is the Hadoop database, a distributed, scalable, big data store. It pro-
vides random, realtime read/write access to the big table. HBase is modeled
after Google’s Bigtable: A Distributed Storage System for Structured Data. It
is built on the top of HDFS and aims at hosting very large tables.

2.1 Column Store Database

For traditional row-oriented database, the data will be store row by row. Figure
2.1 shows the physical layout for row-oriented database. Data is stored by rows
in the database system.

On the contrary to row-oriented database, column-oriented database divides
the tables by columns. Figure 2.2 shows the physical layout of the row-oriented
database. Usually, in the database, many of the data are irrelevant to the query.
Column store database can solve this problem. Each time when we need to find
out a certain value, we just need to go through a certain column, it could avoid
the waste of searching for useless columns.

Column store database has four basic elements: Column Family, Column,
Row Key, Timestamp.

1. Column Family: Column family is a collection of columns. Physically,

Figure 2.1: Row-oriented database[5]

3

Figure 2.2: Column-oriented database[5]

columns which belong to one family will store together on the file system.
So if the columns have the similar access pattern, it’s advised to have
these columns to be in the same column family. HBase suggests to have
no more than three column families in the database sever. What’ more,
HBase suggests to have same cardinality of the rows in different column
families. HBase will split the data rows and store them into different
region servers. For instance column family A only has a few rows, but
the second column family B has huge amount of the rows. The data will
still be split based on number of rows of column family B. It will lead to
inefficiency of scanning the the column family A.

2. Column: The data in the column-oriented database is divided by columns
and store on the file system. Columns in HBase do not have specific data
type. Also there is no constraint between each column. This feature
provides the efficiency and flexibility of writing data and adding columns
into HBase. Unlike row-oriented database, when a query is going to look
for a certain value, the database system will just direct to the columns
and go through the relevant columns. There will not have join operations
in column store database. This feature makes reading faster in big tables.

3. Row Key: Row key is a column of the data which is used to connect sev-
eral column families and columns. With row key and timestamp together,
the database system can locate the certain row which is relevent to the
query.

4. Time Stamp: Every time when a new value is inserted into the table, the
value will get a time stamp automatically. Timestamp shows the version
of the one cell. From HBase version 0.96, the default number of version is
set to 1. If we are going to use different versions of the data, we need to
set the max number of the versions manually for each column family.

4

2.2 HBase Architecture

Figure 2.3 shows the architecture of HBase. It has master server and several
region servers. Usually we can use provides Java API to access the data. HBase
is built on the top of the HDFS and take the help from ZooKeeper to manage
master server and region servers.

Figure 2.3: HBase Architecture[5]

1. Master Server: The master server from HBase is responsible for man-
aging metadata, for instance taking care of the creation of tables, columns
and column families. Master server is also in charge of loading balanced
regions across region servers. It will unload the busy servers and move
regions to less-occupied servers.

2. Region Server: The data stored in HBase will be split to different re-
gions. Regions are nothing but sub-tables which are divided based on the
user defined column. Clients contact region servers directly for read and
write operations.

3. HDFS: HBase is built on the top of HDFS. HDFS is a distributed, highly
tolerant file system. HBase does not need to do operations to make relia-
bility of the data. It will all be handled by HDFS.

4. ZooKeeper: ZooKeeper is a coordination service from Hadoop. It will
help master server to assign regions to region servers.

2.3 Basic Commands for HBase

This chapter will introduce how to use HBase shell to do basic access to data.

5

1. Start HBase

$ cd /usr/local/HBase
$ bin/start-hbase.sh

2. Start the master server

$./bin/local-master-backup.sh start 2

’2’ indicates the number of servers we would like to start.

3. Start the region server

$./bin/./local-regionservers.sh start 3

’3’ indicates the number of region servers we would like to start.

4. Create table

$ create ’table’,’column family 1’,’column family 2’

In the creation operation, we need to define the name and column family
of the table. Columns’ names are not needed to define here.

5. Read data

$ get ’table’, ’row key’, {COLUMN = ’column family: column’}

Get will return the value of columns from certain row.

$ scan ‘table’, {COLUMN = ’column family’: column}

Scan will return the value of column from a range of the rows.

6. Set versions

$ alter ’table’, NAME = ’column family’, VERSIONS = 3

Default number of version is set to 0 at HBase, so we need to manually
change the number of versions.

2.4 Features

HBase is modeled after the Google’s Bigtable design. It is scalable of storing
big table. With the help of MapReduce, HBase can aggregate the data and
return a small portion of results to client. It can reduce data transferred over
the network. HBase is also highly fault tolerant. HDFS creates replicas and
clients do not need to be suffered from the failure of nodes. HBase internally
uses harsh table to store the data on file system, so it can provide random access
to data.

6

Chapter 3

Project Introduction

3.1 OS choice

After completing the project requirements we started to search for an appropri-
ate tool how to start to work with the database as quick as possible. First of all,
we did want to consider an option of Ubuntu or another Linux distributive with-
out installed Hadoop dependencies from box. The reason is that installation of
Hadoop requires a huge number of libraries and it would take a long time to set
everything up, so we chose Cloudera CDH. It is an open-source solution that
allows to use many Apache licenced products and instruments such as Hadoop
Core, Sqoop, Hive, Spark and etc.

3.2 DataSet

After analysing the information about HBase we understood that we need a huge
dataset to measure our performance due to the fact that HBase is extremely
good in processing big tables. Looking at Facebook example we understood that
the dataset with many users and some information related to them would be a
perfect finding for us. Luckily, we found a MovieLens dataset [1] that contains
more than 20 millions of user ratings that was enough to show the best features
of HBase. Besides ratings we chose to use files tags and movies as well.At the
same time, some data preprocessing was required. For example, movie structure
looked at the beginning as on the Figure 3.1. It is easy to see that genres does
not look like appropriately for selection. Knowing the fact that HBase supports
many versions we decided to get all the genres from that column.

7

Figure 3.1: Movie example

Finally, we created four tables in MySql at first. The schema of the tables
are as belowing:

1. Movies

Figure 3.2: Movies

2. Genres

Figure 3.3: Genres

3. Ratings

8

Figure 3.4: Ratings

4. Tags

Figure 3.5: Tags

At the same time, for processing the data in HBase it is required to merge
tables before. As would be described later, we tried to use Sqoop to join our
data on fly and put it to the table directly, but unfortunately, due to the lack of
documentations, we could not fix it. So we decided to load the data to MySql,
join it there and then move it to HBase. For better processing, we split the title
and year from column title as well .

3.3 MySQL and Sqoop

First we did an experiment using Sqoop. We tried to join two tables at first and
load it into HBase. Following is the command we have used:

sqoop import –connect jdbc:mysql://localhost:3306/movielens –username
root –password cloudera –query ’SELECT genres.id, genres.movieid,
genres.genreid, movies.name, movies.year FROM genres, movies WHERE
genres.movieid = movies.movieid AND $CONDITIONS’ –hbase-create-
table –hbase-table genres movies –column-family c1 –split-by movie.id

But we met error when loading data:

9

Figure 3.6: Join results

Could not insert row with null value for row-key column: movie.id

Movie.id is the primary key of Movies table, there is no NULL value in the
database. We did research on it and tried many solutions but still can not
figure out the reason. Finally we gave up this method and join all the tables at
MySql at first. Figure 3.6 is the schema of the final table we gained.

10

Chapter 4

Application

4.1 Project Set Up

For setting up a project we used an Eclipse IDE with Java 1.7 that is installed on
the Cloudera CDH by default. For running the commands for HBase a number
of different packages should be used. There are two different ways how we
can include the packages. First one - using Java Build Path and add additional
libraries. Unfortunately, this method does not work when the application should
be run in the HDFS. For example, our team used this method at the beginning,
but when we put it into the HDFS we started to face the problem with the
dependencies. After careful search how to overcome the problem, we found
a solution using Maven. Maven is a project management tool that allows to
specify dependencies and run the project, Maven can find a library in the local
repository or download it from a remote server if the library is not presented on
the local computer. After adding Maven to our project we need to specify so
called artefacts - dependencies that are required for the project. For instance,
our second small project for Bulk Loading uses 7 different artefacts for handling
Hadoop, HBase and tracking a logging. All the artefacts can be seen on Figure
4.1.

11

Figure 4.1: Project dependencies

After maven is added if project needs to be run in the HDFS than we need
to export jar file that includes all the dependencies and put this file into HDFS
and run it.

4.2 Basic projects and commands using Java API

In this section we would like to share some of the basic knowledge how to
write operations to the HBase. We would like to cover a couple of CRUD
operations as well as such examples as Database Creation, Delete and some
other advanced techniques. We would like to start from the HBase table creation
that meets us with basic imports and commands that are required for HBase
administration. This project uses the same Maven dependencies as were shown
in Section Project Set Up. On the Figure 4.2 we can see the minimum required
listing to create the table and write a new column family into it.

Figure 4.2: Basic application that creates a table

We would like to describe some operators that are used in the code because
they are used in almost every nowadays HBase Java project. First of all, Config-
uration and Connection are required for setting up a flexible connection. Type
of the connection can be changed in the configuration file(for archiving this flex-
ibility Factory design pattern is used [4]). Following that we create an instance

12

admin, that is required for storing a new table in the database. Following that,
we create a table and a column family in memory, add the column to the table
and call a method createTable from admin. The similar consequence without
table creation is done if we want to delete the table. In this case the operator
deleteTable is used. The method that deletes the table is presented on Figure
4.3.

Figure 4.3: Method to delete the table

4.3 Data Loading

At first, we copied the data with movies in our Cloudera to the HDFS directory.
We achieved it by the command listed on Figure 4.4.

Figure 4.4: Command to load the data into HDFS

Then the table movie is created. Table consists of 4 column families: movieInfo,
movieGenre, tag and rating. We diveded column based on their data source(each
column family is loaded from the different file) as well as distribution of values
that would be assigned to one key. movieInfo consists of 2 fields name and year,
this information never changes so number of movieInfo Verstion is set to 1.
At the same time, one movie can have many genres so movieGenre Version
is set to 1. Of course, users can submit a thousand of ratings and tags so we set
up the Version number of this column families to quite high value: 10000 and
500 accordingly. Please refer to Figure 4.5 for looking into the table details.
For creating the table the method that is showed on Figure 4.6 was created.
There we specify all the column families, add them to the table and create it.

13

Figure 4.5: HBase table Column Families

Figure 4.6: Method to create movies

For data loading the BulkLoad method was used with a configuration that is
showed on Figures 4.7 and 4.8. Please notice that we specify a timestamp, it is
done because during the bulk load data is written at the same time and versions
mechanism in HBase is done on the base of different writing times. So in order
to manage the system correctly, we need to set this parameter up explicitly.

Figure 4.7: Parameters set up

14

Figure 4.8: HBase write configuration

After all the data was uploaded we made a comparison of time that each
write batch operation took in order to finish it writing. Results can be seen on
Figure 4.9. The time and size dependency should be linear but because of that
Rating was written first and Tag contains many tags for the same movie, it is
not.

Figure 4.9: Insert operations compartion

If we need to select some data we can use Java API, for example, the following
mapReduce method selects movie by movie name.

Figure 4.10: Map Reduce Query

15

4.4 HBase benchmark comparison

For making a comparison between HBase and different databases we used a
data from the paper Comparison of database and workload types per-
formance in Cloud environments [7]. This paper compare the performance
of basic operations: Read, Update Delete in HBase, Cassandra and MongoDb.
The paper provide sufficient comparison of this databases in cloud. For example,
it suggests that Hbase is the better option if database performs a big number
of updates(Figure 4.11).

Figure 4.11: Databases write comparison

At the same time, if number of updates is small, performance is almost the
same(Figure 4.12). Please use the paper for getting more precised information.

Figure 4.12: Database Read Comparison

16

Chapter 5

Conclusion

In this project we tried to learn new technologies that are widely used in the
nowadays world. We learnt the following tools and technologies while prepare
for the project:

1. Hadoop Core

2. HDFS

3. HBase

4. MapReduce

5. Maven

6. Sqoop

7. MySql

As well we measured a speed of huge data inserting into the database and created
basics map-Reduce queries to get the data from the database. We also ran a
couple of

17

Bibliography

[1] Movielens dataset. https://grouplens.org/datasets/movielens/.

[2] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, Fikes. A, and Gruber. R. Bigtable: A Distributed Storage
System for Structured Data. Google, Inc, 2006.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Google, Inc, 2004.

[4] Erich Gamma. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional, 1994.

[5] Lars George. HBase: The Definitive Guide, Random Access to Your Planet-
Size Data. O’Reilly Media, 2001.

[6] S. Ghemawat, Gobioff H., and Shun-Tak Leung. The Google File System.
Google, 2003.

[7] G. Seriatos, G. Kousiouris, A. Menychtas, Kyriazis D., and Varvarigou T.
Comparison of database and workload types performance in Cloud environ-
ments. Sprinter, 2015.

18

