Real-Time database : Firebase
INFO-H-415 : Advanced database

Baudoux Nicolas et Bauwin Lucie

Univeristé Libre de Bruxelles
nbaudoux@ulb.ac.be, lbauwin@ulb.ac.be

Academic year 2017-2018

Abstract

This report will present our project concerning the model of real-
time database systems (RTDBS). We will define the concept of real-time
database, their features and their specificities. Then we will present some
existing softwares to manage a RTDBS and give examples of applications
of such systems. Finally, we will develop a Firebase real-time database
for one of these examples and explain its functionalities.

1 Introduction

A classic database is a collection of information organized and which can be
easily accessed, managed and updated. Generally, data are organized in tables.
This is not always the case as we will see in our example of real-time database
system. This kind of databases without predefined tables is called schema-free.
A database can be of different types. The most common are SQL, NoSQL and
cloud databases.

A real-time database system is a classic database system which is providing
real-time constraints and ensure reliability on system’s timing requirements.
Timing constraints are not required to be extremely short but the database need
to manage explicit time constraints in a predictable way using time-cognizant
methods. This kind of database combines multiple features facilitating :

— Description of data;

— Maintenance of correctness and integrity of data;

— Efficient acces to the data;

— Correct execution of query and transaction execution in spite of concur-

rency and failures.

We will define in a more formal way these notions and explain differences
between traditional database and real-time database.

2 Definitions

2.1 Real-time processing

Real-time processing or computing is a system which is subject to "real-time
constraints”. It means that this system is able to ”control an environment by
receiving data, processing them, and returning the results sufficiently quickly to
affect the environment at that time” [I].

2.2 Real-time database

Intuitively, a real-time database may be seen as a classic database which
is able to handle workloads whose states are permanently changing by using
real-time processing.

If we cross the definition of real-time processing and the intuition presented
above, we may re-write a more formal definition of real-time database : A Real-
Time database is a database which follows a number of time constraints. Those
are the temporal characteristics of the data stored in the database, the timing of
the queries and the performance goals.

The real-time database mostly differs from a traditional database by its per-
formance goals, time constraints which are in microseconds or even in nanosec-
onds and by its ability to evaluate the average of the missed transactions and
the cost incurred in these missed transactions.

Furthermore, like conventional databases, real-time databases have to re-
spect ACID properties which are :

— Atomicity : In the end, a transaction is never half-completed. It is
completely done or not.

— Consistency : Transactions are run in a given specific order.

— Isolation : Transactions cannot see actions of another transaction while
it is not yet commited.

— Durability : Once commited, a transaction cannot be modified.

3 Why real-time database ?

Real-time database are adequate when we try to have a good picture of the
current state of an environment. It uses time constraints that are not sup-
ported in conventional databases. Unlike the conventional database, a RTDBS
uses deadlines to determine the accuracy of the measured value. Traditional
databases have poor responsiveness and a lack of predictability which are main
features of a RTDBS. Finally, a data never becomes obsolete in a traditional
database which is not the case in a real-time database system (static data vs.
real-time data).

4 Is a RTDBS a temporal database ?

No. Even if the two systems support time-specific transactions, temporal
databases associate to data a span of validity and real-time databases have a
defined span of time in which a transaction has to be executed.

5 Model

A real-time database is composed of two main parts :

— Controlling system : Meeting point between the computer and its soft-
ware.
and

— Controlled system : System which is perceiving the state of the environ-
ment observed and saved in the database.

A high degree of accuracy must be maintained between the actual state of the
environment and the state of the environment in the database. Therefore the
environment’s monitoring at fixed interval is essential.

5.1 Data consistency

To the timing constraints one must add the timing correctness requirements
to respond to the need to make data available for the controlling system and
its decision making activities. This leads to the notion of temporal consistency
which has two constituents:

— Absolute consistency: data is only valid during a determined period of
time. This helps to keep the database corresponding with the actual
state of the environment.

— Relative consistency: it is required that data represents the state of the
environment during a time interval so the delay to update the different
data in the tables is not taken into account. The goal is to derive new
data from existing information.

An item is temporally consistent if and only if it is absolutely and relatively

consistent.

5.1.1 Example

Assume we want to know the electric efficiency of a train, we will need at
least two tables:

— Electric consumption

— Covered distance

The train consumption is registered at time 100msec and has consumed 0.6W
and the distance it traveled is 10meters. and is registered at time 110msec.
Both information have an absolute consistency of 20msec.

detec(0.6W, 20msec, 100msec)

dgistance(10m, 20msec, 110msec)

With those data, we can observe that the two datas are contemporary for an
interval of 10msec.

5.2

Transaction in real-time database system

A transaction can be informally defined as an operation where :

the set of operation is read, write and abort/commit;

if an abort is executed a non-commiting operation is launched

if an operation ¢ performs an abort or commit then all other operations
have priority on operation ¢ as defined in the ordering relation.

if operations read and write are launched on the same data at the same
time then the ordering relation defines the priority.

Transactions can be identified with three dimensions :

The way transactions use the data
The nature of time constraints
The importance of processing a transaction before a given deadline

A RTDBS transaction has a specific set of attributes:

5.2.1

Timing constraints: a series of constraints applied to the different tables
of a database. It may be period, frequency, maximum delay between end
points, or maximum net delay.

Criticalness: determine how critical it is that a transaction is executed in
time. In other words, criticalness defines how important the transaction
is and the effect it may have if it misses its deadline.

Ressource requirements: represents the required CPU time and the amount
of I/0O operations needed to execute the transaction.

Expected execution time: measures with the worst case scenario but
usually hard to define.

Periodicity: only valid when a transaction is repeated periodically.
Time of occurence of events: determines the time a transaction launch a
request.

Other semantics.

Timing constraints

A timing constraint can be :

Hard : Transaction has to be completed before the deadline. This means
that "the best effort” is not enough. The transaction has to be periodic.
The resources requirements and the worst-case execution time must be
known;

Firm : If the transaction is not completed before the deadline, then it’s
aborted;

Soft : The importance of the information is decreased if it’s completed
after the deadline. But the transaction is anyway continued until it is
completely done.

Value « Soft Real-time Transactions

Function .
Time deadline
[
Value | Firm Real-time Transactions
Function
-
Time deadling
-
Value | Hard Real-time Transactions
Function
Time deadline

Figure 1: Deadlines represented with value functions

A timing constraints can be specified by an Event-Condition-Action rule :

ON (event)
IF (condition)
DO (action)

There are three types of transaction read-only (read and transmit the data
from the database to the controlling system), write-only (obtain the state of
the environment from the controlled system and report it to the database) and
updates (derive a new data item and report it to the database).

Now that these notions are well defined, we can say that a transaction is
specified by:
— its implication of missing deadline, which can be hard, critical or soft;
— its arrival pattern which can be periodic or not;
— its data access pattern which can be read-only, write-only, update or
random.
— its runtime requirement which can be known or unknown

6 Processing

When using a real-time database, one of the main issue is predictability. We
need to be able to predict if a transaction will respect its deadline or not, thus

the only way to make sure of it, would be to know the worst-case execution
time. However there are many sources of unpredictability present:

— dependence of the transaction’s execution sequence

— data and resource conflicts

— dynamic paging and I/0

— transactions abort and the resulting rollbacks and restarts

— communication delays and site failures
which sometimes make it impossible to predict the worst-case scenario.

Yet we can appease the effect of those unpredictibility sources. We can use
a main memory database and give priority to the I/O controllers to solve the
problem linked to dynamic paging and I/O. We can also allow a transaction to
write-only in its memory area before writing the transaction’s changes to the
database which could cause a rollback to occur.

The queuing of the transactions are based on their criticalness and priority.

6.1 Priority

We can approach priority with different methods :
— EDF (Earliest Deadline First) : This algorithm consists in a priority
queue where the next task to accomplish is chosen based on the closest
deadline. The algorithm updates the task to handle every time a new
task is added to the priority queue;

— Highest value first : The task defined as the most important has the
priority on the other tasks;

— Highest computation time first : The task which is estimated to take
more time to execute than the others is executed first;

— complex function of deadline, value.

Those different methods will have a different impact on the database system
performance.

6.2 Execution time

To compute the execution time of a transaction, we can use the following
formula :

tezee = tap + tI/O + tine + tappl + tecomm

where :

tap is the processing of DB operations
tr/o is the I/O processing

tint 1S the transaction interference

tappt is the non-DB application processing
teomm 1S the communication time

7 Comparing differents softwares

There are many softwares which can be used to manage a real-time database.
We chose to get a closer look at four of them, CouchDB, MariaDB, RethinkDB
and Firebase.

CouchDB is a document storage open-source database system using JSON
standard file format developped by Apache software foundation and written in
Erlang. It provides an intuitive API which is restfull HT'TP to read and write
database document. The documents are stored using B—’I‘reesﬂ and hashed
according to the files’ name. It allows to reliably store data from different places
in sync over unreliable network. A transaction is either totally completed or
completely failed, thus a document will never be partially stored. This database
system is schema-free which means that a data can be stored without a previous
defined structure [9]. This feature facilitates the migration of the data.

MariaDB is a relational open-source database system using JSON standard
file format since the version 10.2 developped by MariaDB Corporation Ab and
written in C and C++ based on MySQL. It is why MariaDB includes core
functionality of MySQL. It has a high scalability. It can be accessed via APIs
like ADO.NET, JDBC and ODBC. The data is stored using B-Trees, Hash or R-
TreesEl Unlike most databases system, MariaDB provides a secure environment.

RethinkDB is a document storage open-source database system using JSON
standard file format developed by the Linux foundation and written in C++.
It does not provide a specific API but can be accessed through external APIs
handling JSON files. Alike CouchDB, it is schema-free. RethinkDB is using an
embedded domain-specific query language called ReQL.

Firebase is a commercial cloud-hosted document storage database system
developped by Google. It provides multiple platforms for the different usage of
the sofware (Android, 10S, Javascript, Restfull HTTP,...). It is also schema-
free. Alike MariaDB, Firebase hosting provides a secure environment. Finally,
this RTDBS is using the NoSQL storage mechanism.

Of the four presented options, we chose to continue with Firebase because it
is well-documented and furnish all the features we need for our implementation.
Even though Firebase is a commercial database system, a free license is available.

7.1 Comparative table

1. self-balanced tree data structure that keeps data sorted [6]
2. refer to multidimensional B-Trees

JLIH 1myasey ‘aduoseaer ‘SOT ‘proipuy X [RIDIOUWITO)) X TOSON pnor) aseqaIl]
SO[Y NOS[SUI[PURY [RULIO)XO X X X TOoY [euoryR[eYy AU
0ddo ‘DAar ‘LAN 0av b X X JUOWNOO(] qqeLre
dLLH [MMy3¥s9Y X X X X JUOWNIO(] qaquonoy)

SIAV oarj-ewdYPS | omog-uad() | NOSL | TOS | woshs o8eiolg

8 Firebase
8.1 NoSQL

Firebase does not use traditional relational queries but NoSQL which stands
for ”Not only SQL”, it is more scalable and more performant. NoSQL allows
horizontal scaling between different server where relational databases only offer
vertical scaling which is not optimize when storing loads of information.

There are four types of NoSQL database:

— Document databases oriented, information is represented as documents

(JSON, XML,...). Those documents can hold lots of key-value pairs.

— Graph oriented, information is represented as node and relation. It allows

the user to recover complex data easily.

— key-value oriented, information is stored as a value (integer, string, ob-

ject,...) paired with a key.

— wide-column oriented, store columns of data instead of rows.

8.2 Cloud

As a result of firebase being developped by Google, it uses a few Google
platform such as the Cloud. It is a cloud computing platform designed by
Google enabling storage.

8.2.1 Cloud Messaging

Firebase Cloud Messaging make it possible for the server to send notification
to the client app to warn him of a new email or other data messages. The
messages sent from the server can either be distributed individually, by group
or by topics interest. FCM also provide the possibility for the client to send
messages, appreciation and other data back to the server. This feature requires
two components to enable sending and receiving messages:

— a trusted environment

— An i0S, Android, or web client app to receive messages.

8.2.2 Cloud Functions

Cloud functions are codes automatically responding to events triggered by
Firebase and Google Cloud features or HTTP requests. The triggers include
Realtime database triggers, Firebase authentication triggers, HTTP triggers,
Cloud Firestore Triggers,...

Cloud Functions are protected from the client, he will never be able to access
those private functions because of Firebase security system.

Once deployed on the servers, all resources needed are automatically gener-
ated to match the usage patterns. The server does not need manual mainte-
nance. Usually the functions are used to :

— inform the user something is happening

— perform realtime database sanitization and maintenance (backend)
— perform rigorous task in the cloud to not overload the app

Inform the user : Cloud functions can inform the app users with relavant
information about the app (updates, followers, confirmation email,...)
The system works as follow:
1 The function is triggered by a new element in the database
2 The function composes a message to send
3 FCM sends the notification to the user’s device

Perform Realtime Database sanitization and maintenance : Say a
function is triggered by a new entry into the database provoked by a user, then
the function is used to keep the system clean and up-to-date.

This is used to scrub any inappropriate language in a chat or to delete and
purge an entry in the database.

Perform rigorous task : Firebase client can use the Google cloud resources
(CPU or networking) to relieve the user’s device. It can be used to periodically
delete unused accounts, send email to users,...

It is this feature that will allow us to write events triggers to keep our
database consistent

8.3 Authentification

In order to securely store an user data and personalized the user page, we
need to know the identity of the user to meet this need, Firebase has its own
backend services for the allow authentication. The authentication can be based
on password, phone numbers or federated identity (Google, Facebook, Twit-
ter,...).
ou can identify the user in multiple ways:

Email and password

Federated identity provider integration
Phone number

customize your own system integration
or Anonymous

There are several way to sign-in, to integrate the feature, we can either use
FirebaseUI or use the Firebase Authentication SDK.

FirebaseUI : An open-source interface containing loads of authentication so-
lution that can be customize to match the app style. It is the easy solution since
it provides a complete sign-in system to the app and it is directly integrated
into the system.

10

Firebase SDK Authentication : This way is used when we want to man-
ually integrate one or several sign-in methods.

8.4 Realtime Database

As a real-time database, this system synchronizes the database with every
connected client instead of using HT'TP requests. This means there’s only one
common instance of the database for every connected user which automatically
receive updates. Thus, a deadline on a transaction may not be implemented as
the Firebase system because a notification of new information is sended to every
connected user. Every user will receive the update as soon as possible[I7].

Once offline, every device maintains a local copy of the database and stores
new data on a local disk until it recovers the connectivity. Then information is
uploaded to the online real-time database, the online system resolves conflicts
by itself. And the user’s device retrieves the changes he missed while he was
offline.

8.5 Storage

As explained before, Firebase Real-Time Database system is cloud-stored
and encoded as JSON objects. The database can be seen as a tree where each
information is stored as a node coded in JSON with an associated key. The
data itself is structured according regular expression rules language.

In a Firebase database, there is no tables or records. A node is added to the
existing structure when a new data is added into the database. This kind of tree
can accept up to 32 level of node. In order to keep the data safe, it is important
to know that giving access to a node is also giving access to all children of this
node. This is why Firebase documentation recommands to keep a relatively flat
JSON tree.

8.6 Hosting

A Firebase Database cannot be hosted locally and has to be hosted on Fire-
base servers. But it is possible to test it locally via the Firebase Database Man-
ager called Firebase Command Line Interface. This interface allows to manage,
test and deploy a database.

8.7 Performance

The Realtime Database Firebase API is design to only allow operations that
can be quickly achieved. And to control that, Firebase provides a system which
allows the administrator to monitor the performance of the database. This
monitoring is charaterizing performance by different metrics which are :

11

— Response time : Time between the client’s request and the end of the
full transmition of the answer to this request;

— Payload size : charge down- and uploaded by the app in byte;

— Success rate : Ratio between successfully transmited responses and total
amount of responses. Allows to know the percentage of failed transmi-
tions.

To every data of the performance monitoring is associated a set categories which
describes on which device, operating system, version of the application and in
which country, etc. the request has been made.

9 Applications

9.1 Stock Exchange Markets

One application of a real-time database is in the context of Stock Exchange
Markets transactions. In this particular example, a database has to save every:

— variation of price of each stock quote;

— trade of a quantity of stock;

— offer of a quantity of stock;

— bid on a quantity of stock;

Even if the number of entries is depending on the granularityﬁ chosen, the state
of the current price of a stock quote seems to be very unstable and constantly
changing. Furthermore, this information can be needed by a buyer, seller or
owner in a short period of time. Thus, a stock exchange markets is an example
of environment which requires the kind of database we are currently studying.

9.2 Automatic tracking and object positioning

Industries have the need to know where are their assets (trucks, busses, boat,
plane, etc.). To do so, they use real-time positioning system combined with a
real-time database which stores all In-Vehicle information and is updating each
time the GPS sends position data.

For example such a database could store[I9] :

— Information about users of the system

— Information about vehicles (fuel, millage, etc.)

— Information about received from vehicles (position)

9.3 Banking systems

Another application of a real-time database is for money transactions. Nowa-
days, every transaction is stored to ensure that the balance of every costumer’s

3. The time interval between two observations (e.g.: Daily closing prices, prices for each
minute of the day)

12

account is accurate at every moment. This database has to be reacheable from
every interface where a user can manage his account. Thus, the bank can ensure
that a costumer cannot spend the same money twice for example.
Furthermore, a real-time database system can be even more useful in ”real-
time banking” [I4]. The use of real-time databases can give to the banks the
opportunity to offer immediate money transfers.
We will implement this application in a Firebase real-time database.

9.3.1 Database model

We first tried to obtain an existing database. Unfortunately, no banks will
share their data because of privacy policy. Therefore we decided to create generic
data for our example. Figure 2 represents the relational model of our database.

Customers
=~ CustomerlD integer 4\

FirstName varchar(45) -\ Accounts
LastName varchar(45) ‘\\ 2 AccountMumber integer Transactions
Address varchar(45) "-‘ Balance float \.. ~ TransactionlD integer
City varchar(45) \ OpeningBalance float \'§ Amount float
Phone varchar(45) \ Customer|D integer ‘\ = FromAccount integer
SSN varchar(15) DateOpened datetime N~ ToAccount integer
JoinDate datetime Interest float Date datetime

Figure 2: Relational diagram of our database

We implemented the three main tables necessary to maintain information of
a basic banking system. For the simplicity of our example, we are considering
that all transactions are made between two accounts from the same bank.

9.3.2 Levels of nodes

On Figure 3 we can observe that our database has six levels of nodes :

— Customer ID : unique reference for a bank’s customer

— Customer’s information including the customer’s account

— Account ID : unique reference for a customer’s account

— Account’s information including transactions

— Transaction ID : unique reference for a transaction between two accounts
— Transaction’s information

9.3.3 Constraints and triggers

To implement the following triggers and constraints we wrote some scripts
written in Javascript. Then we will have to deploy those scripts on our Firebase
database.

13

51

o Accounts

5.0

: AccountNumber: "9684-6427-2484-6464"
Balance: "$94,555.38"

DateOpened: "2615-86-81T684:54:46 -02:60"
Interest: "8,1"

OpeningBalance: "$3,686.88"

=|-- Transactions

- Amount: "$74,675.92"

Date: "2817-83-81761:85:45 -81:80"
- FromAccount: "9684-6427-2484-6464"
- ToAccount: "1453-1425-1918-1123"

... TransactionlD: "5a3861bfafc52e5d3dB5d83c”

o AR W N =

------ Address: "781 Stratford Road"

City: "Longbranch”

------ CustomerlD: "5a3861bf12655e27afbeal86”
------ FistName: "West”

------ JoinDate: "2814-18-16T11:52:47 -82:88"
------ LastName: "Higgins"

------ Phone: "+32 (855) 446-2189"

------ SSN: "752-4711789-55"

Figure 3: Levels of nodes in our database

14

— A transaction must be commited within 5 seconds. This is a hard dead-
line. By doing so, we ensure that one client cannot transfer two times the
same money. A transaction consists in a transfer of money from one ac-
count to another. In a five seconds lap time, we must ensure the client’s
balance and deduct the amount. If the constraint is not respected, the
operation is aborted.

— The database will have to check that the beneficiary is existing in the
database. This means the receving end exists and is a client of the bank.
If the constraint is not respected, the operation is aborted.

The two triggers presented above were implented in the same following
script.

//Constraint on the beneficiary, check if he is himself a
bank’s customer and update its balance

exports.beneficiary = functions.database
.ref (’/{Id}/Accounts/{AcId}/Transactions/{TrId}’)
.onCreate(event => {

const post = event.data.val()

if (post.benef){

return

}

console.log("Checking beneficiary " + event.params.TrId)

console.log(post)

post.benef = true

if (checkBenef (post.ToAccount)){

ref.child("/{Id}/Accounts/{AcId}/AccountNumber")
.equalTo(accountNumber)
.once("value",snapshot => {
const userData = snapshot.val()
var newAmount = userdata.parent.Balance + post.Amount
if (Date.now()-event.timestamp<5000){
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}/")
.update ({Balance: newAmount})

1))
}
console.log("Aborting transaction. Beneficiary does not
exist")
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}/Transactions/{TrId}")
.cancel()

b

function checkBenef (s){
var accountNumber = s

ref.child("/{Id}/Accounts/{AcId}/AccountNumber")

15

.equalTo(accountNumber)
.once("value",snapshot => {

const userData = snapshot.val()
if (userData){
console.log("Beneficiary exists!")
return true

}

return false

b

— The date and time of a transaction must be prior to the date of the

account’s openning ; which must be prior to the date of the client’s
registering.

//date and time of transaction prior to date of account’s
opening
exports.transactionDate = functions.database
.ref (’/{Id}/Accounts/{AcId}/Transactions/{TrId}’)
.onCreate(event => {
const post = event.data.val()
if (post.date){
return
}
console.log("Checking transaction date
"+event .params.TrId)
console.log(post)
post.date=true
if (checkTransDate (post.Date)){
return null
Yelse{
console.log("Aborting transaction. Error in date")
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}/Transactions/{TrId}")
.cancel()

1))

function checkTransDate(trDate, acDate){
var transDate = trdate
var openDate = acDate

ref.child("/{Id}/Accounts/{AcId}/Date")
.equalTo(transDate)
.once("value",snapshot => {
if (transDate < acDate){
return true
}

return false

16

B;

— We don't allow our customer to have a negative balance on their accounts.
If any transaction implies that the balance is becoming negative, the
operation is aborted.

//Deduct transaction from account and avoid negative balance
exports.transactionDate = functions.database
.ref (°/{Id}/Accounts/{AcId}/Transactions/{TrId}’)
.onCreate(event => {
const post = event.data.val()
if (post.amount){
return
}
console.log("Checking transaction amount available
"+event .params.TrId)
console.log(post)
post.amount=true
if (checkTransAmount (post.Amount, event.params.AcId)){
var newAmount = post.parent.parent.Balance -
post.Amount
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}")
.update ({Balance: newAmount})
}else{
console.log("Aborting transaction. Not enough money on
account")
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}/Transactions/{TrId}")
.cancel()

b

function checkTransAmount (amount, account){

var transAmount = amount

var accountId = account

ref.child("/"+accountId.parent.parent+"/Accounts/"+accountId+"/Balance")
.startAt (transAmount)
.once("value",snapshot => {

const balance = snapshot.val();

if (balance){

console.log("Enough money");

return true

}

return false

B;

17

— A transaction must never be negative. If the constraint is not respected,
the operation is aborted.

//Avoid negative transaction
exports.transactionNotNeg = functions.database
.ref (°/{Id}/Accounts/{AcId}/Transactions/{TrId}’)
.onCreate(event => {
const post = event.data.val()
if (post.amount){
return
}
console.log("Checking transaction amount available
"+event .params.TrId)
console.log(post)
post.amount=true
if (post.Amount > 0){
console.log("Positive transaction");
return null
Yelse{
console.log("Aborting transaction. Negative
transaction")
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}/Transactions/{TrId}")
.cancel()

b

— A customer must have a minimun of one account in our bank. If the
constraint is not respected, the customer is deleted from the database.

//Check if customer has at least one account
exports.OneAccount = functions.database
.ref (°/{Id}/Accounts/{AcId}’)
.onDelete(event => {
const post = event.data.val()
if (post.accountId){
return
}
console.log("Checking at least one account " +
event.params.AcId)
console.log(post)
post.accountld = true
event.data.adminRef.getRoot ()
.ref (°/{Id}/Accounts/{AcId}’)
.remove ()
if (post.parent.hasChildren()){

18

return null
Yelse{
console.log("Removing client. Has no account anymore")
return event.data.adminRef.getRoot().ref("/{Id}") .remove()
}

b

— A customer may have at most five accounts. If the constraint is not
respected, the new account is not created.

//Check if customer has at most five accounts
exports.FiveAccount = functions.database
.ref (’/{Id}/Accounts/{AcId}’)
.onCreate(event => {
const post = event.data.val()
if (post.accountId){
return
}
console.log("Checking at most five accounts " +
event.params.AcId)
console.log(post)
post.accountld = true
if (post.parent.numChildren() < 5){
return null
Yelse{
console.log("Canceling account creation. Already five
accounts")
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}")
.cancel()

b

— When a customer is openning an account, a minimum of 500 euros must
be deposited. If the constraint is not respected, the new account is not
created.

//Check min 500 as opening balance
exports.openingBalance = functions.database
.ref (’/{Id}/Accounts/{AcId}’)
.onCreate(event => {

const post = event.data.val()

if (post.accountId){

return

}

console.log("Checking opening balance " +

event.params.AcId)
console.log(post)
post.accountld = true

19

if (post.OpeningBalance() >= 500){
return null
}else{
console.log("Canceling account creation. Not enough money")
return event.data.adminRef.getRoot ()
.ref ("/{Id}/Accounts/{AcId}")
.cancel()

b

— Every minute, it must be checked if there is a new incoming transaction
for an account. This is a soft deadline. Thus we can ensure to our clients
that their money will be almost immediately available. By doing so, we
try getting closer to a real-time banking system.

This trigger must not be implemented since Firebase has a feature which
updates the database as soon as possible (cf. Section .

9.3.4 Configuration

In order to begin our project, we had to create a google account to get access
to firebase. Once the account created, we had to add a new project and enter
the project in the web interface to obtain the configuration access. From the
web, we have access to the database data, so we were able to import our own
data with a JSON file generated with JSON-Generator[16].

To implement the trigger functions, we first had to install the firebase com-
mand line interface (CLI) through the console. Then we needed to login on the
CLI and specify which project we wanted to alter.

Once we entered the said project, 5 options are available:

— Database

— Firestore

— Functions

— Hosting

— Storage
Only two were useful for our example, database and functions. These options
allowed us to set rules on the access to the database and to configure the triggers.

The functions feature created a javascript file in which we had to define our
triggers before deploying them into the project.

20

10 Conclusion

This project gave us the oportunity to understand the difference between
a temporal and a real-time database system. Their names suggest that those
systems are similar and indeed both are linked to time. But we have learned
that they are related to two different aspects of time.

The usage of RTDBS may touch a lot of different sectors and are more present
in our daily life than what we could think. For example, it is used in banking
system as we have seen but also in position tracking system, messaging system,
stock exchange market, learning websites as Duolingo, commercial aviation, etc.

Even if Firebase is popular and well documented, we encoutered a lot of
difficulties to configurate the database. This is due to big differences between
Firebase and database systems we have learned up to now and the fact that
Firebase requeries up-to-date version of modules. Furthermore to make our
application work, Firebase asked to add a credit card to use the Google App
Engine but we could not afford it, thus we were unable to try our system.

21

References

[1]
[2]

[10]

JAMES MARTIN. Programming real-time computer systems. 1965

SARAVANAKUMAR KANDASAMY. Real-time database definition [online].
2016 [Retrieved 02 October 2017]

Available on http://www.exploredatabase.com/2016/03/
real-time-database-definition.html

PAauL A Francis. An Introduction to Real-Time Stock Market Data
Processing [online]. 2013 [Retrieved 04 October 2017]

Available on http://www.codeproject.com/Articles/553206/
An-TIntroduction-to-Real-Time-Stock-Market-Data-Pro

JAN LINDSTROM. Real Time Database System [online]. 2008 [Retrieved 04
October 2017]

Available on : |https://www.cs.helsinki.fi/u/jplindst/papers/
rtds.pdf

WIKIPEDIA, THE FREE ENCYCLOPEDIA. FEnergy efficiency in trans-
portonline]. 2017 [Retrieved 08 November 2017]

Available on : https://en.wikipedia.org/wiki/Energy_efficiency_
in_transport#Trains

WIKIPEDIA, THE FREE ENCYCLOPEDIA. BTreefonline|. 2017 [Retrieved 16
November 2017]
Available on : https://en.wikipedia.org/wiki/B-tree

DANIEL SALENGUE. What is schema-free DB ?[online]. 2016 [Retrieved 16
November 2017]
Available on : https://www.quora.com/What-is-schema-free-DB

DB-ENGINES. System Properties Comparison CouchDB wvs. Firebase
Realtime Database vs. MariaDB vs. RethinkDBonline]. 2017 [Retrieved
16 November 2017]

Available on https://db-engines.com/en/system/CouchDBY,
3BFirebaset+Realtime+Database),3BMariaDB}3BRethinkDB

GRAFIKART. Qu’est ce que le NoSQL [online]. 2016 [Retrieved 21 Novem-
ber 2017]
Available on : https://www.grafikart.fr/blog/sql-nosql

SANG H. SON. Real-time database systems and Data Services : Issues and
challenges [online]. 2011 [Retrieved 4 December 2017]

22

http://www.exploredatabase.com/2016/03/real-time-database-definition.html
http://www.exploredatabase.com/2016/03/real-time-database-definition.html
http://www.codeproject.com/Articles/553206/An-Introduction-to-Real-Time-Stock-Market-Data-Pro
http://www.codeproject.com/Articles/553206/An-Introduction-to-Real-Time-Stock-Market-Data-Pro
https://www.cs.helsinki.fi/u/jplindst/papers/rtds.pdf
https://www.cs.helsinki.fi/u/jplindst/papers/rtds.pdf
https://en.wikipedia.org/wiki/Energy_efficiency_in_transport#Trains
https://en.wikipedia.org/wiki/Energy_efficiency_in_transport#Trains
https://en.wikipedia.org/wiki/B-tree
https://www.quora.com/What-is-schema-free-DB
https://db-engines.com/en/system/CouchDB%3BFirebase+Realtime+Database%3BMariaDB%3BRethinkDB
https://db-engines.com/en/system/CouchDB%3BFirebase+Realtime+Database%3BMariaDB%3BRethinkDB
https://www.grafikart.fr/blog/sql-nosql

Available on : https://www.slideserve.com/jaden/
real-time-database-systems-and-data-services-issues—and-challenges

Firebase Legacy Documentation [online]. 2016 [Retrieved 15 December
2017]
Available on : https://www.firebase.com/docs/

GOOGLE. Firebase Documentation [online]. 2017 [Retrieved 3 December
2017]
Available on : https://firebase.google.com/docs

NipUNA HEWAMADDUMAGE THILINA, DINUSHIKA RATHNAYAKA, NIL-
SHANI JAYAKODI, YANA YONITHA. Real-time databases [online]. 2014 [Re-
trieved 4 December 2017)

Available on : https://fr.slideshare.net/nipunahewamadduma/
real-time-databases

ACCENTURE BANK. Real-time payments for real-time banking [online].
2015 [Retrieved 6 December 2017]

Available on : https://www.accenture.com/
£00010101T000000__w__/de-de/_acnmedia/Accenture/

Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_22/
Accenture-Banking-Realtime-Payments-Realtime-Bank.pdf

AMBADE SHRUTI DINKAR, S.A SHAIKH. Design and Implementation Of
Vehicle Tracking System Using GPS [online]. 2011 [Retrieved 6 December
2017]

Available on : |http://www.iiste.org/Journals/index.php/JIEA/
article/download/798/703

VAzZHA OMANASHVILL. JSON Generator [online]. [Accessed 7 December
2017] Available on : https://www.json-generator.com/

FRANK VAN PUFFELEN. Have you met the real time database [online].
2016 [Retrieved 16 December 2017

Available on https://firebase.googleblog.com/2016/07/
have-you-met-realtime-database.html

23

https://www.slideserve.com/jaden/real-time-database-systems-and-data-services-issues-and-challenges
https://www.slideserve.com/jaden/real-time-database-systems-and-data-services-issues-and-challenges
 https://www.firebase.com/docs/
https://firebase.google.com/docs
https://fr.slideshare.net/nipunahewamadduma/real-time-databases
https://fr.slideshare.net/nipunahewamadduma/real-time-databases
https://www.accenture.com/t00010101T000000__w__/de-de/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_22/Accenture-Banking-Realtime-Payments-Realtime-Bank.pdf
https://www.accenture.com/t00010101T000000__w__/de-de/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_22/Accenture-Banking-Realtime-Payments-Realtime-Bank.pdf
https://www.accenture.com/t00010101T000000__w__/de-de/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_22/Accenture-Banking-Realtime-Payments-Realtime-Bank.pdf
https://www.accenture.com/t00010101T000000__w__/de-de/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_22/Accenture-Banking-Realtime-Payments-Realtime-Bank.pdf
http://www.iiste.org/Journals/index.php/JIEA/article/download/798/703
http://www.iiste.org/Journals/index.php/JIEA/article/download/798/703
https://www.json-generator.com/
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html
https://firebase.googleblog.com/2016/07/have-you-met-realtime-database.html

	Introduction
	Definitions
	Real-time processing
	Real-time database

	Why real-time database ?
	Is a RTDBS a temporal database ?
	Model
	Data consistency
	Example

	Transaction in real-time database system
	Timing constraints

	Processing
	Priority
	Execution time

	Comparing differents softwares
	Comparative table

	Firebase
	NoSQL
	Cloud
	Cloud Messaging
	Cloud Functions

	Authentification
	Realtime Database
	Storage
	Hosting
	Performance

	Applications
	Stock Exchange Markets
	Automatic tracking and object positioning
	Banking systems
	Database model
	Levels of nodes
	Constraints and triggers
	Configuration

	Conclusion

