
1

Object Relational Mapping

and

Entity Framework

Advanced Databases Project

Professor: Esteban Zimányi

Students: Bubacarr Jallow Shafagh Kashef

12/18/2018

https://cs.ulb.ac.be/public/members/ezimanyi

2

Contents

1.Abstract .. 3

2.Introduction ... 3

2.1.Object-Relational Mapping ... 3

2.2.Comparison ORM with traditional data access techniques .. 4

2.3.Pros and Cons ... 4

2.4.But ORM can be a pain: .. 5

2.5.Hibernate ORM ... 5

2.5.1.Persistence ... 5

2.5.2.Relational Databases .. 5

2.5.3.The Object-Relational Impedance Mismatch .. 5

2.5.4.Granularity ... 5

2.5.5.Subtypes (inheritance) ... 6

2.5.6.Identity ... 6

2.5.7.Associations ... 6

2.5.8.Data navigation .. 6

2.6.Why are ORMs useful? ... 6

3.Entity Framework ... 7

3.1.ENTITY DATA MODEL .. 7

3.2.The Conceptual Model .. 7

3.3.Mapping .. 8

3.4.The Storage Model .. 8

3.5.ENTITY FRAMEWORK CORE .. 8

3.6.DbContext ... 9

3.7.DbSet ... 9

3.8.DbContextOptionsBuilder ... 9

3.9.ModelBuilder .. 9

3.10.Migrations ... 10

3.11.Data Loading ... 10

3.12.NuGet Package Manager Console .. 10

3.13.EFCore: Code First ... 10

3.14.EFCore: Database First .. 10

4.IMPLEMENTATION ... 11

4.1.Create Entity Classes and Underlying Data Sources ... 11

4.2.Perform CRUD operation .. 12

4.3.Making changes to the Entity Model .. 14

5.Conclusion .. 15

6.References: .. 16

3

1.Abstract

Object relational mapping is a framework that abstracts the communication between two

different programming paradigms, viz, object oriented and relational databases, which has

been an issue for developers since it makes their work more tedious. To tackle this problem,

different technologies have been offered and the Entity Framework is Microsoft’s

implementation of an ORM. Recently Microsoft is migrating towards an open source, cross-

platform technology and the latest versions of the Entity Framework called the Entity

Framework Core (EF Core) have been completely rewritten to render them cross-platform.

Development in the EF Core follows basically two approaches, viz, the database first approach

and the code first approach. The EF Core has functionalities that includes APIs, execution

engines, migration toolings, etc., in order to effectively implement and ORM. In the

implementation of the code first, the application is written from scratch. Since the EF Core is

now open source, it is project to gain more popularity in the future.

2.Introduction

2.1.Object-Relational Mapping

Object-relational mapping (ORM) is a mechanism that makes it possible to address, access

and manipulate objects without having to consider how those objects relate to their data

sources. ORM lets programmers maintain a consistent view of objects over time, even as the

sources that deliver them, the sinks that receive them and the applications that access them

change.

ORM manages the mapping details between a set of objects and underlying relational

databases, XML repositories or other data sources and sinks, while simultaneously hiding the

often changing details of related interfaces from developers and the code they create.

ORM hides and encapsulates change in the data source itself, so that when data sources or

their APIs change, only ORM needs to change to keep up—not the applications that use ORM

to insulate themselves from this kind of effort. This capacity lets developers take advantage

of new classes as they become available and also makes it easy to extend ORM-based

applications. In many cases, ORM changes can incorporate new technology and capability

without requiring changes to the code for related applications.

An object-relational mapper (ORM) is a code library that automates the transfer of data

stored in relational databases tables into objects that are more commonly used in application

code.

Object-relational mapping (ORM, O/RM, and O/R mapping tool) in computer science is a

programming technique for converting data between incompatible type systems using

object-oriented programming languages. This creates, in effect, a "virtual object database"

that can be used from within the programming language. There are both free and commercial

packages available that perform object-relational mapping, although some programmers opt

to construct their own ORM tools.

4

In object-oriented programming, data-management tasks act on object-oriented (OO) objects

that are almost always non-scalar values.

Many popular database products such as SQL database management systems (DBMS) can

only store and manipulate scalar values such as integers and strings organized within tables.

The programmer must either convert the object values into groups of simpler values for

storage in the database (and convert them back upon retrieval), or only use simple scalar

values within the program. Object-relational mapping implements the first approach.

Figure 0: Object Relational Mapping

2.2.Comparison ORM with traditional data access techniques

Compared to traditional techniques of exchange between an object-oriented language and a

relational database, ORM often reduces the amount of code that needs to be written.

Disadvantages of ORM tools generally stem from the high level of abstraction obscuring what

is actually happening in the implementation code. Also, heavy reliance on ORM software has

been cited as a major factor in producing poorly designed databases.

Object-Relational Mapping (ORM) is a technique that lets you query and manipulate data

from a database using an object-oriented paradigm. When talking about ORM, most people

are referring to a library that implements the Object-Relational Mapping technique, hence

the phrase "an ORM".

An ORM library is a completely ordinary library written in your language of choice that

encapsulates the code needed to manipulate the data, so you don't use SQL anymore; you

interact directly with an object in the same language you're using.

2.3.Pros and Cons

Using ORM saves a lot of time because:

DRY: You write your data model in only one place, and it's easier to update, maintain, and

reuse the code.

It forces you to write MVC code, which, in the end, makes your code a little cleaner.

You don't have to write poorly-formed SQL (most Web programmers really use it, because

SQL is treated like a "sub" language, when in reality it's a very powerful and complex one).

Sanitizing; using prepared statements or transactions are as easy as calling a method.

5

Using an ORM library is more flexible because:

It fits in your natural way of coding (it's your language!).

It abstracts the DB system, so you can change it whenever you want.

The model is weakly bound to the rest of the application, so you can change it or use it

anywhere else.

2.4.But ORM can be a pain:

You have to learn it, and ORM libraries are not lightweight tools;

You have to set it up.

Performance is OK for usual queries, but a SQL master will always do better with his own SQL

for big projects.

It abstracts the DB. While it's OK if you know what's happening behind the scene, it's a trap

for new programmers that can write very greedy statements, like a heavy hit in a for loop.

ORM libraries:Java: Hibernate. PHP: Propel or Doctrine Python: the Django ORM or

SQLAlchemyORM library in Web programming using an entire framework stack like: Symfony

(PHP, using Propel or Doctrine). Django (Python, using an internal ORM).

2.5.Hibernate ORM

2.5.1.Persistence

Hibernate ORM is concerned with helping your application to achieve persistence. Persistence

means that we would like our application’s data to outlive the applications process. In Java

terms, we would like the state of (some of) our objects to live beyond the scope of the JVM

so that the same state is available later.

2.5.2.Relational Databases

Specifically, Hibernate ORM is concerned with data persistence as it applies to relational

databases (RDBMS). In the world of Object-Oriented applications, there is often a discussion

about using an object database (ODBMS) as opposed to a RDBMS.

2.5.3.The Object-Relational Impedance Mismatch

Object-Relational Impedance Mismatch' (sometimes called the 'paradigm mismatch') is just a

fancy way of saying that object models and relational models do not work very well together.

RDBMSs represent data in a tabular format (a spreadsheet is a good visualization for those

not familiar with RDBMSs), whereas object-oriented languages, such as Java, represent it as

an interconnected graph of objects. Loading and storing graphs of objects using a tabular

relational database exposes us to 5 mismatch problems…

2.5.4.Granularity

Sometimes you will have an object model which has more classes than the number of

corresponding tables in the database (we says the object model is more granular than the

relational model). Take for example the notion of an Address…

6

2.5.5.Subtypes (inheritance)

Inheritance is a natural paradigm in object-oriented programming languages. However,

RDBMSs do not define anything similar on the whole (yes some databases do have subtype

support but it is completely non-standardized)…

2.5.6.Identity

A RDBMS defines exactly one notion of 'sameness': the primary key. Java, however, defines

both object identity a==b and object equality a.equals(b).

2.5.7.Associations

Associations are represented as unidirectional references in Object Oriented languages

whereas RDBMSs use the notion of foreign keys. If you need bidirectional relationships in

Java, you must define the association twice.

Likewise, you cannot determine the multiplicity of a relationship by looking at the object

domain model.

2.5.8.Data navigation

The way you access data in Java is fundamentally different than the way you do it in a

relational database. In Java, you navigate from one association to an other walking the object

network.

This is not an efficient way of retrieving data from a relational database. You typically want to

minimize the number of SQL queries and thus load several entities via JOINs and select the

targeted entities before you start walking the object network.

2.6.Why are ORMs useful?

ORMs provide a high-level abstraction upon a relational database that allows a developer to

write Python code instead of SQL to create, read, update and delete data and schemas in their

database. Developers can use the programming language they are comfortable with to work

with a database instead of writing SQL statements or stored procedures.

The ability to write Python code instead of SQL can speed up web application development,

especially at the beginning of a project. The potential development speed boost comes from

not having to switch from Python code into writing declarative paradigm SQL statements.

While some software developers may not mind switching back and forth between languages,

it's typically easier to knock out a prototype or start a web application using a single

programming language.

ORMs also make it theoretically possible to switch an application between various relational

databases. For example, a developer could use SQLite for local development and MySQL in

production. A production application could be switched from MySQL to PostgreSQL with

minimal code modifications.

In practice however, it's best to use the same database for local development as is used in

production. Otherwise unexpected errors could hit in production that were not seen in a local

https://www.fullstackpython.com/databases.html
https://www.fullstackpython.com/sqlite.html
https://www.fullstackpython.com/mysql.html
https://www.fullstackpython.com/postgresql.html

7

development environment. Also, it's rare that a project would switch from one database in

production to another one unless there was a pressing reason.

3.Entity Framework

The entity framework is Microsoft’s implementation of an ORM. It enables .NET developers

to work with relational data using domain-specific objects, i.e., developers are able to with

data within a conceptual model. It is aimed at increasing the developer’s productivity by

reducing the redundant task of persisting the data used in the applications. The figure below

shows the overall architecture of the entity frame

Figure 1: Entity Framework Architecture (EntityFrameworkTutorial.net, 2016)

EDM (Entity Data Model): Model classes, relationships, mappings, database models etc.

LINQ to Entities: Query language for writing queries against the object model.

Entity SQL: Also a query language

Object Service: For materialization, i.e., conversion of RDBMS data into object instances.

Entity Client Data Provider: Translating LINQ and Entity SQL to DBMS SQL.

ADO.Net Data Provider: Communication with databases using standard ADO.Net.

(EntityFrameworkTutorial.net, 2016)

3.1.ENTITY DATA MODEL

The EDM is one of the main components of the entity framework and . “It is a set of concepts

that describe the structure of data, regardless of its stored form.” (Microsoft, 2017). The EDM

is made up of three major parts:

3.2.The Conceptual Model

This conceptual model constitutes the real entity model against which we write our queries.

This is where we define our entity classes including relationships between entities, properties.

It gives us a high-level view of the type of database we will generate.

8

3.3.Mapping

This provides a mapping between the conceptual model and storage model.

3.4.The Storage Model

The Storage Model gives a schematic representation of the backend data store.

The entity model mainly uses three concepts to describe data structure:

 Entity Type

Entity types are used to describe the structure of the data in the Entity Data Model.

 Association Type

Association types are used for describing relationships such as the referential constraints that

will exist in our database.

 Property Type

The property type gives meaning and structure to the entities by defining the

characteristics or composition of that entity, e.g., a Customer entity, has CustomerId,

CustomerName, etc as properties. These property type can have both primitive types

and complex types.

3.5.ENTITY FRAMEWORK CORE

 In this project, we consider a version of the entity framework called the Entity Framework

(Core EF Core). EF Core is lightweight, extensible and cross-platform and a complete re-write

of the original entity framework.

The following are basically, the core functionalities of the entity framework core:

 An API for defining the Entity Model

 An API for querying the Entity Model

 An Execution Engine that figures out how to convert a LINQ query into SQL command

and executing it.

 Reverse Engineering a database in order to create a baseline entity model based on

an existing database schema using.

 Migrations tooling that takes a snapshot of the existing model state and uses it to

generate the code that needs to be applied to the database in order to update it,

bringing it into sync with the current state of the entity model.

 Database Generation Tooling that takes the model and Migration classes and

generates or updates the database schema.

9

3.6.DbContext

The DbContext is the most fundamental core of the EFCore. It is the class that “knows” how

to execute a query on a data source. Each DbContext is associated with a data source. The

following are some of the main functions of the DbContext:

 Provide connection to the database and keeping that data

 Querying the model and converting the queries into T-Sql. Queries run against the

database directly and do not contain any pending changes.

 Help in the process of retrieving the results and putting them into instances of the

model and holding on to them.

 Keep track of changes made in the object instances so as to enable it to know what

to update when the method SaveChanges() is invoked.

The afore mentioned are accomplished through the use of special classes and methods within

the DbContext:

3.7.DbSet

This is used to represent a collection for a given entity within the model and it is actually the

gateway to database operation against the entity. They are mapped by default to database

table. (learnentityframeworkcore.com, 2017)

3.8.DbContextOptionsBuilder

Contains a series of extension methods such UseSqlServer() that helps in the configuration of

a DbContextOptions such that we are able to connect to and use SqlServer in this case. Since

EFCore is platform independent, you can connect to different databases aside SqlServer. The

DbContextOptions contains a host of settings for individual database engines with each

engine having its own list of settings.

3.9.ModelBuilder

Based on the entity classes definitions while adhering to conventions, the EFCore is able to

construct a model for the database and apply certain configurations. These configurations

can however, be overwritten or supplemented through data annotations or Fluent API. The

Fluent API is accessed by overriding the OnModelCreating method in the derived context and

uses the ModelBuilder API to configure the model. This is the most powerful method for

configuring the model and allows the configuration to be specified without modifying the

entity classes. (Microsoft, 2017).

10

3.10.Migrations

Migration allows us to continue to change the entity model throughout the application

development lifecycle. It contains two methods, name the Up and Down methods. The Up

method updates the database to the latest version of the entity model whilst the Down

method rolls back changes from the current migration and restores the database to a previous

migration.

3.11.Data Loading

There are three ways data can be loaded into your application from the database. Lazy

loading, which is often the default, involves loading the main entity referenced in the query.

It does not load the related entities included in your query. Lazy loading can be turned on or

off. If the lazy loading is turned off, we can explicitly load the entities we require by using the

Explicit loading. We use the Load method on the related entity’s entry.

The third type of loading is used to load the related entities that are part of a query after the

main entity of the query has been loaded. This is called Eager Loading and involves of the use

of Include (and ThenInclude) methods. This fetches a huge chunk of data in one query

operation as it has to return all related data.

3.12.NuGet Package Manager Console

This command line interface is extensively used to run commands that help us setup or install

our EFCore, add migrations, update databases and so forth.

3.13.EFCore: Code First

In this approach, all the coding is done in the application platform and the entity classes are

built from scratch. The entity classes are then used to generate the database. This approach

is used in the implementation for our project.

3.14.EFCore: Database First

Reverse engineering techniques are applied in this approach to generate entity classes from

already existing databases. The process involves running the following command in the NuGet

Package Manager and specifying the database connection string and optionally the folder and

context.

Scaffold-DbContext “<connection-string>” Microsoft.EntityFrameworkcore.SqlServer -

OutputDir <Folder> -Context <context name>

11

4.IMPLEMENTATION

We will be using the code first approach to illustrate the basic features and processes involved

in creating and adding an EFCore into your project or application. The following workflow is

assumed:

1. Install EFCore and Tooling

2. Create Entity Model and underlying data source

3. Perform CRUD operation

Installing EFCore and Tooling

The following three commands are used to add the EF core to our application:

• Install-Package Microsoft.EntityFrameWorkcore.SqlServer

• Install-Package Microsoft.EntityFrameWorkcore.Tools -Pre

• Install-Package Microsoft.EntityFrameWorkcore.SqlServer.Domain

4.1.Create Entity Classes and Underlying Data Sources

In the code first based approach, we create our entity classes the same we way write our

normal plain old CLR object (POCO) classes as follows:

Figure 2

The class and class properties will represent the table and columns of our database

respectively, that will be generated. By following certain conventions, the EF core

automatically identifies constraints like primary keys and generate them. Foreign key

relationships are also established by creating instance of the class e.g., Customer inside the

Order class. In the same vein, a one to many relationship is also established in a similar

manner but declaring it as a List type.

In order for the EF Core to generate our database appropriate, we must first establish a

connection to our database using the DbContextOptionsBuilder:

12

Figure 3

Then we use the DbSets to indicate to the EF Core how to set up our tables and naming them:

Figure 4

In this example, these three tables are generated when we migrate changes. In addition, a

fourth table, the OrderItems table, is also generated in our case without creating a DbSet for

it. This is because an Order contains a list of OrderItems and indeed we declared a list of

OrderItems in the Order class. Therefore we optionally omit it and the EF Core automatically

detects the parent child relationship (one to many).

4.2.Perform CRUD operation

To perform a create operation, i.e., inserting into our database, we will need to open a

connection to our database by creating an instance of our Context using the following syntax,

which is one way of doing it:

Figure 5

We create a using method (part of the EF Core) and pass an instance of our Context. We then

create our objects and add them to our context using the Add() method, then SaveChanges();

13

Figure 6

Once the using method finishes execution and the program quits out of it, the database

connection is automatically closed. The Read, Update and Delete operations follow similar

procedure in opening and closing connections to the database.

To read from the database, we create an object to hold our data that will be retrieved from

the database and using a for each loop to iterate through and access the individual rows.

Figure 7

If a join is involved, we do an eager loading to load the other tables using the Include().

Updating and Deleting involves retrieving the particular row, and updating and deleting them

respectively

14

Figure 8

4.3.Making changes to the Entity Model

We use Data Annotations and the Fluent API to effect changes or make further configurations

such enforcing constraints in our entity classes. Data Annotations are applied directly to the

classes or class properties we intend to configure. The Data annotations, however, is just a

subset of the fluent API and a lot more configuration can be done with the fluent without

having to modifying the entity classes directly. The Fluent API is accessed by overriding the

OnModelCreating method derived from the DbContext.

Figure 9

Figure 10

15

5.Conclusion

Microsoft is making a number of changes to most of their frameworks to render them open

source and cross-platform. The Entity framework is one of those frameworks in the form of

the entity framework core which has been completely rewritten from scratch but maintains

most of the “relevant” functionalities from the most recent release before the entity

framework core (i.e., EF 6). In addition, the EF Core also has other functionalities making it

simpler and easier to use. Being open source and cross-platform, the EF core and other such

frameworks from Microsoft are projected to gain more popularity and prominence in the

future. The easy syntax and the numerous abstractions being added to this new breed of the

entity framework, i.e., the EF Core, developers are now sure to concentrate more on the

important task of the business logic and make production faster. The performance of the EF

Core has been proven to be relatively solid in most case but still needs to cope with larger

applications, one of the main drawbacks of EF Core.

16

6.References:

 EntityFrameworkTutorial.net. (2016). Entity Framework Architecture. Retrieved

December 16, 2017, from

http://www.entityframeworktutorial.net/EntityFramework-Architecture.aspx

 learnentityframeworkcore.com. (2017). The Entity Framework Core DbSet - Learn

Entity Framework Core. Retrieved December 17, 2017, from

http://www.learnentityframeworkcore.com/dbset

 Microsoft. (2017). Entity Data Model | Microsoft Docs. Retrieved December 16, 2017,

from https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/entity-data-

model

 https://en.wikipedia.org/wiki/Object-relational_mapping

 "What is Object/Relational Mapping?". Hibernate Overview. JBOSS Hibernate.

Retrieved 19 April 2011.

 Douglas Barry, Torsten Stanienda, "Solving the Java Object Storage Problem,"

Computer, vol. 31, no. 11, pp. 33-40, Nov. 1998

