
A	report	on	

INFO-H-415:	Advanced	Databases.	Project.	

	

	

	

	

	

By	

Aleksei	Karetnikov	(000455065)	

	

	
	 	

Content	

INTRODUCTION	..	3	

GRAPH	DATABASE	..	4	
What	is	it?	..	4	
Differences	between	other	technologies	...	4	
Query	languages	...	5	

ARANGODB	...	7	

Features	..	7	
Benefits	with	same	DB	...	9	
DB	architecture	..	9	
Storage	engines	..	10	
Hardware/Software	requirements	...	10	
Installation	..	10	

Pricing	schema	..	12	

Interactions	..	13	
Benchmark	...	13	

USE	CASE	...	16	

Problem	..	16	

Dataset	...	19	

Prototype	...	22	

Other	use	cases	...	23	

CONCLUSION	..	24	

REFERENCES	...	24	
	 	

Introduction	
	
Nowadays,	we	are	interacting	with	variably	represented	information:	plain	texts,	tables,	

trees	 and	 others.	 Sometimes,	 it	 is	 impossible	 to	 imagine	 how	 it	 is	 possible	 to	 represent	 the	
information,	which	is	exists	as	a	tree	in	real	world,	in	relative	database.	It	is	clear	that	one	can	
implement	lots	of	many-to-many	connection	and	different	attributes	in	such	system	but	it	takes	
more	 time	 to	 apply	 lots	 of	 joins	 in	 queries.	 The	 graph	 database	 can	 be	 a	 solution	 for	 such	
problems.	It	consists	no	opportunities	to	join	different	datasets	and	problems	with	performance	
–	it	is	an	anther	NoSQL	approach,	which	provides	direct	connections	with	data.	

There	 are	 lots	 of	 different	 databases	 which	 deal	 with	 structured	 data:	 neo4j,	 Oracle,	
Postgres,	ArangoDB,	OrientDB	and	other.	All	of	them	provides	some	common	and	some	unique	
features:	query	languages,	store	engine,	system	requirements,	pricing,	overall	performant,	etc.	
It	is	clear	that	NoSQL	solution	also	requires	a	special	language	for	interaction	(e.g.	AQL,	Cypher,	
SPARQL	and	other	languages).			

For	this	research	project,	the	ArangoDB	was	selected	as	a	graph	database.	It	looks	a	little	
bit	different	than	the	rivals:	it	is	really	young	technology	–	it	was	developed	in	2011	by	German	
company	ArangoDB	GmbH,	but	it	already	has	its	customers.	According	to	the	developers’	release,	
ArangoDB	 has	 the	 best	 performance	 in	 comparison	 with	 competitors	 with	 impressive	
opportunities	in	data	interaction.	Moreover,	support	of	this	technology	is	really	simple.	

Furthermore,	 any	 technology	must	 have	 a	 commercial	 advantage.	 In	 other	 way,	 it	 is	
ineffective.	According	to	the	vendors’	 information,	ArangoDB	is	the	best	solution	because	it	 is	
free	for	everyone	and	not	so	expensive	when	we	need	some	additional	features	and	support.	

So,	 the	 main	 aim	 of	 this	 research	 project	 is	 to	 explain	 the	 graph	 database	 features,	
advantages	and	disadvantages	in	ArangoDB	and	its	commercial	opportunities.	

Graph	database	
	
What	is	it?	
	
Graph	Database	is	a	database	type	which	stores	data	in	vertices	and	edges	of	the	graph.	

It	based	on	the	mathematical	graph	theory.	In	addition,	each	element	of	the	graph	database	can	
consist	any	number	of	additional	properties	(additional	key-value	pairs).	The	main	feature	of	such	
type	of	storage	is	highly	connected	data	independently	of	the	volume	of	the	dataset.	It	means	
that	all	“join-like”	operations	are	processing	by	using	persistent	connections	between	nodes,	so	
it	takes	constant-time	[2].	

Nowadays	this	approach	is	becoming	more	and	more	popular.	It	is	clear	that	we	are	living	
in	the	world	of	connected	data,	so	such	type	of	data	structures	significantly	better	represents	the	
real	information	in	the	database.	

The	common	place	of	data	in	such	type	of	databases	is	nodes	(vertex)	of	the	graph.	It	can	
include	 different	 properties	 (usually,	 schema-less),	 label	 of	 the	 node	 and	 some	 additional	
metadata	(such	as	index	or	constrains).	In	other	type	of	data	structures	nodes	are	represented	
as	records	in	relational	databases	or	documents	in	document	storage.	

All	 the	 relations	 in	 graph	 databases	 (which	 are	 represented	 by	 edges)	 are	 named	 for	
semantic	 connection	between	node-entities	and	have	 the	 start	and	 the	end	node.	So,	all	 the	
relations	 are	 directed.	 Normally,	 properties	 of	 the	 edges	 include	 information	 about	 distance	
between	nodes,	weight,	cost,	etc.	On	the	one	hand,	it	improves	interaction	with	all	the	directly	
connected	data	but	on	the	other	hand	simple	deletion	of	connected	node	follows	full	deletion	of	
the	relationship	[1].		

There	are	many	different	approaches	of	storage	mechanisms	 in	graph	database.	Some	
DBMS	 store	 data	 in	 tables,	 others	 in	 document	 or	 key-value	 storages,	which	 provides	 better	
compatibility	with	NoSQL	approach.	

The	most	famous	graph	databases	are:	ArangoDB,	Neo4j,	Oracle,	OrientDB,	SAP	HANA,	
Teradata,	SQL	Server,	GraphDB.	

	
Differences	between	other	technologies	
	
The	main	aim	of	graph	databases	 is	storing	of	connected	data	to	 improve	 interactions	

between	all	the	connected	nodes.	So,	the	main	differences	of	such	approach	in	comparison	with	
other	types	of	databases	correspond	to	different	aims	of	the	databases	and	so,	different	data	
structures	which	are	used	to	store	it.	In	the	table	below	the	data	types	which	could	be	recognized	
like	the	same	in	the	most	popular	type	of	the	databases	are	presented	[1].	

	
Type	of	the	database	 Name	of	the	element	
Relational	(also	temporal,	key-value	and	spatial)	 Row/record	or	tuple	
Document	 Document	
Graph	 Node	
Object	 Object	

	
One	of	the	main	features	of	the	graph	databases	in	comparison	with	other	type	is	better	

performance	of	interaction	with	connected	data.	Each	of	mentioned	database	type	is	the	most	
relevant	for	particular	case.	For	example,	relational	databases	are	the	best	solution	for	storing	
table	 values	and	 its	 aggregation,	document	 store	 for	 storing	of	 the	whole	documents,	object	
databases	for	file	storing.	Graph	databases	are	simultaneously	oriented	for	specific	problems.	In	
its	case,	it	is	finding	of	the	shortest	path,	connected	data	storing,	etc.	So,	the	most	relevant	cases	
for	using	this	technology	are:		

• real-time	recommendations;	
• decision	making	engines;	
• social	networks;	
• access	management;	
• route	planning;	
• data	and	knowledge	management;	
• fraud	detection.	

	
It	 is	clear	 that	 the	vast	majority	of	other	NoSQL	databases	are	aggregate	oriented	but	

frequently	 such	operations	are	 very	expensive	because	of	 large	volumes	of	data.	 In	 this	 case	
graph	databases	are	the	best	solution	for	such	problems	because	 it	 is	not	necessary	to	spend	
resources	for	joining	of	different	records,	which	are	connected	by	default.	

	
Query	languages	
	
One	of	the	features	of	Graph	database	is	a	new	problem	of	the	query	language	selection.	

Unlike	 traditional	 relational	 databases	which	use	 SQL	 as	 a	 query	 languages,	 there	 are	 lots	 of	
different	query	 languages	 for	 this	 type	of	databases,	which	are	aimed	for	 resolving	of	certain	
problems.	The	most	famous	query	languages	for	graph	databases	are	[2]:	

• SQL	(it	still	can	be	used);	
• AQL	(ArangoDB	Query	Language);	
• Cypher	(the	most	popular	declarative	language	for	Neo4j);	
• GraphQL	(the	language	which	created	by	Facebook);	
• Gremlin	(language	for	Apache	TinkerPop™	project.	Can	be	used	natively	in	Java,	Scala,	JS,	

Groovy,	Clojure	and	Python);	
• SPARQL	(SQL-like	language	for	RDF	graphs).	

	
SQL	
	
SQL	for	graph	databases	does	not	contain	some	specific	operators	so	it	is	not	necessary	

to	review	it	in	details.		
	
	
	

AQL	
	
The	most	similar	for	SQL	language	is	AQL,	which	was	created	especially	for	ArangoDB.	In	

comparison	with	SQL,	“AQL	does	not	support	data	definition	operations,	such	as	creating	and	
dropping	 databases,	 collection	 and	 indexes”	 [1].	 Sometimes	 it	 overlaps	 SQL	 keywords,	 for	
example	FILTER	clause,	which	is	equivalent	to	WHERE	clause	in	SQL,	but	when	all	the	queries	in	
AQL	 are	 executed	 from	 left	 to	 right,	 so	 position	 of	 this	 clause	 in	 the	 query	 determines	 the	
precedence.	

	
For	example,	the	AQL	code:	
	
“FOR user IN users FILTER user.active == true RETURN user”
is the following SQL query:
“SELECT * FROM users WHERE active=true”.
	
Cypher	
	
Cypher	is	also	SQL-inspired	query	language	which	was	created	for	Neo4j	database.	The	

main	advantage	of	this	language	is	opportunity	to	describe	the	result	which	is	necessary	to	obtain	
without	describing	of	the	necessary	procedures,	aimed	to	obtain	the	result.		

	
For	example,	the	code		
“MATCH (s:Sales {items:’Beer’}) RETURN s.items, s.price”
corresponds to the following SQL query:
“SELECT s.items,s.price FROM sales AS s WHERE s.items=’Beer’).
	
GraphQL	
	
GraphQL	is	a	special	query	language	for	Facebook	API.	So,	it	is	not	directly	specified	for	

graph	databases.	The	query	of	this	languages	specifies	only	object’s	structure,	for	example:	
“{
product(quantity>100) {
 productName
 productPrice
 }
}”.
The	main	users	of	this	language	are	Facebook,	Pinterest,	Dailymotion,	GitHub,	Coursera,	

Intuit	and	Shopify.	
	

	
Gremlin	
	
The	main	 feature	of	 this	 language	 is	native	 support	of	 the	most	 famous	programming	

languages.	Each	query	consists	a	sequence	of	atomic	operations	(steps)	of	the	data	stream.	For	

example,	the	next	code	takes	vertex	with	name	“Austria”,	moves	to	countries	around	and	selects	
their	names.	

g.V().has(“name”,”Austria”).out(“border”).values(“name”)
	
SPARQL	
	
This	language	was	created	by	W3C	consortium	for	RDF	(Resource	Description	Framework,	

technology	for	data	serialization	and	knowledge	management,	which	is	originally	designed	as	a	
metadata	model)	graphs.	The	following	code	represents	selection	of	the	title	in	the	given	RDF	
triple:	

	
SELECT ?title WHERE { <http://example.com/book/book1>

<http://purl.org/dc/elements /1.1/title> ?title . }
	

ArangoDB	
	
Features	
	
ArangoDB	has	lots	of	different	interesting	and	important	features:	

• The	most	important	one	is	multi-model	(graph,	key/value	and	document	models)	
implementation	which	provides	an	opportunity	to	interact	with	different	models	
in	single	query.	Such	approach	helps	to	improve	the	performance	of	the	database.	

• Reduced	 operational	 complexity,	 which	 improves	 the	 selection	 of	 the	 most	
appropriate	model	for	given	data.	

• Support	of	ACID	(Atomicity,	Consistency,	Isolation,	Durability)	transactions.	
• Modular	architecture	which	provides	fault	tolerance.	
• Low	cost	of	ownership.	
• Integrated	framework	ArangoDB	Foxx,	which	provides	native	access	to	in-memory	

data	by	using	JavaScript.	
• Horizontal	and	vertical	scalability.	
• WEB	UI	for	graph	visualization	and	AQL	queries.	

	

	
Figure	1.	Example	of	Arango	web-interface.	Statistics.	

	

	
Figure	2.	Example	of	query	view	in	web-interface.	Source:	www.arangodb.com	

	
	

	
Figure	3.	Example	of	graph	view	in	web-interface.	Source:	www.arangodb.com	

	
	
Benefits	with	same	DB	
	
There	 are	 lots	 of	 different	 graph	 databases	 which	 provide	 almost	 the	 same	 range	 of	

functions.	ArangoDB	can	be	compared	with	Neo4j	and	OrientDB	but	it	offers	some	supplemental	
opportunities	 (according	 to	 the	 research	 and	 information,	 provided	 by	 DB	 developers,	
vschart.com	and	db-engines.com	websites).		

	
The	most	valuable	advantages	of	ArangoDB	are	[1]:	
	
1.	 It	 is	multi-model	 DBMS	when	Neo4j	 is	 single-model	 graph	 database.	 If	 the	 project	

requires	a	different	storage	type,	it	is	necessary	to	use	another	database	to	store	it.	At	the	same	
time,	ArangoDB	provides	graph,	document	and	key/value	models.	

2.	ArangoDB	provides	the	best	performance	in	interactions	with	data	from	different	data	
model	queries.	

3.	ArangoDB	offers	impressive	scalability	opportunities.	
4.	 In	 comparison	 with	 Neo4j,	 all	 the	 transactions	 can	 be	 encrypted	 by	 TSL	 or	 SSL.	

Moreover,	in	consist	role-based	control	(via	Foxx	framework)	and	auditing	in	Enterprise	version.	
5.	 it	 compatible	 with	 larger	 number	 of	 NoSQL	 query	 languages	 than	 OrientDB,	 so	 it	

provides	better	opportunities	for	data	interactions.	
	
DB	architecture			
	
A	 cluster	 of	 ArangoDB	 consist	 of	 a	 number	 of	 database	 instances	 which	 can	 play	 4	

different	roles:	agents,	coordinators,	primary	and	secondary	servers.	

Agents	 can	 form	 the	 Agency	 in	 the	 cluster,	 which	 is	 the	 main	 part	 of	 the	 cluster	
configuration.	It	provides	synchronization	services	for	the	whole	cluster.	

Coordinators	are	working	with	queries	and	Foxx	services.	
Primary	servers	are	the	places	where	data	is	hosted.		
Secondary	 servers	 are	 asynchronous	 replicas	 of	 primary	ones.	 There	 are	one	or	more	

secondary	servers	for	each	primary.	They	are	suitable	for	backup	actions.	
	
Storage	engines	
ArangoDB	provides	two	different	storage	engines:	traditional	memory-mapped	files	and	

RocksDB	based	engine.	The	selection	of	the	engine	depends	on	the	real	case.	
The	traditional	memory-mapped	files	engine	has	significantly	longer	startup	time	but	it	

makes	 impressive	 performance	 with	 in-memory	 data	 queries.	 So,	 this	 engine	 is	 suited	 for	
datasets	which	can	be	represented	in	the	main	memory.	

The	new	“rocksdb”	engine	was	developed	for	large	datasets	which	can	not	be	kept	in	the	
main	memory.	In	comparison	with	the	traditional	approach,	this	engine	saves	all	the	indexes	on	
the	disk	that	makes	very	fast	startup.	

Unfortunately,	it	is	not	possible	to	combine	different	engines	in	the	one	installation	of	the	
database.	So,	it	must	be	selected	for	the	whole	server	or	cluster	at	the	time	of	installation.	

	
Hardware/Software	requirements	
	
ArangoDB	 runs	 on	 Linux,	 OS	 X	 and	Microsoft	 Windows	 both	 32bit	 (according	 to	 the	

architecture	limits,	it	can	use	no	more	than	2-3GB	of	RAM)	and	64bit	systems.		
There	are	no	critical	requirements	for	this	DBMS.	For	example,	according	to	the	official	

manual,	it	is	possible	to	run	it	on	Raspberry	Pi.	
Furthemore,	ArangoDB	can	be	 installed	as	a	Docker	container,	 in	DC/OS,	on	Windows	

Azure	and	Amazon	cloud	services.	
	
Installation	
	
ArangoDB	can	be	installed	in	different	operation	systems.	So,	this	process	is	various	and	

depends	on	the	environment.	
Mac	OS	X	
There	are	two	ways	to	install	ArangoDB	in	OS	X:	
1.	Graphical	application.	In	this	case	the	.app	container	should	be	downloaded	and	moved	

to	the	Application	folder.	
2.	Installation	through	Homebrew.	It	is	possible	to	install	the	latest	version	of	ArangoDB	

by	package	manager	Homebrew	with	the	command:	“brew install arangodb”.	Then	it	can	
be	 started	 from	 the	 default	 installation	 folder	 /USR/LOCAL/OPT/ARANGODB/SBIN/	 by	 using	
command	“arangod”.	Consequently,	we	need	to	initialize	the	database	by	executing	application	
“arango-secure-installation”	and	set	a	root	password.	

	

Linux	
	
There	are	few	different	precompiled	packages	for	Red	hat,	Fedora,	Debian,	Ubuntu		and	

Suse	Linux	distributives.	Normally,	 it	 is	necessary	 to	download	 the	package	 for	 the	necessary	
Linux	version.	

Another	way	of	installation	–	using	of	package	managers.	The	installation	code	for	apt-
get,	yum	and	zypper	package	managers	is	presented	below.	

Apt-get	
	
curl -O

https://www.arangodb.com/9c169fe900ff79790395784287bfa82f0dc0059375a34
a2881b9b745c8efd42e/arangodb32/Debian_9.0/Release.key

sudo apt-key add - < Release.key
ECHO 'DEB

HTTPS://WWW.ARANGODB.COM/9C169FE900FF79790395784287BFA82F0DC0059375A34A2881B
9B745C8EFD42E/ARANGODB32/DEBIAN_9.0/ /' | SUDO TEE
/ETC/APT/SOURCES.LIST.D/ARANGODB.LIST

SUDO APT-GET INSTALL APT-TRANSPORT-HTTPS
SUDO APT-GET UPDATE
SUDO APT-GET INSTALL ARANGODB3E=3.2.8
YUM	
	
cd /etc/yum.repos.d/
curl -O

https://www.arangodb.com/9c169fe900ff79790395784287bfa82f0dc0059375a34
a2881b9b745c8efd42e/arangodb32/CentOS_7/arangodb.repo

yum -y install arangodb3e-3.2.8

Zypper	
	
zypper --no-gpg-checks --gpg-auto-import-keys addrepo

https://www.arangodb.com/9c169fe900ff79790395784287bfa82f0dc0059375a34
a2881b9b745c8efd42e/arangodb32/openSUSE_13.2/arangodb.repo

zypper --no-gpg-checks --gpg-auto-import-keys refresh
zypper -n install arangodb3e=3.2.8

Compiling	
	
Furthermore,	 if	 the	precompiled	package	 is	not	available,	 it	 is	possible	to	compile	and	

build	ArangoDB	from	raw	source.	For	example,	for	using	it	on	RaspberryPi.	ArangoDB	was	tested	
with	GNU	C/C++	and	clang/clang++	compilers	with	C++11-enabled	argument.	This	method	is	not	
very	popular	for	normal	using,	so	all	the	necessary	information	about	compiling	can	be	found	on	
the	ArangoDB	documentation	website:	https://docs.arangodb.com/.	

		

Windows	
	
For	 Microsoft	 Windows	 the	 Windows	 Installer	 package	 is	 available.	 At	 the	 time	 of	

installation	user	can	select	the	 installation	path,	make	single-	or	multiuser	 installation,	keep	a	
backup,	create	a	desktop	icon	and	other	parameters	which	the	Installation	Wizard	offers	to	the	
user.	

Pricing	schema	
	
ArangoDB	is	licensed	under	Apache	2.0	public	license.	So,	from	the	end	user’s	point	of	

view	(excluding	development,	distributing,	etc.),	 it	means	that	ArangoDB	 is	 fully	 free	 for	non-
commercial	and	commercial	use.	

Moreover,	there	are	2	commercial	subscriptions:	Basic	and	Enterprise.		

Features	 Community	 Basic	 Enterprise	

Community	Edition	Features	 ✓	 ✓	 ✓	
SatelliteCollections	 	 	 ✓	
SmartGraphs	 	 	 ✓	
Encryption	at	Rest	 	 	 ✓	
Enhanced	User	Management	with	
LDAP	

	 	 ✓	

Training	 	 	 	
Free,	online	education	 ✓	 ✓	 ✓	
Private,	on-demand	training	 	 	 ✓	
Support	 	 	 	
SLA	 none	 9×5	 24×7	
Response	Time	 	 	 	
critical	issues	 no	guarantee	 12	hours*	 2	hours	
level	2	issues	 no	guarantee	 16	hours*	 5	hours	
level	3	issues	 no	guarantee	 40	hours*	 16	hours	
Number	of	issues	 	 10	

per	month	
unlimited	

Support	contacts	 google-group	
only	

1	
email,	web	

4	
email,	web,	
phone	

Technical	alerts	 	 ✓	 ✓	
Hotfixes	 general	

release-cycle	
general	
release-cycle	

✓	

critical	issues	 no	guarantee	 12	hours*	 2	hours	
level	2	issues	 no	guarantee	 16	hours*	 5	hours	
License	 	 	 	
Type	 Apache	V2	 Apache	V2	 Commercial	

In	 order	 to	 estimate	 the	 possible	 expenditures	 for	 commercial	 subscription	 to	 the	
ArangoDB,	the	Sales	department	of	ArangoDB	GmbH	was	contacted.	According	to	the	ArangoDB	
GmbH	politics,	price	model	is	variable	for	different	projects	and	the	average	figures	can	not	be	
provided.	

	
Interactions	
	
ArangoDB	 uses	 AQL	 language	 as	 a	main	 query	 tool.	 The	 query	 can	 be	 executed	 from	

Command	Line	and	Web	UI.	Furthermore,	there	is	an	impressive	number	of	drivers	for	different	
languages:	

• NodeJS;	
• PHP;	
• Java;	
• JavaScript;	
• .NET;	
• Go;	
• Python;	
• Scala;	
• Railo;	
• D;	
• Dart;	
• Vert-X;	
• Gremlin;	
• Ruby	on	Rails;	
• Clojure;	
• Elixir;	
• C++.	

All	 the	 native	 drivers	 are	 presented	 on	 the	 project’s	 GitHub	
https://github.com/arangodb/	with	all	the	necessary	documentation.	
	
	

	 Benchmark	
	
	 When	it	comes	to	the	performance	of	the	database,	we	can	use	the	special	benchmark	
for	different	NoSQL	databases	 (https://github.com/weinberger/nosql-tests)	which	 is	based	on	
NodeJS.	The	test	collection	consists	100	000	elements	to	read,	write,	find	the	neighbor,	make	
aggregations	and	find	the	shortest	way.	We	can	simply	 install	 it	on	the	UNIX	based	operation	
system	by	simple	steps:	

git clone https://github.com/weinberger/nosql-tests.git
npm install .
npm run data
	

To	start	all	available	tests,	we	need	to	start	the	server	with	additional	parameters:		
	
./bin/arangod /mnt/data/arangodb/data-2.7 --server.threads 16 --wal.sync-interval
1000 --config etc/relative/arangod.conf --javascript.v8-contexts 17
	

As	 soon	 as	 ArangoDB	was	 updated	 to	 version	 3,	 scheduler.threads	 parameter	 is	 now	
obsolete	and	hava	to	be	excluded.		
We	have	to	type	the	following	command	to	start	all	the	possible	tests.	
node benchmark arangodb -a 127.0.0.0 -t all
		

It	is	recommended	to	start	the	server		
where	127.0.0.1	–	IP	address	of	the	installed	and	run	ArangoDB.	
	

Unfortunately,	the	available	benchmark	was	developed	2	years	ago	for	ArangoDB2,	when	
the	current	version	is	3.	So,	it	was	necessary	to	fix	it	but	it	unfortunately	it	still	not	possible	to	
test	the	performance		
	

According	to	the	executed	test,	we	have	received	the	results	for	the	whole	collection	of	
100.000	elements.	The	results	of	this	test	in	comparison	with	the	results	from	ArangoDB	website	
are	presented	below:	
	

Test	 Single	Read	 Single	
Write	 Aggregation	 Shortest	

path	
Neighbors	
(1+2	deg)	

Neighbors	
(with	
profile	
data)	

Result	(sec.)	 12.672	 20.194	 -	 -	 -	 -	
Vendor’s	
results	

16.962	 20.530	 1.250	 0.061	 0.464	 4.327	

	
As	a	result,	we	can	see	that	at	least	single	read	operation	became	quicker	in	new	version	

of	ArangoDB.	It	 is	clear	that	the	results	(which	are	available)	are	almost	the	same	that	the	DB	
vendor	provides.	So,	we	can	use	their	results	for	further	comparison,	which	are	presented	in	the	
table	below.	
	

	
	

Such	results	show	us	that	ArangoDB	has	better	performance	than	the	vast	majority	of	
other	Graph	databases.	
	

Use	case	
Problem	
Nowadays	problem	of	the	load	of	public	transport	is	becoming	more	and	more	important.	

Governments	are	interested	to	move	all	the	people	from	private	to	public	transport	to	improve	
road	situation	in	cities,	at	the	same	time	people	are	interested	in	maximal	convenience	of	the	
trip:	 distance	 from	 the	 real	 destination	 from	 the	 closest	 bus/tram-stop,	 non-overcrowded	
vehicles	and	optimal	time	of	the	trip.	To	resolve	the	first	problems,	we	have	to	increase	number	
of	vehicles	but	two	other	we	can	resolve	by	data	research.	Moreover,	 it	 is	clear	that	the	vast	
majority	of	current	route-planners	consider	only	nominal	trip-time	but	in	real	life	road	traffic	can	
significantly	effect	on	the	trip	time.	So,	the	quickest	route	can	become	the	longest	because	of	
such	problems.		

As	a	result,	we	have	a	colossal	number	of	different	objects	with	lots	of	different	1:1	or	1:n	
relations.	We	can	store	it	in	habitual	relational	database	which	lots	of	different	bridges.	So,	to	
build	 the	 route	we	 need	 to	 consider	 lots	 of	 connections	 between	 them	by	 using	 lots	 of	 join	
operations.	It	is	clear	that	building	of	the	route	with	some	changes	can	become	really	difficult	
and	hard	to	compute.	Fortunately,	we	can	use	graph	database	to	simplify	this	problem	and	make	
it	more	optimized	because,	it	Is	clear,	that	normal	transport	network	is	a	graph.	So,	we	can	store	
information	about	our	object	(the	network)	in	its	native	form	–	array	of	vertices	and	edges	with	
some	attributes.	

Let’s	look	at	the	maps	of	Vienna’s	tram	(Straßenbahn)	and	metro	(U-Bahn)	maps	().	We	
can	see	that	both	images	are	the	graphs.	So,	we	can	simply	store	it	in	the	ArangoDB	graph.	As	a	
result,	we	can	receive	a	united	graph	of	tram	and	metro	stations	with	information	about	possible	
traffic	problems	for	trams	(sometimes,	tram	rails	are	separated	from	the	road	network	and	we	
do	 not	 have	 to	 recognize	 road	 traffic	 for	 such	 path	 segments,	 it	 is	mentioned	 on	 the	 image	
below).		

Conclusively,	our	task	is	to	store	our	data	and	build	the	quickest	way	by	path	finding	and	
recognizing	of	transport	situation	on	the	road	where	it	is	applicable	with	the	best	performance	
by	using	ArangoDB.		

	

	

Situation	(a)	 Situation	(b)	

Figure	4.	Differents	situations	with	tram	rails	

	

	
Figure	5.	Scheme	of	Vienna’s	tram.	Information	from	http://www.stadt-wien.at	

	

	
Figure	6.	Map	of	Vienna's	metro.	Information	from	http://www.stadt-wien.at	

	
	
Dataset	
	
The	problem	touches	public	transport	in	Vienna,	so	we	will	use	information	from	the	web-

portal	“Austrian	Open	Data”	https://www.data.gv.at/.	Unfortunately,	all	the	necessary	data	sets	
are	represented	in	geographically	appropriate	format	and	we	have	to	use	few	datasets	to	build	
the	necessary	one,	which	consists	stops	and	connections	between	them.		

We	also	need	to	store	some	additional	information	which	can’t	be	represented	as	a	graph	
(or	with	lots	of	difficulties).	

We	will	use	the	following	sets:	
• U-Bahnnetz	Bestand	Wien	
• Öffentliches	Verkehrsnetz	Haltestellen	Wien	

	
All	the	data	are	presented	in	WFS,	so	it	is	necessary	to	make	a	preprocessing	procedure	

to	make	all	the	necessary	vertexes	and	edges	of	the	final	graph.	For	this	reason,	a	small	converter,	
based	on	Java,	was	developed.	To	import	data	to	ArangoDB,	one	can	use	json	or	csv	format	of	
data.	It	is	possible	to	import	data	by	three	ways:	

www.wienerlinien.at

SCHNELLVERBINDUNGEN IN WIEN

Infostelle der
Wiener Linien

Ticketstelle der
Wiener Linien

U-Bahn-Linie

S-Bahn-Linie

Lokalbahn Wien-Baden

City Airport Train
(Eigener Tarif,
VOR-Tickets ungültig)

Vienna International
Busterminal

Kundenzentrum
der Wiener Linien
(U3 Erdberg)

Park & Ride

Troststraße

Altes Landgut

Alaudagasse

Neulaa

Oberlaa

Nußdorf

Oberdöbling

Leopoldau

Krottenbachstr.

Gersthof

Hernals

Breitensee

Penzing

Weid
ling

au

Purk
ers

do
rf-S

an
ato

rium

Had
ers

do
rf

Speising

Hetzendorf

Atzgersdorf

Liesing Blumental

Quartier
BelvedereMatzleinsdorfer

 Platz

Schedifkaplatz

Schöpfwerk

Gutheil-Schoder-Gasse

Inzersdorf Lokalbahn
Neu Erlaa

Schönbrunner Allee

Vösendorf-Siebenhirten

Grillgasse

Kledering

Rennweg
Biocenter Vienna
St. Marx

Geisel-
bergstr.

Zentralfriedhof

Kaiserebersdorf

Schwechat

Haidestraße

Praterkai

Stadlau

Erzherzog-
Karl-Straße

Süßenbrunn

Gerasdorf

Siemensstraße

Brünner Straße

Jedlersdorf

Strebersdorf

Traisengasse

Franz-
Josefs-
Bahnhof

Messe
Prater

Krieau

Kaisermühlen VICWähringer Straße
 Volksoper

Schottentor

Schwedenplatz

Kagraner Platz

Aderklaaer Straße

Großfeldsiedlung

Kardinal-Nagl-PlatzGumpendorfer
Straße

Michelbeuern AKH

Josefstädter
Straße

Burggasse
Stadthalle

Kendlerstraße

Ottakring

John-
straße

Schwegler-
straße

Niederhof-
straße

Thaliastraße

Alser Straße

Nußdorfer Straße

Jäger-
straße

Friedensbrücke

Dresdner
Straße

Handelskai

Floridsdorf

Stadt-
park

Karlsplatz

Stadion

Prater-
stern

Keplerplatz

Reumannplatz

Landstraße
 (Bhf. Wien Mitte)

Rochusgasse

Schlachthausgasse

Erdberg

Gasometer

Enkplatz

Zipperer-
straße

Simmering

Donauinsel

Alte Donau

Kagran

Rennbahnweg

Rathaus

Bahnhof Meidling

Hütteldorfer
Straße

Volks-
theater

Roßauer Lände

Taubstummen-
gasse

Südtiroler Platz
Hauptbahnhof

Taborstraße

Nestroypl.

Neue Donau

Heiligenstadt

Spittelau

Vorgartenstraße

Museums-
quartier

Hütt
eld

orf

Obe
r S

t. V
eit

Unte
r S

t. V
eit

Brau
nsc

hw
eig

-

ga
sse

Hietz
ing

Sch
ön

bru
nn

Meid
ling

 Hau
pts

tra
ße

Lä
ng

en
feld

g.

Marg
are

ten
-

gü
rte

l

Kett
en

brü
cke

n-

ga
sse

Herr
en

ga
sse

Stub
en

tor

Schottenring

Pilgr
am

-

ga
sse

Zie
gle

rg.

Neu
ba

ug
.Westbahnhof

Wolf
in d

er
Au

Stephansplatz
Donaumarina

Donaustadt-
brücke

Hardeggasse

Donauspital

Aspern Nord

Am Schöpfwerk

Perfektastraße

Alterlaa

Tscherttegasse

Siebenhirten WLB Wiener Neudorf, Baden (Endstation)

Erlaaer Straße

Seestadt

Aspernstraße

Hausfeld-
straße

Hirschstetten

©
 W

ie
ne

r L
in

ie
n,

 S
ep

te
m

be
r 2

01
7

• Web-interface,	which	 is	 available	on	 the	 local	webpage	http://127.0.0.1:8529/.	
We	have	to	login	to	this	interface	and	select	a	necessary	database.	To	import	the	
dataset	it	is	necessary	to	create	a	new	collection	of	data,	open	it	and	import	the	
file	(by	clicking	Import->Select	file->Import	JSON).	Unfortunately,	it	is	impossible	
to	import	CSV	file	by	this	way;	

• By	 command-line	 request	 through	 arangosh	 app.	 To	 import	 data	 we	 need	 to	
access	it,	enter	our	password.	To	import	file	we	can	use	the	following	line:	
	
arangoimp --file data.json --collection commits --create-collection
true

To	import	csv	file	one	should	add	--	type	csv	parameter.	In	case	of	necessity	we	can	
select	the	database,	host	and	other	parameters.	One	can	read	the	full	description	of	all	possible	
options	in	the	integrated	man	support	article	by	typing	“arangoimp	–help”.		

• The	third	opportunity	is	direct	interaction	between	database	and	application	
through	the	appropriate	driver.		

	
	

	
Figure	7.	Example	of	the	raw	dataset	

	

	
Figure	8.	Example	of	the	final	dataset	for	metro	line	U1.	

	

	
Figure	9.	Example	of	edges	dataset.	

	

According	to	the	ArangoDB	architecture,	all	the	vertices	should	consist	“_key”	attribute	
as	well	as	edges	“_from”,	“_to”	and	“_key”	attributes.	Sometimes	there	were	some	problems	
with	 data	 import,	 so	 it	 was	 necessary	 to	 convert	 data	 in	 csv	 format	 to	 json	 by	 webtool	
http://www.csvjson.com/csv2json.	

Furthermore,	some	problems	with	charset	also	were	met	because	original	 language	of	
the	 dataset	 is	 German.	 So,	 it	 was	 necessary	 to	 fix	 some	 damaged	 data,	 like	 missing	 special	
symbols	like	ä,	ö,	ü,	ë,	ß.	Moreover,	key	attributes	must	not	contain	such	symbols	and	spaces.	

	
Prototype	
	
To	make	the	prototype	we	will	use	Java	1.8	and	driver	for	ArangoDB	to	have	a	connection	

between	user	interface	and	the	application.	After	exporting	of	the	dataset	the	following	graph	
was	received:	

	
Figure	10.	Graph	of	U-Bahn	network	in	Wien	

	
Current	prototype	shows	the	opportunity	to	make	a	graph	search	through	the	shortest	

path	algorithm	of	the	database.	The	AQL	query	is:	
	
FOR h1, h2 IN OUTBOUND SHORTEST_PATH '"+st+"' TO '"+en+"' GRAPH

'U' RETURN [h1._key,h2._key]
	
Where	st	and	en	–	variables	of	key	for	start	and	end	stations.	It	is	clear	that	it	is	only	a	

prototype.	 In	 future,	 there	 is	 an	opportunity	 to	 extend	 functionality:	 add	graph	 visualization,	
additional	parameters	to	compute	and	improve	the	GUI	to	make	it	more	appropriate	for	mobile	
devices	and	user-experience.	

	
Figure	11.	Prototype	screenshot	

	
Other	use	cases	
	
The	proposed	 idea	 is	not	one	of	the	possible	projects	which	could	be	 implemented	by	

using	ArangoDB.	As	 it	was	mentioned	before,	ArangoDB	is	a	native	graph	database,	so	all	 the	
possible	project	which	could	be	executed	by	using	such	technology,	can	be	developed	on	its	base.	
For	example:	

• Flights	analysis;	
• Social-network	 analysis	 (e.g.	 for	 internal	 networks	 like	 in	 KPMG	 and	McKinsey	

companies);	
	
So,	 according	 to	 the	 information	 from	 ArangoDB	 GmbH	

(https://www.arangodb.com/why-arangodb/case-studies/thomson-reuters-fast-secure-single-
view-everything-arangodb/),	the	key	users	of	the	ArangoDB	are:	

• Thomson	Reuters	–	analytical	company	which	provides	 intelligence,	 technology	
and	human	analyses	and	expertise;	

• FlightStats	 –	 company	 which	 deals	 with	 flight	 information:	 historical	 analysis,	
current	monitoring	and	predictive	services;	

• and	lots	of	other	companies	and	academic	projects	by	Oxford	university,	KIT.	
	
	

Conclusion	
	
Finally,	 graph	 database	 is	 a	 really	 important	 type	 of	 data	 storage	 which	 provides	 an	

opportunity	to	store	and	represent	connected	data,	by	making	its	storing	more	similar	to	real	
world.	For	example,	relations	between	people,	transport,	financial	operations,	decision	making	
systems,	etc.		

ArangoDB	is	one	of	the	databases	which	provides	an	opportunity	to	store	data	in	such	
format.	 The	main	 advantage	of	 this	 database	 in	 comparison	with	 rivals	 –	 it	 is	 a	 native	 graph	
storage.	 Three	 types	 of	 store	 engines	make	 the	 system	 very	 flexible	 for	 different	 situations.	
Furthermore,	 it	 is	 an	excellent	 technology	 to	deploy	 a	 graph-depended	 system	 like	 transport	
routing,	 social	 network	 and	 other	 net-oriented	 cases	 with	 impressive	 performance	 and	 low	
system	requirements.	Firstly,	it	was	producted	in	2011,	so	it	has	nothing	in	common	with	some	
outdated	technologies,	which	could	be	reason	for	any	compatibility	and	performance	problems	
with	more	aged	solutions.	Fortunately,	the	licensing	system	provides	the	opportunity	to	use	a	full	
version	of	the	database	for	free	without	any	limitations.	

The	performance	of	ArangoDB	looks	really	impressive	when	it	deals	with	basic	operations	
such	as	single	read	and	write,	when	search	of	the	shortest	route	sometimes	takes	a	little	bit	more	
time	than	the	same	figure	of	its	rivals	(Postgres,	Neo4j	and	MongoDB).	But	the	most	important	
advantage	 of	 this	 technology	 is	 opportunity	 to	 store	 data	 at	 the	 same	 time	 in	 graph	 and	 in	
document	 store.	 It	 is	 really	 interesting	 feature,	 because	 it	 significantly	 reduces	 time	 of	 the	
development	for	projects	which	store	data	in	different	storages.		

Moreover,	ArangoDB	have	a	powerful	clustering	system	that	makes	it	really	impressive	in	
case	of	use	as	a	distributed	storage	with	different	roles	of	participants.	

After	 the	 research,	 some	 undocumented	 features	 and	 problems	were	 discovered	 (for	
example,	driver	connection,	performance,	etc.),	which	were	resolved	by	contacting	the	support	
or	looking	for	the	same	problem	on	Stackoverflow	website.	

As	 a	 part	 of	 the	 research,	 the	 prototype	 of	 routing	 application	 of	 public	 transport	 in	
Vienna	was	developed.	It	uses	searching	opportunity	of	the	database	to	find	the	shortest	way	
between	the	bus-/tram-stops/metro-stations.	The	developer	of	the	system	claimed	that	native	
language	AQL	is	very	useful	in	case	of	interacting	with	graph	data.	It	was	proofed	in	this	research.	

	

References	
1. https://www.arangodb.com/	
2. http://neo4j.com	
3. https://github.com/weinberger/nosql-tests	
4. http://db-engines.com	
5. http://stackoverflow.com	
6. https://github.com/jgraph/jgraphx	
7. http://open.wien.gv.at	
8. http://wienerlinien.at	
9. http://www.csvjson.com/csv2json	

