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Data Warehouses

_ Operational databases (OLTP) are not suitable for data analysis

• Contain detailed data

• Do not include historical data

• Perform poorly for complex queries due to normalization

_ Data Warehouses (DW) address requirements of decision-making users
⇒ Business Intelligence

_ A data warehouse is a collection of subject-oriented, integrated, nonvolatile, and
time-varying data to support data management decisions

_ Online analytical processing (OLAP) allow decision-making users to perform
interactive analysis of data

_ Data Warehouses typically store huge amounts of data
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Conventional Data Warehouses: Example
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Nested Relational Calculus
District

majorActivitypopulation area ... province

Province

...capitalid nameid name

_ Simple query: Name and population of districts of the Antwerp province

{d.name, d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.name = ‘Antwerp’)}

_ Aggregation query with group filtering: Total population by province provided
that it is greater than 100,000

{p.name, totalPop | Province(p)∧
totalPop = sum2({d.id, d.population | District(d) ∧ d.province = p.id})∧
totalPop > 100, 000 }

_ Corresponds to an SQL query with the GROUP BY and HAVING clauses
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Temporal Aggregation [Gamper et al. 2009]

_ Instantaneous Temporal Aggregation

• To each time instant t is associated an aggregation group valid at t

• Aggregation function applied to each group⇒ a single aggregate value at t

• Span Temporal Aggregation: Similar, at a coarser granularity

_ Moving Window Temporal Aggregation

• To each time instant t is associated a window w = [t−w, t+w′] and an aggregation
group valid at w

• Aggregation function applied to each group⇒ a single aggregate value at t

• Multi-Dimensional Temporal Aggregation: Similar, at a coarser granularity

_ Equivalent to temporal group composition and temporal partition composition
in [Vega López et al. 2005]
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OLAP Queries: Instantaneous Temporal Aggregation

Pollutant
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type
loadLimit
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_ By pollutant and day count the number of stations that exceeded the load limit

{p.name, t.date, countExc | Pollutant(p) ∧ Time(t) ∧
countExc = count1({w.station | WaterPollution(w) ∧ w.pollutant = p.id ∧

w.time = t.id ∧ w.load > p.loadLimit})}

OLAP Queries: Moving Window Temporal Aggregation

Pollutant

name
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...
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date
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name
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_ By station, pollutant, and day, give the 3-day moving average of load

{s.name, p.name, t.date, 3dMovAvg | Station(s) ∧ Pollutant(p) ∧ Time(t) ∧
3dMovAvg = avg2({w.id,w.load | WaterPollution(w) ∧ w.station = s.id ∧

w.pollutant = p.id ∧ ∃t1 (Time(t1) ∧ w.time = t1.id ∧
0 ≤ t.date − t1.date ∧ t.date − t1.date ≤ 3) }) }
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Spatio-Temporal Data Warehouses

_ Several proposals aim at extending DW and OLAP with spatial/temporal features

_ No commonly agreed definition of what is a spatio-temporal DW and what func-
tionality it should support

_ Proposed solutions vary considerably in the kind of data that can be represented
and the kind of queries that can be expressed

_ [Vaisman & Zimányi 2009] defined

• Conceptual framework for spatio-temporal DWs using an extensible type sys-
tem

• Taxonomy of several classes of queries of increasing expressive power extend-
ing the tuple relational calculus with aggregated functions [Klug 1982]

_ This provides the underlying basis for implementing spatio-temporal DWs
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A Taxonomy for Spatio-Temporal Data Warehouses

OLAP
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Dimensions
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Representing Spatial Data

_ Two complementary ways to represent spatial data

_ Object-based (vector) model: Objects of interest are stored with their spatial extent

_ Space-based (raster) model: Space is represented as a continuum, to each point in
space is associated a value of a phenomenon of interest
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Spatial Data Warehouses: Example
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Spatial Data Types [Güting et al. 2000]

_ Spatial types: point, points, line, region

point points line region

_ These types have an associated set of operations

Class Operations
Predicates isempty, =, ,, intersects, inside, <, ≤, ≥, >, before,

touches, attached, overlaps, on border, in interior
Set Operations intersection, union, minus, crossings,

touch points, common border
Aggregation min, max, avg, center, single
Numeric no components, size, duration, length, area, perimeter
Distance and Direction distance, direction
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Spatial OLAP (SOLAP) Queries
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_ For stations located on the Schelde river, give the average content of lead in the last
quarter of 2008

{s.name, avgLead | Station(s) ∧ ∃r,∃p (River(r) ∧ r.name = ‘Schelde’ ∧
intersects(r.geometry, s.geometry) ∧ Pollutant(p) ∧ p.name = ‘Lead’ ∧

avgLead = avg2({w.id,w.load | WaterPollution(w) ∧ w.station = s.id ∧
w.pollutant = p.id ∧ ∃t (Time(t) ∧ w.time = t.id ∧
t.date ≥ 1/10/2008 ∧ t.date ≤ 31/12/2008) }) )}
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Spatial Aggregation: Object Based
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Spatial Aggregation Queries
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_ Union of the geometries of the districts in which the average content of lead in the
last quarter of 2008 was greater than the load limit

union({d.geometry | District(d) ∧ ∃p (Pollutant(p) ∧ p.name = ‘Lead’∧
avg2({w.id,w.load | WaterPollution(w) ∧ w.district = d.id ∧

w.pollutant = p.id ∧ ∃t (Time(t) ∧ w.time = t.id ∧
t.date ≥ 1/10/2008 ∧ t.date ≤ 31/12/2008) })

> p.loadLimit) }
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Temporal Data Warehouses

Pollutant

name 

type
...

C
a

te
g

o
rie

s

Category

name 

description
...

LS

VT loadLimit

LS LS
Water

Pollution

commonArea

load

_ Arise when evolution of dimension instances is supported

• Also referred to as slowly changing dimensions [Kimball 96]

_ Temporality types: Valid time (VT), Transaction Time (TT), Bitemporal Time
(BT), Lifespan (LS), DW loading time (DWLT)

_ Temporality represented using moving types moving(α) where α is a base type

• Lifespan of Pollutant is of type moving(bool)

• Temporal attribute loadLimit is of type moving(real)

• Temporal relationship between Pollutant and Category is of type moving(id)

Moving Types [Güting et al. 2000]
_ Capture the evolution over time of base types and spatial types

_ Obtained by applying a constructor moving(α)

• A value of type moving(point) is a continuous function f : instant→ point

_ Operations on moving types

Class Operations
Projection to Domain/Range deftime, rangevalues, locations, trajectory,

routes, traversed, inst, val
Interaction with Domain/Range atinstant, atperiods, initial, final, present,

at, atmin, atmax, passes
Rate of change derivative, speed, turn, velocity
Lifting (all new operations inferred)

_ Lifting: Operations of moving types generalize those of the nontemporal types

• A distance function with signature moving(point)×moving(point)→ moving(real)
calculates the distance between two moving points

_ Semantics: result is computed at each time instant using the non-lifted operation
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Temporal OLAP (TOLAP) Queries
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_ By district, pollutant category, and month, give the average load

{d.name, c.name,m.month, avgLoad | District(d) ∧ Category(c) ∧Month(m)∧
avgLoad = avg2({w.id,w.load | WaterPollution(w) ∧ ∃t,∃p (Time(t) ∧

Pollutant(p) ∧ w.district = d.id ∧ w.time = t.id ∧ t.month = m.id ∧
w.pollutant = p.id ∧ val(initial(atperiods(p.category, t))) = c.id )})}

_ Here we consider the category of a pollutant valid at the day of the measure

_ Alternative: consider the current category of a pollutant

Spatio-Temporal OLAP (ST-OLAP)
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_ Arise when spatial objects evolve over time

_ Evolution captured by moving types moving(α) where α is a spatial type
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Spatio-Temporal OLAP (ST-OLAP) Queries
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_ By district and month, give the total number of persons affected by polluting clouds

{d.name,m.month, totalNo | District(d) ∧Month(m) ∧
totalNo = area(union({ traversed(p.commonArea) | AirPollution(p) ∧

p.district = d.id ∧ ∃t (Time(t) ∧ t.month = m.id)}))/
area(d.geometry) × d.population}

Spatial TOLAP (S-TOLAP)
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_ Arise when there are spatial objects/attributes and temporal dimensions

_ By pollutant and month, give the average load in stations of the Namur district, if it
is larger than the load limit during the reported month
{p.name,m.month, avgLoad | Pollutant(p) ∧Month(m) ∧ ∃d,∃s (District(d)∧

d.name = ‘Namur’ ∧ Station(s) ∧ inside(s.geometry,d.geometry) ∧
avgLoad = avg2({w.id,w.load | WaterPollution(w) ∧ ∃t (Time(t)∧

w.station = s.id ∧ w.time = t.id ∧ t.month = m.id ∧ w.pollutant = p.id)}) ∧
avgLoad > val(initial(atperiods(p.loadLimit,m.month))) )}
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Spatio-Temporal TOLAP (ST-TOLAP)
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_ Most general case: there are moving geometries and temporal dimensions

_ Number of days when the Gent district was under at least one cloud of carbon
monoxide (CO) with a load larger than the load limit valid when the cloud appeared

duration(union({t.date | Time(t) ∧ ∃a,∃d,∃c,∃p (AirPollution(a) ∧ District(d) ∧
Cloud(c) ∧ Pollutant(p) ∧ a.time = t.id ∧ a.district = d.id ∧
d.name = ‘Gent’ ∧ a.cloud = c.id ∧ c.pollutant = p.id ∧ p.name = ‘CO’∧
a.load > val(atinstant(p.loadLimit, inst(initial(at(c.lifespan, true))))) )}))

Spatio-Temporal Aggregation: Space Based (1)
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Spatio-Temporal Aggregation: Space Based (2)
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Continuous Fields

_ Non-temporal fields describe phenomena that change continuously in space

• land elevation, soil type, . . .

_ Represented by field types field(α) where α is a base type

_ Temporal fields describe phenomena that change continuously in space and time

• temperature, precipitation, . . .

_ Represented by field types moving(field(α)) where α is a base type

• moving(field(real)) defines a continuous function f : instant→ (point→ real)

_ Operators for moving fields as before

_ Field levels have a geometry attribute of type field(α) or moving(field(α))

_ Field dimensions are not connected to a fact relationship
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Spatial Data Warehouses with Continuous Fields: Example
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Field Types [Vaisman & Zimányi 2009]
_ Capture the variation in space of base types

_ Obtained applying a constructor field(α)

• A value of type field(real) is a continuous function f : point→ real

_ Operations on field types
Class Operations
Projection to Domain/Range defspace, rangevalues, point, val
Interaction with Domain/Range atpoint, atpoints, atline, atregion, at, atmin,

atmax, defined, takes,concave, convex, flex
Lifting (all new operations inferred)
Rate of change partialder x, partialder y
Aggregation operators integral, area, surface, favg, fvariance, fstdev

_ Lifting applies to fields

• The + operator with signature α × α→ α generalized by allowing any argument
to be a field as in field(α) × field(α)→ field(α)

_ Semantics: result is computed at each point in space using the non-lifted operation
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Spatio-Temporal OLAP with Continuous Fields

Time

date
...

classifSystem

date

characteristics

...

SoilType f()

Water 
Pollution

commonArea

load

District

name
...

Pollutant

name
...

_ For districts having at least 30% of their surface of clay soil, give the average load
of lead on February 1st, 2009
{d.name, avgLead | District(d) ∧ ∃p,∃s (Pollutant(p) ∧ p.name = ‘Lead’ ∧

SoilType(s) ∧ area(defspace(atregion(at(s.geometry, ‘Clay’), d.geometry)))/
area(d.geometry) ≥ 0.3

avgLead = avg2({w.id,w.load | WaterPollution(w) ∧ ∃t (Time(t) ∧
w.district = d.id ∧ w.time = t.id ∧ t.date = 1/2/2009 ∧ w.pollutant = p.id) }) )}

Spatio-Temporal OLAP with Temporal Continuous Fields
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_ For each river and month, give a field computing the average temperature of the
month at each point in the river

{r.name,m.month, temp | River(r) ∧Month(m) ∧
first = min({t.date | Time(t) ∧ t.month = m.id} ∧
last = max({t.date | Time(t) ∧ t.month = m.id} ∧
temp = avg({ atperiods(atregion( f .geometry, r.geometry), range(first, last)) |

Temp( f ) }) }
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Spatio-Temporal Data Warehouses: Conclusions

_ Spatio-temporal DWs result from combining GIS, OLAP, and temporal data types

• Temporal data types model geometries that evolve over time (moving objects)
and evolving (slowly changing) dimensions

• Field data types model continuous fields that change in space

• Temporal fields obtained by composing field and temporal data types

_ Our taxonomy for spatio-temporal OLAP queries

• characterizes features required by spatio-temporal DWs

• allows to classify different work in the literature

_ Our framework is at a conceptual level: implementation issues were omitted

• From abstract to concrete models: e.g., grid and TIN models for continuous fields

• Optimization issues: index structures, pre-aggregation, query optimization, . . .

Contents

_ Background

_ Spatio-Temporal Data Warehouses

y From Spatio-Temporal Data to Trajectory Data

• Trajectory Construction

• Visual Analytics

• Trajectory Mining

_ Conclusions & Future Work
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Typical Data Warehouse Architecture (Reminder)
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Movement Data
_ Typically, a temporal sequence of position records (id, x, y, t)

_ Collected nowadays in rapidly growing amounts due to the development of track-
ing technologies

• GPS, RFID, WiFi, mobile phones, banking transactions, sensor networks, . . .

_ Complexities

• Huge amounts: number of moving entities, number of records

• Geographic space with its structure and complexity

• Time domain at multiple granularities, linear and also multiple nested and over-
lapping cycles

• Data properties: imprecision (errors in location, time, attributes), irregular and/or
sparse sampling, missing values, . . .

• Large diversity of types of movement: constrained vs. unconstrained, vehi-
cles/persons/animals, 2D vs 3D . . .

• Real-world: ill-defined, application-dependent problems

Slide kindly lend by Gennady Andrienko 19



Examples of Movement Data: Migration of White Storks

Visual Analytics of Movement

Examples of movement data: migration of white storks

T k f 35 t k d i 8 b t 2 000 iti AnimalsTracks of 35 storks during 8 years, about 2,000 positions Animals

4
Tracks of 35 storks during 8 years, about 2,000 positions⇒ Animals

Examples of Movement Data: Cars in Milan

Visual Analytics of Movement

Examples of movement data: cars in Milan

2 075 216 iti d f 17 241 d i 1 k
Vehicles; 

 2,075,216 position records of 17,241 cars during 1 week network-constrained

5
2,075,216 position records of 17,241 cars during 1 week⇒ Vehicles, network-constrained

Slide kindly lend by Gennady Andrienko 20



Examples of Movement Data: Children in Amsterdam

Visual Analytics of Movement

Examples of movement data: children in Amsterdam

 GPS tracks of 303 schoolchildren playing an PedestriansGPS tracks of 303 schoolchildren playing an 
educational game in Amsterdam, about 57,000 points

Pedestrians

6

GPS tracks of 303 school children playing an educational game in Amsterdam, about 57,000
points⇒ Pedestrians

Examples of Movement Data: Air Traffic

Visual Analytics of Movement

Examples of movement data: air traffic

3D movement3D movement 427,652 position records of 17,851 planes during 1 day

 Temporal resolution: 1-5 minutes

9
427,652 position records of 17,851 planes during 1 day⇒ 3D movement
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From Movement to Trajectories [Parent et al. 2013]

_ Movement is continuous and never-ending

_ A trajectory is a finite meaningful movement segment

_ Trajectory data is semantically richer than spatio-temporal data

Trajectory Construction

Slide kindly lend by Stefano Spaccapietra 22



Cleaning Raw Data

_ Input: Raw data

_ Output: Cleaned raw data

_ Methods: filtering, smoothing, outlier removal, missing point interpolation, map-
matching, data compression, etc.

Segmentation into Trajectories

_ Input: Cleaned raw data

_ Output: Trajectories

_ Methods: various segmentation algorithms, based on spatial gaps, temporal gaps,
time intervals, time series, etc.

Slide kindly lend by Stefano Spaccapietra 23



Trajectory Structuring: Stop & Move Episodes

_ Input: Trajectories

_ Output: Structured trajectories (Stop, Move)

_ Methods: various stop identification algorithms, based on velocity, density, etc.

Velocity-Based Stop Identification

Slide kindly lend by Stefano Spaccapietra 24



Semantic Enrichment

_ Input: Structured trajectories

_ Output: Semantic trajectories

_ Methods: relate structured components (begin, end, stops, moves, . . .) to application
knowledge (i.e., meaningful objects)

Visual Analytics [Andrienko & Andrienko 2012]

_ Aims at helping people in

• distilling relevant nuggets of information from large amounts of data

• understanding the connections among relevant information

• gaining insight from data

_ Focuses on the division of labour between humans and machines

_ Goal: computational power amplifies human perceptual and cognitive capabilities

_ Visual representations: most effective means to convey information to human’s
mind, prompt human cognition and reasoning

_ Combines interactive visualizations with automated analysis techniques such as

• database processing

• data mining algorithms

• statistics

• geographical analysis methods

Slide kindly lend by Gennady Andrienko 25



Interactive Transformation of Time

_ Space-time cube on the right uses time transformation in respect to daily cycle

_ This technique enables interpretation of repeated trajectories

Trajectory Summarization

_ Left: major flows of tourists in Germany, according to panoramio.com photos

_ Right: major traffic flows in Milano, based on trajectories of about 20,000 cars

Slide kindly lend by Gennady Andrienko 26



Scalable Trajectory Clustering

_ Major clusters of trajectories extracted from the same data set (a week of 20K cars in Milano) presented
by the trajectory summarization method

Similarity of Situations

_ Hourly traffic situations in Milano (spatial distributions of counts of cars) are clustered; colors are as-
signed to clusters according to the similarity of situations

_ The colors are projected to 2D time plot (bottom right) showing similarities of situations over 7 days x
24 hours

Slide kindly lend by Gennady Andrienko 27



Visualization of Trajectory Attributes

_ For a cluster of trajectories, attribute values (speeds) are displayed on the trajectory wall display

_ This enables investigation of traffic jams

Trajectory Data Mining [Giannotti et al. 2011]

_ The process of analyzing large amounts of trajectory data to identify unsuspected
or unknown patterns that might be of value to an application

_ A particular step in the knowledge discovery process

_ Some key research questions

• Which spatio-temporal patterns are useful abstractions of mobility data?

• How to classify trajectories according to specific behavior?

• How to interpret in a meaningful way the discovered patterns?

• How to make such analysis privacy preserving in a measurable way?

Slide kindly lend by Chiara Renso 28



What are Trajectory Patterns (1) ?

_ Frequent sets/sequences of places visited

What are Trajectory Patterns (2) ?

_ Groups of objects moving together

Slide kindly lend by Chiara Renso 29



Trajectory Clustering

_ Cluster analysis: Find groups where objects in a group are similar (or near) to one
another and different from (or distant from) the objects in other groups

_ Some research questions:

• Which distance between trajectories?

• Which kind of clustering?

• What does a cluster mean?

∗ A representative trajectory?

The M-Atlas tool

_ A knowledge discovery support environment for trajectory data

_ Data, patterns, and background knowledge need to be progressively combined

_ T-patterns, T-clusters, etc. are the basic primitives within a Data Mining Query
Language (DMQL), supporting the entire knowledge discovery process

_ T-patterns, T-clusters, etc., once mined from a trajectory dataset, can be stored and
later used for query, mining, and interpreting in a progressive way
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Looking for Movement Patterns: From Where to Where

Select trajectories exiting the city from the centre towards North-West

Discovering Typical Routes

T-clustering divides trips based on route similarity
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Focus on the Three Larger Clusters

One group (red) goes straight to NW, other follow alternative routes

Temporal Analysis on Each Group

A small group of commuters in the morning and a larger one in the afternoon
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Temporal Analysis on Each Group

A group of commuters in the afternoon follows an alternative route: are they smart?

Conclusions

_ A large number of applications in a variety of domains are interested in analyzing
movement of some type of objects or phenomena

_ Nowadays, a huge amount of movement data that is being continuously captured

_ Current approaches to process these massive data sets are innapropriate

_ A complex and pipelined process is needed for transforming raw samples to
insightful knowledge

_ This process is by definition iterative, semi-automatic, application-dependent,
and multi-disciplinary

_ This raises many theoretical and implementation issues
• A forthcoming book [Renso et al. 2013] surveys some of them

_ Solutions proposed so far are just the first steps in the direction of mobility data
understanding

_ Exciting research domain, huge potential implications in our lives and in our planet
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_ R.H. Güting, M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.

References (2)
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