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HOW DO PEOPLE MOVE DURING THE DAY?

One day GPS tracks of 17.000 cars in the Milan (Italy) area

HOW DO PEOPLE MOVE DURING THE DAY?

Simple statistics: Spatial
and temporal distributions

1, ‘0suay eaeryy)

BPRUE]) ‘0JUOI0], ‘010 NMID 3® [eL




10/31/10

THE COMPLEXITY OF PEOPLE’S TRAVELS
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How long: 1 short trips, f ! ‘ )
ow long: several Short trips, few VEry long 0¢ - How far: most trips last less than two hours, a

few last up to 5 hours
Simple statistics do not hel
The average behavior makes no se

We need more complex techniques:
to fully understand mobility data

How fast (length & speed): long
travelers go slow (only slow trips
are very long up to 200 km), fast
travelers go short trips
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How can we understand
better the mobility
phenomena?

DESIGNING A MOBILITY KNOWLEDGE
DISCOVERY PROCESS!
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MOBILITY KNOWLEDGE DISCOVERY PROCESS

Patterns
|$ understanding

. . Mobility
Mindn gerns

Trajectory
modelling and
reconstruction,

GPS/GSM

Privacy Enforcement

data
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OUTLINE

o Mobility Data Mining

o Semantic enrichment of mobility patterns

o Environments for the support of knowledge
discovery process of mobility data

o What about Privacy?
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WHAT IS A MOBILITY PATTERN?

A TAXONOMY OF MOVEMENT PATTERNS

Movement patterns
Generic patterns Behavioral patterns
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TRAJECTORY PATTERNS...

...Frequent sets/sequences of places visited?
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TRAJECTORY PATTERNS...

... Groups of objects moving together?
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FREQUENT SEQUENCES IN TRAJECTORIES:
T-PATTERN

MOoOBILITY DATA MINING
RAW TRAJECTORIES

Fosca Giannotti, Mirco Nanni, Fabio Pinelli,
Dino Pedreschi: Trajectory pattern mining.
Data Mining is the automatic extraction of useful, KDD 2007: 330-339
often previously unknown information from large
datasets.

FREQUENT PATTERN MINING A SPATIO-TEMPORAL SEQUENTIAL PATTERN

A sequence of visited regions, frequently visited in the

Discover frequent routes, where )
specified order with similar transition times

frequency is measured by a parameter
called support.
In trajectories the sequence should be preserved

(xo,y0) —5 (w1, y1) —2 -+ 5 (2n,y)
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T-PATTERNS FOR TRAJECTORIES T-PATTERN DISCOVERY

. . o . 1. Find Regi f Interest
o A T-pattern T, occurs in a trajectory if it contains a sub- 1nd Segtons ot nferes

sequence S such that:
« each (x;y; in Tp matches a point (x;,y;) in S, and
« the transition times in Ty are similar to those in S

Given as a parameter or
computed as dense regions

2- Find candidate patterns (similar Trajectory

1010, ‘osuay eavryy)

o What does “matches” mean in space/time?

o Approximation matches
= a notion of spatial neighborhood
= a notion of temporal tolerance
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Q 3- Extract frequent patterns

with given support

EXAMPLES T-PATTERNS

TRAJECTORY CLUSTERING:
T-CLUSTERING

g

1oIn ], ‘osuay eavIyy)

t1in[ 400, 513]
2in [41,61]

reschi. Time-focused clustering of trajectories of moving objects.
i%t Information Systems, 2006

Andri , Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D.: A
Visua lytics Toolkit for Cluster-Based Classification of Mobility Data.
In: 8STD, pp. 432-435 (2009)

03u010[, ‘0107 WL 18 [FLIOIN, ‘0SUay ©.

Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko.
Visually-driven analysis of movement data by progressive clustering. J. of
Information Visualization, 2008
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TRAJECTORY CLUSTERING

Cluster Analysis: Find groups where objects in a group
will be similar (or near) to one another and different
from (or distant from) the objects in other groups

Key Questions:
» Which distance between trajectories?
» Which kind of clustering?
+ What is a cluster ‘mean’ in our case?
o A representative trajectory?
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TRAJECTORY CLUSTERING

o General requirements:
» Non-spherical clusters should be allowed
o E.g.: A traffic jam along a road = “snake-shaped” cluster

« Tolerance to noise
» Low computational cost

o A suitable candidate: Density-based clustering
+ OPTICS (Ankerst et al., 1999)
o 2  T(rajectory)-OPTICS

TRAJECTORY CLUSTERING

Euclidean syncronized distance is too complex to
compute for huge trajectory dataset:
The Distance function is parametric

Choose a distance function:

Clustered by OPTICS with distance threshold = 1200.0 and minimurn nurnber of objects = 3. Distance =
 starts function: Starls & end 2

C Ends

" Starts & end

" Starts, ends & midpoints

€ Starts, ends &time steps

€ Spatio temporal synchronization
€ AVG Euclidean temporal based
" Route similarity & dynamics.

| Cancel

] Putcluster nurbers i a ablecolumn

VISUALLY-DRIVEN CLUSTERING

o Progressive refinement through visually-
driven exploration

o Progressively complex similarity functions:

« First, create a large clusters of trajectories using the
“common ends” distance function,

» Concentrate on the (big) cluster of inward trajectories
(routes towards the city center)

» Refine by creating subclusters using a more sophisticated
distance function (route similarity)

Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D.: A Visual Analytics

Toolkit for Cluster-Based Classification of Mobility Data. In: SSTD, pp. 432-435 (2009) =

Rinzivillo, Pedreschi, Nanni, Giannotti, Andrienko, Andrienko. Visually-driven analysis of
movement data by progressive clustering. J. of Information Visualization, 2008
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ANALYTICAL EFFECT OF PROGRESSIVE CLUSTERING

| Clustering /042007 (30 min e

Distance funcion Routs smiaiy
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SEMANTIC ENRICHMENT OF
MOBILITY PATTERNS
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IIFCORPORATING SEMANTICS: A STEP TOWARDS
THE USER

1. May the data mining tasks be more accurate if
data are semantically enriched?
Data Mining on semantic trajectories
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DATA MINING ON SEMANTIC
TRAJECTORIES

Bogorny, V.; Kuijpers, B.; Alvares, L.O. ST-DMQL: A Semantic
Trajectory Data Mining Query Language. In: International

2. May we deduce more meaning from data and
patterns?
Semantic Pattern interpretation

5. May data and patterns be re-combined and

EpRUE) ‘0JU0I0], 0T0Z IO ¥ [FHOIN, ‘0SU BIet)

1ed?
queried? ° Journal of Geographical Information Science. Taylor and
Semantich-Rich Environments for Mobility KDD Francis . pp.1245 - 1276, vol 23 (10)
Alvares, L.O, Oliveira, G., Heuser, C.A., Bogorny, V. A
e framework for Trajectory Preprocessing for Data Mining. In:
SEKE (21st International Symposium on Software Engineering
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GEOMETRIC PATTERNS VS SEMANTIC PATTERNS

*Difficult to interpret from the user’s point of view
*Do not discover semantic patterns, which can be
independent of x,y coordinates

B

sc

TA
H Hotel (R Res'aurar\t‘Cinem

Semantic trajectory Pattern

(a) Hotel to Restaurant, passing by SC
(b) (b) go to Cinema, passing by SC

5

SEMANTIC TRAJECTORY MINING

and moves

1) SMoT (intersection-based)
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2) CB-SMoT (clustering-based)

(1) g

SMoT: intersection of the trajectory with interesting places (for the

7.: Kuijpers, B.; Macedo, J. A. F.; Moelans, B.; Vaisman, A.: A Mgl application) for a minimum amount of time
for Enrichin “with Semantic Geographical Information... In: Proc. of the ACUEZBIA CB-SMoT: Cluster single trajectories based on speed: low speed >
International Symposium on Advances in Geographic Information Systems (ACM-GIS'07) important place

Cpisoo- 1930

Work of Bogorny et al. propose methods to compute stop
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FREQUENT PATTERNS ON SEMANTIC
TRAJECTORIES

Large Sequences of Length 2

(41803_ruas_tuesday,41803_ruas_tuesday) Support: 9
(41803_ruas_tuesday,66655_ruas_tuesday) Support: 5
(41803_ruas_monday,66655_ruas_monday) Support: 5
(41803_ruas monday,41803_mjls_nLonday) Support: 11
kn day) > Support: 5
(41803 ruas. thursday,41803 ruas, thursday) Support: 13
(41803_ rua; thursday,O unknown_thursday)  Support: 6

Day of the week

Spa;ial feature type (stop name)

nesdayA1803 ruas_wednesday)

Support: 7

TRAJECTORY KNOWLEDGE DISCOVERY
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Trajectory
models and
patterns

Mining

Trajectory
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ATHENA: SEMANTIC-RICH MOVEMENT ANALYSIS THE ATHENA TOOL

o Supports the post processing phase of the KDD
process.

o Based on an ontology to represent domain knowledge
and to infer the semantic types of the patterns (or
trajectories).

Which are the home- .
ik (D To answer these questions we

And the common need to define what is a home-
behaviors of them? work trajectory (or pattern)

uoy wer)

o Classification of movement patters (trajectories) in
domain concepts based on the semantic characteristics

) 38 (L0, “0SUSY RALIY))

The concept of the home-work
trajectory can be encoded ina
formal framework to
automatically infer which
trajectories are home-work
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Miriam Baglioni, José Anténio Fernandes de Macédo, Chiara Renso, Roberto Trasarti, Nisda¢a
Wachowicz: Towards Semantic Interpretation of Movement Behavior. AGILE Conf. 2009

THE REASONING SYSTEM OF ATHENA Running Example: Identifying the Commuters

Trajectory data populates
a domain ontology and
the automatic reasoning We query the system to
engine classifies 7 identify the trajectories whose
trajectories into the * “semantic” type is commuter,
concept satisfiyng the i.e. satisfying the ontology
defintion. definition

Trajecto: Commuter
Pattern

Commuter trajectory = a trajectory frequently starting outside the city,
stopping inside the city fora long time and going back outside the city

an

SELECT t.id, t.object
FROM Milano_tr
WHERE ‘Commuter’ in

SEMANTIC (t.object)

eprur)) ‘0juoaoy, 010z WD I° [PHOIN, ‘0suay
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TRAJECTORY KNOWLEDGE DISCOVERY
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Patterns
understanding

. Trajectory

models and
patterns

Mining

Trajectory
modelling and
reconstruction

DD Support

GPS/GSM Privacy Enforcementinvironment

data

ENVIRONMENTS FOR THE SUPPORT OF
MOBILITY DATA KDD PROCESS
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R. Tra

 a 'he DAEDALUS framework: progressive querying and
erment data. ACM-GIS 2008

mining ofrﬁ

Roberto Tri ti, Salvatore Rinzivillo, Fabio Pinelli, Mirco Nanni, Anna
Monreal®, Chiara Renso, Dino Pedreschi, Fosca Giannotti: Exploring Real
Mobility Datt.ith M-Atlas. ECML/PKDD 2010

Bogorny, V.; Kuijpers, B.; Alvares, L.O. ST-DMQL: A Semantic Trajectory
Data Mining Query Language. In: International Journal of Geographical
Information Science. Taylor and Francis . pp.1245 - 1276, vol 23 (10,

SEMANTIC TRAJECTORIES DATA MINING: WEKA-
STDM

Data Mining
| Frequent | |89quemial ‘ | Associate ‘ Data Mining
L L o
5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
7
3
‘Adding Domain Knowledge g
=
Generate Stops Discretization §
Preprocessing :T
o)
z
g
s
.............. z
g
Data and g
Knowledge Base g
g
5

\Bogorny, V.; Kuijpers, B.; Alvares, L.O. ST-DMQL: A Semantic Trajectory Data Mining
Language. In: International Journal of Geographical Information Science. Taylor and b
bpp. 1245 — 1276, vol 23 (10)

5.

SEMANTIC TRAJECTORIES DATA MINING:
WEKA-STDM — CONT.

(& Trajectory
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THE M-ATLAS TOOL

A knowledge discovery support environment for
trajectory data:

o Data, Patterns and background knowledge need to be

progressively combined

o T-patterns, T-clusters, etc. are the basic primitive
within a DMQL — Data Mining Query Language,
supporting the entire KDD process

o T-patterns, T-clusters, etc., once mined from a
trajectory dataset, can be stored and later used for
query, mining & interpreting in a progressive way

Roberto Trasarti, Salvatore Rinzivillo, Fabio Pinelli, Mirco Nanni, Anna Mon
Chiara Renso, Dino Pedreschi, Fosca Giannotti: Exploring Real Mobility Datd
M-Atlas. ECML/PKDD 2010
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LOOKING FOR MOVEMENT PATTERNS: FROM WHERE

TO WHERE

DISCOVERING TYPICAL ROUTES

T-clustering divides trips based on route similarity

Focus on three larger clusters

One group (red) goes straight to NW, other follow
alternative routes

epeue) ‘ojudl
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A small group of commuters in the morning and a
larger one in the afternoon

Temporal analysis on each group

wpeuw)

Temporal analysis on each group

A group of commuters in the afternoon follows an
alternative route: are they smart?

PRIVACY ASPECTS

Today, tracking is an
everytime / everywhere
process

« the places we visit, we
live or work at

BIG BROTHER

 the people we meet

IS WATCHING

are extremely sensitive:

Therefore, privacy-
preservation is a must!]

) ‘00107, ‘0108 INBITD.

What is required:

Privacy-aware KDD process

7

DE-IDENTIFY IS NOT ENOUGH..!

“De-identified mobility data are enough to reconstruct

aggregate movement behaviour, pertaining to groups 2

of people”.

Is de-indentified data really anonymous?

YU010, ‘0T0Z INSID 78 [eroIn, ‘ost
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UNFORTUNATELY NOT! SPATIO-TEMPORAL LINKAGE IN

MOBILITY DATA
A POSSIBILE SOLUTION: PRIVACY BY DESIGN

[almost every day Mon-Fri

1d: between 7:45 — 8:15]
A B
34567 Hv
A [almost every day Mon-Fri
B between 17:45 — 18:15]

By intersecting the phone directories of locations A and B
we find that only one individual lives in A and works in B
1d:34567 = Prof. Smith

Then you discover that on Saturday night 1d:34567
usually drives to the city red lights district...

Hiding personal identifiers may not be sufficient
Need for new privacy-preserving DM techniques

Privacy by Design

Natural trade-off between privacy quantificati
and data utility
Analysis results should not be altered significantly
Privacy has to be maximized

wpruR) ‘0ju0aog, 0107 WL 1¢ [PLOIN, 0Suny vrery)
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CONCEPTS FOR LOCATION PRIVACY -

HOW DO PEOPLE (TRY TO) STAY ANONYMOUS?
CAMOUFLAGE

Location Perturbation (]

either by camouflage The user location is represented with
pretending to be someone else or somewhere else a fake value

Spatial Cloaking — Generalization
The user exact location is represented
as a region that includes the exact
user location

or by hiding in the crowd
becoming indistinguishable among many others

Spatio-temporal generalization

Generalize also the temporal .
dimension

wpruR) ‘0ju0ao], 010z WD ¥ [PLON, 0SUny vIer)
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CONCEPTS FOR LOCATION PRIVACY
HIDING IN THE CROWD

o k-anonymity a
« User’s position is b
generalized to a region
containing at least k

users
+ The user is A
indistinguishable among i ﬁ h
other k-1 users ‘ ~ o T
i)

v o
L,
i‘i‘“

10-anonymity

=
0, ‘0102 WD

EXAMPLE OF SPATIAL GENERALIZATION

Anonymization through generalization
»  Extract characteristic points from the trajectories
» Group the extracted points in space
« Partition the territory into Voronoi cells around the centroids of
the groups
= Divide the trajectories into segments that link Voronoi cells
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‘Glannotti-Pedreschi gs)
Mobility, Data Mining and Privacy

I

Mobility, Data Mining
and Privacy
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o Mobility Data Clustering
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