Semantic modeling and vario-scale geo-information

4-11-2011

Peter van Oosterom

Keynote presentation at SeCoGIS 2011, 1 November 2011, Brussels 5th International Workshop on Semantic and Conceptual Issues in GIS

Two steps, two parts in presentation

- 1. Multi-scale modelling (and attention to DLM-DCM)
- 2. Vario-scale modelling

Context of the research

Applying DLM and DCM concepts in a multi-scale data environment

Fig. 2.3. The ATKIS model (after Grünreich, 1985). Printed by permission.

Joint work with Martijn Meijers (TU Delft) Jantien Stoter (TU Delft/Kadaster) Dietmar Grünreich (BKG, Germany), Menno-Jan Kraak (ITC, Univ Twente)

TUDelft

GDI 2010: Generalization and Data Integration, 20-22 June 2010, Boulder USA

Sheng Zhou, Nicolas Regnauld and Carsten Roensdorf (OS) ICA Generalisation 2008 Workshop, Montpellier

An example of Multi-Version MR-DLM/MR-SDB

Applied in Germany

TUDelft

DLM-DCM balancing

DLM contains captured object according to specs
 → geographic objects

- DCM contains transformation of objects for visualization
 - depends on symbology
 - may be non-trivial transformation
 - \rightarrow map objects
- What should data producers store and maintain?

4 DLM-DCM balancing options

- Only store map objects
 → mixes real world and map (bad for analysis?)
- Only store geographic objects, derive map objects when needed
 → full automation difficult, non-optional quality
- Store both map and geographic object (multi-representation)
 →for update also explicit links (somewhat redundant)
- Adapt geographic object for default efficient visualization
 → no changes for needed easy visualization, but harder cases (displacement) might change geographic object within specs

Implicit-explicit storage of DLM-DCM

DLM-DCM in multi-scale database

- The DLM-DCM balancing question re-occurs per scale
- Assuming 5 scales and option 3 (both geographic and map objects)
 → 10 models to be stored, maintained and kept consistent
- Trend to provide higher rates of updates, so becomes challenge...
- Explicit links between corresponding DLM-DCM objects and between DLM object at adjacent scales (and perhaps even between DCM objects) might this easier
 - \rightarrow prize is now also maintaining many references

DLM modified approach, option 4

- In multi-scale environment, the DLM_{i+1} does deform the objects from the scale below DLM_i (via aggregate, remove, simplify,...) within limits as in specs for this scale.
- Why not allow changes (within spec) effective for easier visualization (e.g. displace)?
 - this would save half of the instances: $10 \rightarrow 5$ (and links)
 - assures never inconsistencies between DLM-DCM
- But...

I want to do analysis on my DLM and changes distort the result \rightarrow true, but within bounds given by spec and if you need more accuracy then go to the next more detailed DLM (digital world)

The multi-scale IMTOP (NL)

DLM-DCM separation was tried

 \rightarrow model and cartographic generalization rules, constraints and optimization goals attached to resp. DLM and DCM object classes, but often classification was hard/impossible

 \rightarrow multi-scale model already quite complicated without DLM-DCM separation

Part of the abstract layer (NEN3610)

Top10 layer

Top50 layer

Top100 layer

Roads

Buildings

Vario-scale as ultimate solution?

- Still the `multi-scale (adapted) DLM only' has some drawbacks
 → why redundant store same feature at multiple scales?
- Vario-scale is option, that avoids redundancy and also offers inbetween scales (e.g. to support smooth-zoom) \rightarrow tGAP
- However, improvements needed (and possible):
 - 1. Road collapses to line (kind of multi-rep)
 - 2. Certain concepts do not exits at largest scale but can only be introduced and medium/smaller scales (roundabout)
 - 3. Certain types of changes (again difficult to compute with simple structure; typify, displace,...), add second representation

Towards a true vario-scale structure supporting smooth-zoom

Joint work with Martijn Meijers (patent pending nr. OCNL 2006630 prepared by Dirk de Jong, European Patent Attorney, Vereenigde) ICA 14th Generalisation Workshop, 30 June-1 July 2011, Paris, France

TUDelft

Contents

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

This is **not** 'yet another tGAP story'... (generalized area partitioning) Because... SSC, space-scale cube

Early use of additional dimension for scale (importance) representation

Generalized Area Partitioning-tree (GAP-tree) history

- Normal GAP-tree (van Oosterom 1993) areas are stored as independent polygons → computed redundancy (both at given scales and between scales)
- Vermeij et al. 2003 proposed topological GAP-tree: edges and faces (with importance range, consider as height), reduced redundancy between neighbors
 → scale/imp with 3D prisms

Contents

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

- 1. Collapse road (split area, merge neighbours)
- 2. Delete forest (merge with farmland)
- Simplify boundary (between water/farmland)

2D+scale → 3D integrated

- tGAP DAG to 3D structure
- Parent-child:
 →neighbour above-below

Delta scale → no change at all or local shock

TUDelft

Contents

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Smooth tGAP

- Remove local shock
 → no horizontal faces
- Gradual changes
 → less vertical faces
- Resulting polyhedron

 → representation of single object for all its scales

Delta scale \rightarrow delta map

TUDelft

Non-horizontal slice \rightarrow mixed scale map

Non-flat slice → mixed scale map (fish-eye example)

source: Harrie et al, 2002, ISPRS Archives 34(4):237-242

TUDelft

Contents

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Smooth simplify

- Shock change:
 - 2 rectangles
 - 1 triangle

- Smooth change:
 - 3 triangles

Smooth merge for convex neighbour

- make #nodes shared and target bnd equal (n)
- 2. connect node pairs
- 2 triangles + n-3 quadrangles
- 4. if non-flat →
 split quadrangle
 into 2 triangle
- 5. Merge planar neighbours

Non-convex neighbour → subdivide in convex parts

m-shaped neighbour

neighbour with hole

(note: smooth collapse/split similar to smooth merge)

TUDelft

Contents

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Selection based on (n+1)D overlap from space-scale cube

Simple initial map

Progressive initial map (sorting lower→higher detail)

(n+1)D overlap selection for zooming

Progressive zoom-in (normal sorting order)

Progressive zoom-out (reverse sorting order)

(n+1)D overlap selection for panning

Normal panning

Progressive panning (normal sorting order)

Yario-scale 39

Contents

- Introduction
- tGAP example
- Smooth tGAP \rightarrow SSC
- Creating SSC
- Using SSC
- Conclusion

Some future work

- Semantic aspect (incl. attributes) needs further attention
- Lower dimension primitives (lines, points) do also fit in the structure, but need further investigations
- Not per se object by object creation (but multiple objects in parallel → see paper)
- Sliver before disappearing
- Lot of implementing and testing needed

Conclusions, true vario-scale

- tGAP is well suited for web environment (progressive)
- True vario-scale nD maps based on (n+1)D representations and slicing (selecting) with hyperplanes:
 - tGAP structure translates 2D space and 1D scale in an integrated 3D topological representation: no overlaps and no gaps (in space and scale)
 - Starting with 3D space and adding scale results in 4D
 - Starting with 3D space and time (history) and adding scale results in 5D topological structure (again no gaps/overlaps in space, time or scale), well defined neighbors in space, time and scale directions

3D smooth merge (more details in patent claim)

Generic 3D smooth merge

High detail

3D Smooth simplify

Simplify boundary of merged object, two options: ZII' 1. Keep block shape ZII ZII" 2. Tilted roof shape

TUDelft

