Range Queries over a Compact Representation of Minimum Bounding Rectangles

N. R. Brisaboa¹ M. R. Luaces¹ G. Navarro² D. Seco¹

¹Database Laboratory, University of A Coruña, Spain ²Department of Computer Science, University of Chile

November 1, 2010

2 SW-Tree

3 Experiments

4 Conclusions and Future Work

Diego Seco Range Queries over a Compact Representation of MBRs

・ロン ・部 と ・ ヨ と ・ ヨ と …

Motivation

Spatial indexes are a key component in GIS

- Large collections of geographic data
- Geographic operations are very complex
 - Sequential search is not feasible
- Filter/Refine Strategy
 - Minimum Bounding Rectangle (MBR)

イロト イポト イヨト イヨト

Motivation

Diego Seco

Motivation

Diego Seco

Motivation

Diego Seco

Motivation

Motivation

Diego Seco

Motivation

Diego Seco

Motivation

- Typical requirements of spatial indexes:
 - Dynamic operations: inserts, deletes, updates, ...
 - Secondary storage management
 - Space consumption is a less important issue
 - . . .
- Nowadays, some of these requirements have changed
 - Static data collections are useful in many domains
 - Memory hierarchy evolution
 - Reduction of the main memory cost
 - New levels (flash memory)
- Our goal is a new spatial access method: SW-Tree
 - Static geographic data collections
 - Main memory: compact
 - Efficiency similar to classical indexes

< ロ > < 同 > < 回 > < 回 > < □ > <

Motivation

- Typical requirements of spatial indexes:
 - Dynamic operations: inserts, deletes, updates, ...
 - Secondary storage management
 - Space consumption is a less important issue
 - . . .
- Nowadays, some of these requirements have changed
 - Static data collections are useful in many domains
 - Memory hierarchy evolution
 - Reduction of the main memory cost
 - New levels (flash memory)
- Our goal is a new spatial access method: SW-Tree
 - Static geographic data collections
 - Main memory: compact
 - Efficiency similar to classical indexes

イロト 不得 トイヨト イヨト 二日

Motivation

Quote

"The time difference between accessing a piece of information in RAM vs reading it from disk is similar to the time difference between picking up a pen from this desk and taking a plane to Spain and picking up a pen from my desk"

イロト イポト イヨト イヨト

Motivation

- Typical requirements of spatial indexes:
 - Dynamic operations: inserts, deletes, updates, ...
 - Secondary storage management
 - Space consumption is a less important issue
 - . . .
- Nowadays, some of these requirements have changed
 - Static data collections are useful in many domains
 - Memory hierarchy evolution
 - Reduction of the main memory cost
 - New levels (flash memory)
- Our goal is a new spatial access method: SW-Tree
 - Static geographic data collections
 - Main memory: compact
 - Efficiency similar to classical indexes

イロト 不得 トイヨト イヨト 二日

Motivation

- Typical requirements of spatial indexes:
 - Dynamic operations: inserts, deletes, updates, ...
 - Secondary storage management
 - Space consumption is a less important issue
 - • •
- Nowadays, some of these requirements have changed
 - Static data collections are useful in many domains
 - Memory hierarchy evolution
 - Reduction of the main memory cost
 - New levels (flash memory)
- Our goal is a new spatial access method: SW-Tree
 - Static geographic data collections
 - Main memory: compact
 - Efficiency similar to classical indexes

イロト 不得 トイヨト イヨト 二日

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

SW-Tree

Remind the problem...

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

SW-Tree

... and forget the refinement step

<ロ> <部> < 部> < き> < き> < き</p>

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Overview

Orthogonal problem

Work with the rank of the coordinates

Decomposition of a *d*-dimensional problem into its *d* dimensions (*d* = 2)

Solve d (one-dimensional) subproblems and intersect their results

Transform the original space

 A one-dimensional interval can be represented as a 2-dimensional point

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Overview

- Orthogonal problem
 - Work with the rank of the coordinates
- Decomposition of a *d*-dimensional problem into its *d* dimensions (*d* = 2)
 - Solve d (one-dimensional) subproblems and intersect their results
- Transform the original space
 - A one-dimensional interval can be represented as a 2-dimensional point

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Overview

- Orthogonal problem
 - Work with the rank of the coordinates
- Decomposition of a *d*-dimensional problem into its *d* dimensions (*d* = 2)
 - Solve d (one-dimensional) subproblems and intersect their results
- Transform the original space
 - A one-dimensional interval can be represented as a 2-dimensional point

イロト イポト イヨト イヨト

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Overview

- Orthogonal problem
 - Work with the rank of the coordinates
- Decomposition of a *d*-dimensional problem into its *d* dimensions (*d* = 2)
 - Solve d (one-dimensional) subproblems and intersect their results
- Transform the original space
 - A one-dimensional interval can be represented as a 2-dimensional point

イロン 不同 とくほう イロン

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

- Gabow et al. (1984)
- Work with the rank of the coordinates
- Practical solution:
 - Store the real coordinates into sorted arrays
 - Perform binary searches to translate real queries to the rank space

(a)

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

Diego Seco

Range Queries over a Compact Representation of MBRs

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

1	2	3	4	5	6	7	8	9	10
-9.1	-8.9	-5.9	-4.7	-4.5	6.2	6.4	8.4	15.3	18.8

Diego Seco Range Queries over a Compact Representation of MBRs

・ロト ・四ト ・ヨト ・ヨト

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

1	2	3	4	5	6	7	8	9	10
-9.1	-8.9	-5.9	-4.7	-4.5	6.2	6.4	8.4	15.3	18.8
				-4.6			8.5		

Diego Seco Range Queries over a Compact Representation of MBRs

イロン イロン イヨン イヨン

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

- Coordinates encoding:
 - Scaling
 - Differential compression

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Overview Othogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

Coordinates encoding:

Scaling

Differential compression

1	2	3	4	5	6	7	8	9	10
-9.1	-8.9	-5.9	-4.7	-4.5	6.2	6.4	8.4	15.3	18.8

<ロ> <同> <同> < 同> < 同>

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

Coordinates encoding:

Scaling

Differential compression

1	2	3	4	5	6	7	8	9	10
-9.1	-8.9	-5.9	-4.7	-4.5	6.2	6.4	8.4	15.3	18.8
-91	-89	-59	-47	-45	62	64	84	153	188

<ロ> <同> <同> < 同> < 同>

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

Coordinates encoding:

Scaling

Differential compression

1	2	3	4	5	6	7	8	9	10
-9.1	-8.9	-5.9	-4.7	-4.5	6.2	6.4	8.4	15.3	18.8
-91	-89	-59	-47	-45	62	64	84	153	188
0	2	30	12	2	107	2	20	69	35

<ロ> <同> <同> < 同> < 同>

Overview Othogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Orthogonal Problem

Coordinates encoding:

Scaling

Differential compression

1	2	3	4	5	6	7	8	9	10
-9.1	-8.9	-5.9	-4.7	-4.5	6.2	6.4	8.4	15.3	18.8
-91	-89	-59	-47	-45	62	64	84	153	188
0	2	30	12	2	107	2	20	69	35
$\phi(0)$	$\phi(2)$	ϕ (30)	$\phi(12)$	<i>φ</i> (2)	$\phi(107)$	<i>φ</i> (2)	$\phi(20)$	ϕ (69)	$\phi(35)$

 ϕ () coding integers function (e.g. γ -codes, δ -codes, Rice, Vbytes)

イロト イポト イヨト イヨト

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

Diego Seco Range Queries over a Compact Representation of MBRs

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

Diego Seco Range Queries over a Compact Representation of MBRs

< □ > < □ > < □ > < □ > < □ > .

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

Diego Seco Range Queries over a Compact Representation of MBRs

<ロト <回 > < 注 > < 注 > … 注

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

Diego Seco Range Queries over a Compact Representation of MBRs

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

Diego Seco Range Queries over a Compact Representation of MBRs

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

- Decomposition of a *d*-dimensional problem into its *d* dimensions (*d* = 2)
- *d*-dimensional range query decomposition:
 - d one-dimensional interval intersection problems
- Interval Intersection:
 - Interval trees, Segment trees, Priority trees (Ω(log n + m))
 Schmidt'09 (O(1 + m))

イロン 不同 とくほう イロン

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Decomposition

- Decomposition of a *d*-dimensional problem into its *d* dimensions (*d* = 2)
- *d*-dimensional range query decomposition:
 - d one-dimensional interval intersection problems
- Interval Intersection:
 - Interval trees, Segment trees, Priority trees $(\Omega(\log n + m))$
 - Schmidt'09 (*O*(1 + *m*))

< ロ > < 同 > < 回 > < 回 > < □ > <

Overview Orthogonal Problem Decomposition **Transformation** Wavelet Tree-based Solution

Transformation

Overview Orthogonal Problem Decomposition **Transformation** Wavelet Tree-based Solution

Transformation

Overview Orthogonal Problem Decomposition **Transformation** Wavelet Tree-based Solution

Transformation

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Overview Orthogonal Problem Decomposition **Transformation** Wavelet Tree-based Solution

Transformation

<ロ> <同> <同> < 同> < 同>

Transformation

- A one-dimensional interval can be represented as a 2-dimensional point
- Solve an interval intersection query in the original space is equivalent to solve a two-sided range query in the transformed space:

■
$$q = [l^q, u^q]$$

■ $(l_i, u_i)/l_i \le u^q \land u_i \ge l^q$

- Two-dimensional range reporting:
 - Wavelet tree $(O(m \log(n/m) + m))$
 - K-d-tree $(O(\sqrt{n} + m))$
 - Alstrup et al. $(O(\log \log(n) + m))$
 - Bose et al. $(O(\frac{m \log(n)}{\log \log(n)}))$

イロン 不同 とくほう イロン

Overview Orthogonal Problem Decomposition **Transformation** Wavelet Tree-based Solution

Transformation

- A one-dimensional interval can be represented as a 2-dimensional point
- Solve an interval intersection query in the original space is equivalent to solve a two-sided range query in the transformed space:

■
$$q = [l^q, u^q]$$

■ $(l_i, u_i)/l_i \le u^q \land u_i \ge l^q$

Two-dimensional range reporting:

- Wavelet tree $(O(m \log(n/m) + m))$
- K-d-tree $(O(\sqrt{n} + m))$
- Alstrup et al. $(O(\log \log(n) + m))$
- Bose et al. $(O(\frac{m \log(n)}{\log \log(n)}))$

イロト イポト イヨト イヨト

Wavelet Tree-based Solution

Many alternatives:

Data Structure	Worst-case search time
Interval, Segment, and Priority trees	$\Omega(\log n + m)$
Schmidt'09	O(1 + m)
K-d-tree	$O(\sqrt{n}+m)$
Alstrup et al.	$O(\log \log(n) + m)$
Bose et al.	$O(\frac{m\log(n)}{\log\log(n)})$
Wavelet tree	$O(m\log(n/m) + m)$

Which are the virtues of the wavelet tree?

- Good space/time trade-off (space: $n \log n + o(n \log n)$ bits)
- No significant implementation overhead
- Most operations in the rank space (competitive against K-d-tree)

Wavelet Tree-based Solution

Many alternatives:

Data Structure	Worst-case search time
Interval, Segment, and Priority trees	$\Omega(\log n + m)$
Schmidt'09	O(1 + m)
K-d-tree	$O(\sqrt{n}+m)$
Alstrup et al.	$O(\log \log(n) + m)$
Bose et al.	$O(\frac{m\log(n)}{\log\log(n)})$
Wavelet tree	$O(m\log(n/m) + m)$

- Which are the virtues of the wavelet tree?
 - Good space/time trade-off (space: $n \log n + o(n \log n)$ bits)
 - No significant implementation overhead
 - Most operations in the rank space (competitive against K-d-tree)

Overview Orthogonal Problem Decomposition Transformation Wavelet Tree-based Solution

Wavelet Tree-based Solution

- SeCoGIS'09: A New Point Access Method based on Wavelet Trees
- Permutation in the order of the points in each dimension
- Balanced binary tree
- Constant time operation: $rank_1(B, i)$

Coordinates Encoding Space Comparison Time Comparison

Experimental Environment

- Structures
 - R*-tree, STR R-tree (Spatial Index Library)
 - SW-tree
- Datasets
 - Synthetic (1,000,000 MBRs each)
 - Uniform
 - Gauss (world size = 1,000 imes 1,000, μ = 500, σ = 200)
 - Zipf (world size = 1,000 × 1,000, ρ = 1)
 - Real
 - EIEL (569,534 MBRs from buildings in A Coruña)
 - TIGER (2,249,727 MBRs from California roads)
- Experiments in:
 - Intel Pentium 4 3.00GHz with 4GB of RAM
 - GNU/Linux kernel 2.6.27
 - gcc 4.3.2 and -O9 optimizations
 - Time represents CPU user-time

Coordinates Encoding Space Comparison Time Comparison

Coordinates Encoding

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Coordinates Encoding

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Coordinates Encoding

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Coordinates Encoding

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Space Comparison

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Time Comparison (Synthetic Datasets)

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Time Comparison (Synthetic Datasets)

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Time Comparison (Synthetic Datasets)

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Time Comparison (Synthetic Datasets)

<ロ> <同> <同> < 同> < 同>

Coordinates Encoding Space Comparison Time Comparison

Time Comparison (Real Datasets)

Diego Seco Range Queries over a Compact Representation of MBRs

<ロ> <同> <同> < 同> < 同>

Conclusions and Future Work

Conclusions

- Compact structure to index semi-static collections of MBRs
- Good space/time trade-off

Diego Seco Range Queries over a Compact Representation of MBRs

イロト イポト イヨト イヨト

Conclusions and Future Work

Conclusions

- Compact structure to index semi-static collections of MBRs
- General technique to index semi-static collections of MBRs
- Good space/time trade-off
- Different space/time trade-offs
- Closing the gap with other very active research fields (information retrieval and text compression)

イロト イポト イヨト イヨト

Conclusions and Future Work

Future Work

- Lossy compressed spatial indexes (CR-tree)
- Dynamic bitmaps supporting rank
- Other operations: k-nearest neighbors, spatial join

イロト イポト イヨト イヨト

Questions?

Diego Seco Range Queries over a Compact Representation of MBRs