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Motivation

Spatial indexes are a key component in GIS

Large collections of geographic data
Geographic operations are very complex

Sequential search is not feasible

Filter/Refine Strategy

Minimum Bounding Rectangle (MBR)
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Motivation

Typical requirements of spatial indexes:

Dynamic operations: inserts, deletes, updates, . . .
Secondary storage management

Space consumption is a less important issue

. . .

Nowadays, some of these requirements have changed

Static data collections are useful in many domains
Memory hierarchy evolution

Reduction of the main memory cost
New levels (flash memory)

Our goal is a new spatial access method: SW-Tree

Static geographic data collections
Main memory: compact
Efficiency similar to classical indexes
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Quote

“The time difference between accessing a piece of information in
RAM vs reading it from disk is similar to the time difference
between picking up a pen from this desk and taking a plane to
Spain and picking up a pen from my desk”
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SW-Tree

Remind the problem...
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SW-Tree

... and forget the refinement step
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Overview

Orthogonal problem

Work with the rank of the coordinates

Decomposition of a d-dimensional problem into its d
dimensions (d = 2)

Solve d (one-dimensional) subproblems and intersect their
results

Transform the original space

A one-dimensional interval can be represented as a
2-dimensional point
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Orthogonal Problem

Gabow et al. (1984)

Work with the rank of the coordinates

Practical solution:

Store the real coordinates into sorted arrays
Perform binary searches to translate real queries to the rank
space
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Decomposition

Decomposition of a d-dimensional problem into its d
dimensions (d = 2)

d-dimensional range query decomposition:

d one-dimensional interval intersection problems

Interval Intersection:

Interval trees, Segment trees, Priority trees (Ω(log n + m))
Schmidt’09 (O(1 + m))
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Transformation

A one-dimensional interval can be represented as a
2-dimensional point

Solve an interval intersection query in the original space is
equivalent to solve a two-sided range query in the transformed
space:

q = [lq, uq]
(li , ui )/li ≤ uq ∧ ui ≥ lq

Two-dimensional range reporting:

Wavelet tree (O(m log(n/m) + m))
K-d-tree (O(

√
n + m))

Alstrup et al. (O(log log(n) + m))

Bose et al. (O( m log(n)
log log(n) ))
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Wavelet Tree-based Solution

Many alternatives:

Data Structure Worst-case search time

Interval, Segment, and Priority trees Ω(log n + m)
Schmidt’09 O(1 + m)
K-d-tree O(

√
n + m)

Alstrup et al. O(log log(n) + m)

Bose et al. O( m log(n)
log log(n))

Wavelet tree O(m log(n/m) + m)

Which are the virtues of the wavelet tree?
Good space/time trade-off (space: n log n + o(n log n) bits)
No significant implementation overhead
Most operations in the rank space (competitive against
K-d-tree)
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Wavelet Tree-based Solution

SeCoGIS’09: A New Point Access Method based on Wavelet
Trees
Permutation in the order of the points in each dimension
Balanced binary tree
Constant time operation: rank1(B, i)
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Coordinates Encoding
Space Comparison
Time Comparison

Experimental Environment

Structures
R*-tree, STR R-tree (Spatial Index Library)
SW-tree

Datasets
Synthetic (1,000,000 MBRs each)

Uniform
Gauss (world size = 1, 000 × 1, 000, µ = 500, σ = 200)
Zipf (world size = 1, 000 × 1, 000, ρ = 1)

Real
EIEL (569,534 MBRs from buildings in A Coruña)
TIGER (2,249,727 MBRs from California roads)

Experiments in:
Intel Pentium 4 3.00GHz with 4GB of RAM
GNU/Linux kernel 2.6.27
gcc 4.3.2 and -O9 optimizations
Time represents CPU user-time
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Space Comparison
Time Comparison

Coordinates Encoding

(a) Zipf (b) EIEL (c) Tiger
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Time Comparison (Synthetic Datasets)
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Conclusions

Compact structure to index semi-static collections of MBRs

Good space/time trade-off
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Conclusions

Compact structure to index semi-static collections of MBRs

General technique to index semi-static collections of MBRs

Good space/time trade-off

Different space/time trade-offs

Closing the gap with other very active research fields
(information retrieval and text compression)
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Future Work

Lossy compressed spatial indexes (CR-tree)

Dynamic bitmaps supporting rank

Other operations: k-nearest neighbors, spatial join
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The End

Questions?
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