Towards a theory of
search queries

Jan Van den Bussche
(Hasselt University)

George F

Stij

Joint work with

etcher, Dirk Van Gucht,
n Vansummeren

ACM TODS (November 2010)

N o U kA wbhe

Outline

Theory of database queries
Relational algebra

Semijoin algebra

Search queries

Dataspaces

Structured querying versus searching
Research problems

Computational problems

* Classically, any computational problem is a
function (mapping) from inputs to outputs

e E.g., route planning:
— Input: a map (graph), source, target

— Output: shortest route in graph from source to
target

e Deal with nondeterminism

Database queries

A query is a function from databases to
databases

* E.g., Employee query
— Input: history of employee hirings

— Output: list of all employees who have been hired
at least twice

e Also route planning!

Relational algebra

* Language in which queries over relational
databases can be expressed

* Every expression denotes a query
— compare arithmetic: avg(x,y) = (x+y)/2

* Expression is a combination of operators
— union, intersection, difference
— cartesian product (join)
— selection
— projection
— renaming

Employee query

relation History(emp_id, hire_date)

T[Hl.emp_id c)-Hl.emp_id=H2.emp_id and H1.hire_date#H2.hire_date

(pyq(History) X p,,(History))
equivalently:

Tt emp id (py,(History) X Py, (History))

Hl.emp_id=H2.emp_id
H1.hire_datez#H2.hire_date

Another example

* Extreme elements query:
— Input: a total order relation R(x,y)
— Output: the minimum and maximum element

(m(R) \ 1t (R)) U (m,(R) \ t,(R))

Expressibility

* Not all queries are expressible in relational
algebra

* E.g., route planning
* Not surprising

— avg(x,y) versus sin(x)

The first-order queries

* Relational algebra forms an important core
query language
— SQL select-statements = rel.alg. + aggregates
— even XPath 2.0 = relational algebral!
— also SPARQL = relational algebra

* Queries expressible in relational algebra are
called the first-order queries
— relational calculus (first-order logic)

Semijoin
* Recall Employee query:

T emp i (py,(History) X Pn,(History))

Hl.emp_id=H2.emp_id
H1.hire_datezH2.hire_date

 We don’t need attributes of H2 after join

* Semijoin:

T emp id (py4(History) X Pn,(History))

Hl.emp_id=H2.emp_id
H1.hire_datez#H2.hire_date

The semijoin algebra (SA)

* Same as relational algebra, except:
X and X arereplaced by X
* SA queries...

— always return subset of the relations (possibly)
— can be efficiently processed

* sorting
* Oone-pass query processing
* linear

* SA with only equalities in join conditions
= the linear fragment of relational algebra

Searching versus Querying

e Users of information systems do not use SQL
— Google
— Library catalog

* Programs built over information retrieval (full
text) engine cannot call SQL
— Websites

* They can search:
— ti=databases AND NOT au=ullman
— pyrrhula OR bullfinch

Pyrrhula pyrrhula (Eurasian Bullfinch)
- " | |

Abstract Dataspaces

An abstract dataspace is a set of objects
Each object is a set of items
E.g., set of webpages

— each webpage = set of strings

E.g., classical relation is set of tuples
— each tuple = set of attribute—value pairs

Attribute—value pairs

* Tuple
empid |hiredate Jjob

1234 20091021 programmer

e Set of attribute—value pairs

emp_id 1234
hire_date 20091021

job programmer

Attribute—value dataspaces

* Objects are arbitrary sets of AV-pairs

name
paper
paper
location

likes

paper_id
title

proceedings

John
pl

p2
Namur

Orval

pl
SQL
VLDB

drink_type
name
kind

name
paper
location

phone

paper_id
title
proceedings

citations

beer
Orval

Trappist

Anne name
pl paper
Brussels paper
022222785 location
location
02 hobby
XQuery
VLDB paper_id
55 title
journal

Brussels
Antwerp

birdwatching

p3
Pyrrhula song

Ornithology

Orval

“Database of everything”

Alon Halevy

Very similar to Semantic Web
— RDF
— Linked Data

Personal Information Management
NoSQL databases

A—V dataspace as RDF store

 RDF store: set of triples

— (subject, predicate, object)
* view A=V dataspace D as set of triples:

— {(oid,att,val) : oid € D & (att,val) € D}

1sidded|
|eAJO

192q
A8ojoyyuiQ
duos e|nyaiAd
¢d

SS

gaain
A1anDx

zd

aain

10S

1d
guiyojempuiq
diamiuy
s|assnug
¢d

zd

Ase
S8.TTTTT0
s|assnig

1d

auuy
|eAlQ
Jnwep

zd

1d

uyor

puny
Iuwieu

2dAy >juup

|[euanol
<8
pI Jaded

suoneln

sguipaadoud

o4
pI 1aded

sguipaaooud

o34

pI 1aded
Aqqoy
uonedlo|
uonedlo|
Jaded
Jaded
aweu
auoyd
uonedlo|
Jaded
aweu
sl
uonedlo|
Jaded
Jaded

sJwieu

| ™| |- - N N NN NN NN NN T ST DN NN O|O O NN

RDF triple store as A—V dataspace

e Use 3 special attributes
— subject
— predicate
— object
* RDF triple store is just a relation over the
scheme {subj,pred,obij}
* Already know a relation is a dataspace!

* No RDFS

Searching Dataspaces

* Abstract Dataspace
— set of objects
— object: set of items

e Abstract keyword
— predicate on items

* E.g., when items are strings:

— string contains “Brussel”

Boolean Search Language (BSL)

Every keyword k is an expression

Meaning:

— Retrieve all objects containing some item satisfying k
If el and e2 are expressions then so are:

— el ORe2

—e]1 AND e2
— el AND NOT e2

Meaning: union, intersection, set difference
Bruxelles AND NOT (Orval OR Chimay)

Dataspace search queries

Database query:
— mapping from databases to databases

Dataspace query:
— mapping g from dataspaces to dataspaces

Dataspace search query:
— such that g(D) C D for each D

Bit like semijoin queries...

Which dataspace search queries...

e ..are expressible in BSL?
* BSL queries are safe

— Only returns objects containing some item
satisfying some keyword that we used

* BSL queries are additive
g(D) = union of all g({o}) foro& D

BSL queries are finitely distinguishing

* Only distinguish objects using some finite set
K of keywords

* 0l and o2 are “K-equivalent” if for each kin K,
0l matches k < 02 matches k

* when ol and 02 from D are K-equivalent then
ol € qg(D) < 02 € q(D)

Characterisation of BSL

* A dataspace query g is expressible in BSL if
(and only if) g is additive, and for some finite
set K of keywords,

— g is K-safe and
— g is K-distinguishing

Application to relational selection queries

* Recall: relation = set of tuples = set of objects
* Object = set of attribute—value pairs
* Keywords: A=c

— A: attribute from the given relation scheme

— ¢: arbitrary constant

 Also wildcard keyword: *
 Example BSL query:
* AND NOT (job=programmer OR emp_id=1234)

* Same as rel.alg. usingonly U, \, 0,_.

Characterising relational
selection queries

A relational selection query is expressible in the
relational algebra using only U, \ , 0,_,

if and only if it is additive and commutes with any
C-epimorphism, for some finite set C of
constants.

C-epimorphism: function f from values to values
such that fand f~! are the identity on C.

g commutes with f:

q(f(D)) = flq(D))

In line with known “genericity” properties
[Aho&UlIman, Chandra&Harel, Hull&Yap,
Abiteboul&Vianu]

Characterisation of BSL (repeated)

* A dataspace query g is expressible in BSL if
(and only if) g is additive, and for some finite
set K of keywords,

— g is K-safe and
— g is K-distinguishing

Not expressible in BSL

* Negated keywords (if you don’t have them)

— retrieve all objects containing an item not
matching “Brussel”

— not finitely distinguishing over positive keywords
* Normally will use boolean-closed repertoire of
keywords

Neither expressible in BSL

Retrieve all objects sharing an item with an
object matching “Brussel”

Retrieve all co-authors of Mary
Not additive
We cannot do joins or even semijoins

Want to do such “associative search”

Similarity relations (simrels)

* How to link two objects?
— hardwire links between objects in the dataspace
— not necessary
— not flexible

e Better: use simrels between items

— a simrel is a binary predicate on items

Examples of simrels

Equality
Translation on city names:
— Bruxelles trans Brussel

— Anvers trans Antwerpen

— Namur trans Namen

Equal-value on A=V pairs:
— (likes, Orval) egval (name, Orval)

Equal-attribute on A=V pairs:

— (name, John) egatt (name, Orval)

Simlinks

If Kk and k” are keywords, and = is a simrel, then
k =k’ is a simlink.

Meaning: binary predicate on items

— will be used to link objects

i1 k=k’]i2if

— i1 satisfies k

— i2 satisfies k’

—i1=i2

Example on string items, with substring and
wildcard keywords and translation simrel:

“Grand Place” [Grand trans *] “Grote Markt”

Linking objects using simlinks

* For objects 01 and o2,
ol[k=k’] o2 if
— 01 contains some item /1
— 02 contains some item j2
— il k=k’]i2
 New associative search operator on dataspaces:
LINK [k=k’](S)

— retrieves all objects in the dataspace that are linked
by | k= k’] to some objectin S

LINK [Grand trans *] (Markt)

Associative Search Language (ASL)

BSL extended with link operator

Parameterised by choice of:
— keywords (already for BSL)
— simrels (for link operator)

What is the expressiveness of ASL?
Link operator is like semijoin...
el AND LINK[O] (e2)
el X e2
0

ASL on A-V dataspaces

* Keywords:

— literals & wildcards

(hame: John) (name: *) (*:John)
— negation on values
(likes: =(Heineken,Budweiser))
— negation on attributes
(= (paper_id,title): Orval)
— negation on both values and attributes
(- (paper_id,title): —=(Heineken,Budweiser))

* Simrels:

— eq, eq_val, eq_att

Example query

* Retrieve all people located in Antwerp who
have published a paper in Ornithology:

(location: Antwerp) AND
LINK [(paper: *) eq val (paper id: *)]
(journal: Ornithology)

 Which queries can we express?

A—V dataspace as relation

 We saw this already: set of triples (oid, att, val)

ysiddes
|eAJO

133q
A8ojoyyuiQ
duos e|nyaiAd
ed

55

gaain
A1anDx

zd

aain

10S

1d
guiyoyjempuiq
diamiuy
s|assnig
¢d

zd

Ase
S8.TTTTT0
s|assnig

1d

auuy
|eAlO
Jnwep

zd

1d

uyor

puny
Iuwieu

a2dAy >juup

|[euanol
<8
pl Jaded

suoneln

sguipaadoud

o34
p1 Jaded

sguipaaooud

o8

pI 1aded
Aqqoy
uonedlo|
uonedlo|
Jaded
Jaded
aweu
auoyd
uonedlo|
Jaded
aweu
S|
uonedlo|
Jaded
Jaded

Jweu

| ™| |- - N N NN NN N NN N T T NN NN O|O O NN

* How does ASL compare to querying this relation

using relational algebra?

ASL translated into semijoin algebra

(location: Antwerp) AND
LINK [(paper: *) eq_val (paper_id: *)]
(journal: Ornithology)
Moid Oatt="tocation’ (T) X
val=‘Antwerp’
Moi (Oatt=rpaper (T) IX

Ial c)-at't=’paper_id’ (T [>< Mg O att=‘journal’ (T)))

val=‘Ornithology’

* Only natural semijoins are used

SA queries not expressible in ASL

* “Retrieve all people who have the same value
for a boss and a friend attribute”

* “Retrieve all people who like some beer that
nobody else likes”

* Can prove that these are not expressible using
invariance under bisimulations

Bisimilarity of Dataspaces

e Dataspace D and object oin D, also D’ and o’
* Natural number n
* We say that (D,0) 2, (D’,0’) if

— 0 and o’ match precisely the same keywords

— moreover for n>0:

— for each simrel = and for each object p in D such
that o = p, there exists p’ in D’ such that o’ = p’

and (D,p) 2,,(D’,p’)
— vice versa (from D’ to D)

Invariance under bisimilarity

et g be an ASL query using at most n nested
ink operators

et (D,0) 2, (D',0)

Then (D,0) is indistinguishable from (D’,0’):

—o0ing(D) if and only if o’ in g(D’)

(Converse holds as well: if indistinguishable,
then bisimilar)

SA queries not expressible in ASL
(repeated)

* “Retrieve all people who have the same value
for a boss and a friend attribute”

 “Retrieve all people who like some beer that
nobody else likes”

e Can prove that these are not expressible using
invariance under bisimulations

The “search” fragment of SA

E:=T

c)-a’ct=c(E)

Gvalzc(E)

EUE

E\E

1, (E)

E [><T[oid(E)

T o(E DX L4(E))

e c:constant

* o {oid}, {oid,att}, or {oid,val}
* [:{att}, {val}, or {att,val}

What have we learned?

e Searching unstructured information motivates
to investigate new query languages

— but the classical theory is still very useful:
* relational databases
* relational algebra
* genericity
* semijoin algebra
* bisimilarity

* Querying RDF triple stores

Open research problems

Algorithms, data structures for query
processing

Are BSL and ASL sufficient? Other search
primitives?

User interface: search should be easier than
full querying in SQL

C
C

How to represent relational databases as

ataspaces (or RDF) such that querying can be

one by searching?

— Querying the Deep Web [Halevy]

Orval

Computability

* Of course a query g must be computable

* So, there must exist:
— representation of databases into strings
— algorithm A

Genericity: motivation

* Not just any crazy function is a “reasonable”
database query

* E.g., random choice:
— input: a list of names

— output: one name from the list

e Better: minimum element query:
— input: a list of names, and a total order over it
— output: the minimum according to given order

Genericity: definition

A queryq is genericif itis invariant under
isomorphisms

— formally, for any permutation f of data values,

q(f(D)) = flq(D))

Not generic

e Random

