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Peer-to-Peer Data Integration Systems

The European Future Internet initiative envisions small
and medium businesses participating in value chains and
networks that emerge dynamically.

Under this vision, the Internet will meet its promise to
become a reliable, seamless and affordable collaboration
and sharing platform.

In principle, the ground is already laid for contemporary
enterprises to be able to collaborate flexibly and affordably.

However, businesses rarely share the same vocabulary and
business semantics, raising the costs of B2B
interoperability and collaboration.

Small and medium enterprises cannot afford repeated data
integration with new partners for ad-hoc collaboration,
leaving the competitive advantage to large enterprises.
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Peer-to-Peer Data Integration Systems

NisB: a case in point

The NisB project (http://www.nisb-project.eu/) aims at
easing ad-hoc data integration by harnessing the
accumulative connectivity of the Web.

NisB can help lower the burden for enterprises that deal
with multiple heavy-weight and standard-setting
enterprises in their value networks.

It can also help business groups entering a new industrial
sector to jointly leverage interoperability efforts.

Fragments of interoperability information are shared and
reused for establishing user-centric understanding of
diverse business schemata and vocabularies.

Bits and pieces of past experiences and practices are
re-composed and orchestrated to solve new problems.
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Peer-to-Peer Data Integration Systems

Design challenges

Tolerance towards incomplete, erroneous or evolving
information, such as occasional changes in business
schemata.

Quantifiable schema matching uncertainty analysis to
allow users to be informed about the usefulness of reusing
a matching.

Keeping context in schema matchings to allow reusability.
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background

Schema matching is the task of providing correspondences
between concepts describing the meaning of data in
various heterogeneous, distributed data sources.

Schema matching research has been going on for more
than 25 years now, first as part of schema integration and
then as a standalone research field.

Over the years, a realization has emerged that schema
matchers are inherently uncertain.

A prime reason for the uncertainty of the matching
process is the enormous ambiguity and heterogeneity of
data description concepts:

It is unrealistic to expect a single matcher to identify the
correct mapping for any possible concept in a set.
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Schema Matching in the Data Integration Life
Cycle

In 2004, Melnik and Bernstein offered a unique
contribution to understanding the foundations of schema
matching.

The match operator
Schema matching vs. schema mapping



Motivating
Example

Introduction

Models of
Uncertainty

Modeling
Uncertain
Schema
Matching

Assessing
Matching
Quality

Schema
Matcher
Ensembles

Top-K
Schema
Matchings

Resources

Overview

Modeling uncertainty

probability theory [44]

fuzzy set and fuzzy logic [47]

lower and upper probabilities [27]

Dempster-Shafer belief functions [27]

possibility measures [27]
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Overview

Probability theory vs. fuzzy set theory in schema matching

Probability theory is a representative of a quantitative
approaches in schema matching [12, 20, 8]

Fuzzy set theory ia a representative of a qualitative
approaches in schema matching [19]

Other approaches:

Interval probabilities [34]
Probabilistic datalog [43]
Information loss estimation [39]
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Probability Theory

Possible world semantics

An intuitively appealing way to define a probability space
[25].

A probability space is a triple pred = (W,F, µ) such that:

W is a set of possible worlds, with each possible world
corresponding to a specific set of event occurrences that is
considered possible. A typical assumption is that the real
world is one of the possible worlds.
F ⊆ 2|W | is a σ-algebra over W . σ-algebra, in general,
and in particular F , is a nonempty collection of sets of
possible worlds that is closed under complementation and
countable unions. These properties of σ-algebra enable the
definition of a probability space over F .
µ : F → [0, 1] is a probability measure over F .
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Fuzzy Set Theory

Definition

A fuzzy set M on a universe set U is a set that specifies
for each element x ∈ U a degree of membership using a
membership function

µM : U → [0, 1]

where µM (x) = µ is the fuzzy membership degree of the
element x in M .

The degree of membership of an element over all fuzzy
sets M does not necessarily sum to 1.
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Detailed example

Sample Database Schema Description

Table: Sample Database Schema Description

Database R

CardInfo type cardNum ...

HotelInfo hotelName neighborhood ...

Reservations cardNum lastName ...

Database S

CardInformation type cardNum ...

HotelCardInformation clientNum expiryMonth ...

ReserveDetails clientNum name ...

Database T

CityInfo city neighborhood ...

Subway city station ...
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Detailed example

Example

Design of a hotel reservation portal.

The portal merges various information databases for the
hotel chain RoomsRUs

Mashup application to position hotels on a geographical
map.

Three relational databases:

Database R contains three relations: CardInfo, HotelInfo,
and Reservations.
Database S also stores credit card information,
distinguishing between hotel credit cards and major credit
cards.
Database T has two relations: CityInfo and Subway.
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Schema and attributes

schema S = {A1, A2, ..., An} is a finite set of attributes.
Attributes can be both simple and compound.
Examples:

Simple attributes: lastName, firstName.
Compund attributes: creditCardInfo, combining type,
cardNum, and expiry

Is this representation too simple?
Metadata models use complex representations: relational
databases use tables and foreign keys, XML structures
have hierarchies, OWL ontologies contain general axioms.
Modeling the uncertainty in matching attributes, no richer
representation of data models is needed.
Example 1: matching lastName and firstName does not
require representing their composition in a compound
attribute called name.
Example 2: when matching compound structures such as
XML paths, XML paths are the elements we define as
attributes in our schemata.
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Attribute correspondences and the similarity matrix

Let S and S′ be schemata with n and n′ attributes,
respectively.

Let S = S × S′ be the set of all possible attribute
correspondences between S and S′.

S is a set of attribute pairs.
Example: (arrivalDate, checkInDay)).

Let M (S, S′) be an n× n′ similarity matrix over S.

Mi,j represents a degree of similarity between the i-th
attribute of S and the j-th attribute of S′.
Mi,j is a real number in (0, 1).

M (S, S′) is a binary similarity matrix if for all 1 ≤ i ≤ n
and 1 ≤ j ≤ n′, Mi,j ∈ {0, 1}.
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Attribute correspondences and the similarity matrix

Table: A Similarity Matrix Example

S1 −→ 1 cardNum 2 city 3 arrivalDate 4 departureDate

↓ S2

1 clientNum 0.843 0.323 0.317 0.302
2 city 0.290 1.000 0.326 0.303
3 checkInDay 0.344 0.328 0.351 0.352
4 checkOutDay 0.312 0.310 0.359 0.356
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Attribute correspondences and the similarity matrix

Table: A Binary Similarity Matrix Example

S1 −→ 1 cardNum 2 city 3 arrivalDate 4 departureDate

↓ S2

1 clientNum 1 0 0 0
2 city 0 1 0 0
3 checkInDay 0 0 0 1
4 checkOutDay 0 0 1 0
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Schema matchers

Similarity matrices are generated by schema matchers.

Schema matchers are instantiations of the schema
matching process.

They differ mainly in the measures of similarity they
employ, which yield different similarity matrices.

arbitrarily complex
use various techniques.

similar attributes are more likely to have similar names
[29, 46].
similar attributes share similar domains [33, 21].
instance similarity as an indication of attribute similarity
[5, 10].
experience of previous matchings as indicators of attribute
similarity [28, 32, 46].
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Matcher examples

Example

Term matching compares attribute names to identify
syntactically similar attributes.

To achieve better performance, names are preprocessed
using several techniques originating in IR research.

Term matching is based on either complete words or string
comparison.

Example: relations CardInfo and HotelCardInformation.

The maximum common substring is CardInfo
the similarity of the two terms is

length(CardInfo)
length(HotelCardInformation) = 8

20 = 40%.
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Matcher examples

Example

Value matching utilizes domain constraints (e.g., drop
lists, check boxes, and radio buttons).

It becomes valuable when comparing two attributes whose
names do not match exactly.

Example, attributes arrivalDate and checkInDay.

Associated value sets {(Select),1,2,...,31} and
{(Day),1,2,...,31}, respectively.
content-based similarity is 31

33 = 94%
Significantly higher than their term similarity

( 2(Da)
11(arrivalDate) = 18%).
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Matcher examples

Example

A composite attribute is composed of other attributes
(either atomic or composite).

Composition can be translated into a hierarchy.

Composition matcher assigns similarity to attributes based
on the similarity of their neighbors.

The Cupid matcher [33], for example, is based on attribute
composition.
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Matcher examples

Example

The order in which data are provided in an interactive
process is important.

Data given at an earlier stage may restrict the options for
a later entry.
Example: filling in a form on a hotel reservation site.

Precedence relationships can be translated into a
precedence graph.

Precedence matcher is based on graph pivoting.

When matching two attributes, each is considered to be a
pivot within its own schema.

By comparing preceding subgraphs and succeeding
subgraphs, the confidence strength of the pivot attributes
is determined.
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Similarity Matrices Explained

It was hypothesized and empirically validated by [35] that
when encoding attribute pair similarities in a similarity
matrix, a matcher would be inclined to assign a value of 0
to each pair it conceives not to match, and a similarity
measure higher than 0 (and probably closer to 1) to those
attribute pairs that are conceived to be correct.

This tendency, however, is masked by “noise,” whose
sources are rooted in missing and uncertain information.

instead of expecting a binary similarity matrix the values in
a similarity matrix form two probability distributions over
[0, 1].
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Similarity Matrices Explained

Evaluation of more than 26,000 attribute pairs coming
from 50 schema pairs.

Attribute pairs separated to pairs reflecting attribute
correspondences and those that not.

The precedence matcher was used.

Similarity values of correct correspondences normalized.

Beta distribution estimations were added:

The beta distribution can be used to model a random
phenomenon whose set of possible values is in some finite
interval [c, d].
A beta distribution has two tuning parameters, a and b.
b > a for left-skewed density function.
a > b for right-skewed density functions.
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Similarity Matrices Explained
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Similarity Matrices: Discussion

Schema matchers often use data model semantics when
determining the similarity between attributes.

XML structure has been used in Cupid [33] to support or
dispute linguistic similarities.
Similarity flooding [38] uses structural links between
attributes to update linguistic similarities.

Once this similarity has been determined and recorded in
the similarity matrix, the original semantics that derived it
is no longer needed.
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Schema Matching: Preliminaries

Σ = 2S is the power-set of all possible schema matchings
between the schema pair (S, S′), where a schema
matching σ ∈ Σ is a set of attribute correspondences.
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Schema Level Constraints

Γ : Σ→ {0, 1} is a boolean function that captures the
application-specific constraints on schema matchings:

cardinality constraints.
inter-attribute correspondence constraints

Γ partitions Σ into two sets, valid and invalid:

The set of all valid schema matchings in Σ is given by
ΣΓ = {σ ∈ Σ | Γ(σ) = 1}
(go to Slide 2.5)

Γ is a general constraint model, where Γ(σ) = 1 means
that the matching σ can be accepted by a designer.

Γ has been modeled in the literature using special types of
matchers called constraint enforcers [31], whose output is
recorded in a binary similarity matrix.

Γ is a null constraint function if for all σ ∈ Σ, Γ(σ) = 1.
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Schema Matching Process: Functional Definition

Input: two schemata S and S′ and a constraint boolean
function Γ.

Output: a schema matching σ ∈ ΣΓ.

Example

Table 2 represents a step in the schema matching process,
in which the similarity of attribute correspondences is
recorded in a similarity matrix.

The similarity matrix in Table 3 presents a possible
outcome of the matching process, where all attribute
correspondences for which a value of 1 is assigned are part
of the resulting schema matching.

The constraint function that is applied in this example
enforces a 1 : 1 matching.



Motivating
Example

Introduction

Models of
Uncertainty

Modeling
Uncertain
Schema
Matching

Similarity
Matrices

Schema
Matching

Schema
Matching
Classification

Model Usage

Assessing
Matching
Quality

Schema
Matcher
Ensembles

Top-K
Schema
Matchings

Resources

Schema Matching and Matrix Satisfaction

Definition (Matrix Satisfaction)

Let M (S, S′) be an n× n′ similarity matrix over S. A schema
matching σ ∈ Σ is said to satisfy M (S, S′) (denoted

σ |= M (S, S′)) if
(
Ai, A

′
j

)
∈ σ →Mi,j > 0.

σ ∈ ΣΓ is said to maximally satisfy M (S, S′) if σ |= M (S, S′)
and for each σ′ ∈ ΣΓ such that σ′ |= M (S, S′), σ′ ⊂ σ.

The output of a schema matching process is M (S, S′).

An attribute pair (Ai, Aj) is an attribute correspondence
in the output schema matching only if M (i′, j) > 0.

A schema matching σ satisfies M if the above is true for
any attribute pair in σ.

the output of the schema matching process is a valid
schema matching that maximally satisfies M (S, S′).



Motivating
Example

Introduction

Models of
Uncertainty

Modeling
Uncertain
Schema
Matching

Similarity
Matrices

Schema
Matching

Schema
Matching
Classification

Model Usage

Assessing
Matching
Quality

Schema
Matcher
Ensembles

Top-K
Schema
Matchings

Resources

Matrix Satisfaction: Discussion

Σ is partitioned into two sets, based on satisfaction.

Partition is based on the application and the matcher’s
ability to determine attribute requirements.

compare with Γ partitioning of Σ in Slide 2.2, the two may
not overlap.

Maximal satisfaction is defined over valid schema
matchings only:

In the absence of a constraint function Γ, i.e., whenever
ΣΓ = Σ or whenever Γ is ignored by the matcher, there is
exactly one schema matching that maximally satisfies M .

This schema matching contains all attribute
correspondences

`
Ai, A

′
j

´
for which Mi,j > 0.

When Γ is both meaningful and used by the matcher,
there may not be exactly one valid schema matching that
maximally satisfies M .

Example: a 1 : 1 constraint.
Example: none of the valid schema matchings satisfy M .
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Second-Line Matchers

Definition

Given schemata S and S′, we denote by M (S, S′) the
(possibly infinite) set of similarity matrices M (S, S′). A
second-line schema matcher

SM :M
(
S, S′

)+ × Γ→M
(
S, S′

)
is a mapping, transforming one (or more) similarity matrices
into another similarity matrix.

A second-line matcher (2LM) is a schema matcher whose
inputs are no longer the schemata S and S′, but rather a
similarity matrix M (S, S′) (together with Γ).

First-line schema matchers (1LM) operate on the
schemata themselves, using semantics of the application.
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Second-Line Matchers: examples

Example

Combined is a weighted combination of the Term, Value,
Composition, and Precedence matchers.

The Maximum Weighted Bipartite Graph (MWBG)
algorithm and the Stable Marriage (SM) algorithm both
enforce a cardinality constraint of 1 : 1.

MWBG uses a bipartite graph, where nodes in each side of
the graph represent attributes of one of the schemata, and
the weighted edges represent the similarity measures
between attributes. Algorithms such as those presented
in [23] provide the output of the MWBG heuristic.
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Second-Line Matchers: examples

Example

(MWBG) and SM (cont.):

SM takes a similarity matrix and applies a stable marriage
algorithm [26] to identify a schema matching.
Intersection [36] computes and outputs the intersection set
of both algorithm outputs.
Union includes in the output matching any attribute
correspondence that is in the output of either MWBG or
SM.
Intersection and Union do not enforce 1 : 1 matching.

Dominants chooses dominant pairs, those pairs in the
similarity matrix with maximum value in both their row
and their column.

2LNB [35] is a 2LM that uses a näıve Bayes classifier over
matrices to determine attribute corespondences.
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Second-Line Matchers: examples

Example (eTuner)

A model of a 1 : 1 matching system was defined by [31] to
be a triple, one element being a library of matching
components.

This library has four types of components: Matcher,
Combiner, Constraint Enforcer, and Match Selector.

Matcher is a 1LM, in its classical definition.
Combiner [9] follows the definition of a schema matcher
with a null constraint function.
Constraint enforcer is a 2LM (current definition in
Section 2 allows adding constraints at 1LM as well)
Match selector returns a matrix in which all elements that
are not selected are reduced to 0, e.g. using thresholding
and MWBG.
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Second-Line Matchers: examples

Example (Top-K)

A heuristic that utilizes the top-K best schema matchings
to produce an improved schema matching [18].

It is a special type of a combiner and a match selector.

The input does not come from different matchers.

Multiple matrices by same schema matcher are aggregated
to a single similarity matrix by thresholding.

Discussion

The modeling of 2LM can serve as a reference framework
for comparing various research efforts in schema matching.

Example: Combiners and match selectors were combined
and redefined by [18].

2LMs aim at improving the outcomes of 1LMs.
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Schema Matcher Classification

Table: Two dimension matcher classification

Matcher 1LM 2LM

Non-decisive Term Combined

Decision maker MWBG

The first dimension separates first- from second-line
schema matchers.

The second dimension separates those matchers that aim
at specifying schema matchings (decision makers) from
those that compute similarity values yet do not make
decisions at the schema level.
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Schema Matcher Classification

A matcher is decisive if it satisfies Γ.

Most common: non-decisive first-line matcher.

Combiners (COMA’s term) are non-decisive 2LMs.

Combine similarity matrices of other matchers
The similarity matrix is not meant to be used to decide on
a single schema matching.

Decisive 2LMs: algorithms like MWBG and SM.

Both are constraint enforcers [31].
Both enforce a cardinality constraint of 1: 1.

First-line decision makers contains few if any matchers.

“The comparison activity focuses on primitive objects
first...; then it deals with those modeling constructs that
represent associations among primitive objects.” [3]
This dichotomy has in the main been preserved in schema
matching as well.
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Deep Web Information

The deep Web hides information behind Web forms.

This information is stored in databases on the server side.

The database schemata are not known but the information
they contain is exposed to users.

This information can be extracted and matched.

matrix rows represent the fields of one form and matrix
columns those of the other.

Each entry in the matrix represents the similarity of two
fields.

Possible matchers:

Linguistic similarity of labels
Linguistic similarity of field names
Domain similarity.
structural similarities: composition and precedence.
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Semantic Matching

Pairwise matching results in an ontological relationship
(e.g., equivalence and subsumption) between attributes.

The S-Match system [24] takes two graph-like structures
(e.g., XML schemata) as input.

S-Match generates a confidence measure for semantic
relationship being equivalence, subsumption, etc.

For each pair of elements only one relationship holds.

Matrix representation:

Each ontological relationship in a separate matrix..
A second-line matcher (specific to S-Match) generates a
set of binary matrices, using some thresholds.
A constraint enforcer uses a lattice structure (where, for
example, equivalence is higher than subsumption) to
determines which values are to remain 1.
An entry for which a 0 value is recorded in all matrices is
assigned 1 for the idk (stands for “I don’t know”) matrix.
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Holistic Matching

Rather than matching two schemata at a time, holistic
matching matches multiple schemata in an attempt to
reach a consensus terminology for a domain.

Representation: multi-dimensional matrices.

Example: holistic matching of three schemata uses a
3-dimensional matrix where each entry represents the
certainty of three attributes, one from each schema, being
matched.
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What is the question?

What qualifies a schema matcher to be considered
“good”?

Empirical, explanatory analysis, testing schema matchers
using a posteriori metrics.
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Precision and Recall

The evaluation of schema matchings is performed with
respect to an exact matching, based on expert opinions.

Precision and recall are used for the empirical evaluation
of performance.

Given n× n′ attribute pairs:

c ≤ n× n′ attribute correspondences, with respect to the
exact matching.
t ≤ c is the number of pairs, out of the correct
correspondences, that were chosen by a matcher.
f ≤ n× n′ − c is the number of incorrect correspondences.

Precision:
P =

t

t+ f

Recall:
R =

t

c

Higher values of both precision and recall are desired.
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Precision and Recall

Derivatives of precision and recall:
F-Measure:

The harmonic mean of precision and recall.
Formula:

FM = 2 · PR

P +R

overall:

Evaluates post-match effort, including the amount of
work needed to add undiscovered matchings and remove
incorrect matchings.
Formula:

OV = R ·
„

2 − 1

P

«
=
t− f

c

This measure may be assigned with negative values.
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Precision and Recall

Derivatives of precision and recall (cont.):
error:

It was used by [41] for schema matching, following [15].
Formula:

ER = 1 − (1 + b2)PR

b2P +R

b is a tunable parameter.
The lower the value of ER, the better the match.

information loss: [39]

Quantifies the uncertainty that arises in the face of
possible semantic changes when translating a query across
different ontologies.
Formula:

LS = 1 −
„

1

γP−1 + (1 − γ)R−1

«
γ is a tunable parameter.
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Precision and Recall

Relationships between measures:
FM = 1− LS for γ = 0.5
ER = LS for γ = 1 and b = 0
ER = 1− FM for b = 1

Precision, recall, and their derivatives have traditionally
served the research community to empirically test the
performance of schema matchers.

These metrics are explanatory in nature, measuring the
goodness-of-fit of the heuristic to the data.
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Soundness and completeness

Precision and recall provide a form of pragmatic (a
posteriori) soundness and completeness. Therefore, an
exact matching is needed to measure

semantic soundness and completeness of Schema
matchings [4] using a complete ontology.

lossless mapping and information capacity [30, 40, 2, 7]
measure the ability to reconstruct the original data.
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The monotonicity principle

The monotonicity measure [19], provides a relationship
between the behavior of a given matcher and its true
performance.

Instead of just observing the final outcome provided by the
matcher, the monotonicity principle observes the internal
mechanism that leads to a matcher’s decision.

In that sense, it offers a deeper understanding of a
matcher’s capability.
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Matcher monotonicity definition

Equivalence schema matching classes on 2S :

Two matchings σ′ and σ′′ belong to a class p if
P (σ′) = P (σ′′) = p, where p ∈ [0, 1].
For each two matchings σ′ and σ′′, such that
P (σ′) < P (σ′′), we can compute their schema matching
level of similarity, Ω(σ′) and Ω(σ′′).

Definition

A matching algorithm is monotonic if for any two matchings
{σ′, σ′′} ⊆ 2S , P (σ′) < P (σ′′)→ Ω(σ′) < Ω(σ′′).

Intuitively, a matching algorithm is monotonic if it ranks
all possible schema matchings according to their level of
precision.
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Matcher monotonicity explained

A matching algorithm is monotonic if it ranks all possible
schema matchings according to their level of precision.

A monotonic matching algorithm easily identifies the exact
matching:

Let σ∗ be the exact matching, then P (σ∗) = 1.
For any other matching σ′, P (σ′) < P (σ∗).
Therefore, if P (σ′) < P (σ∗) then from monotonicity
Ω(σ′) < Ω(σ∗).
All one has to do then is to devise a method for finding a
matching σ∗ that maximizes Ω.
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Matcher monotonicity illustrated
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Matcher monotonicity explained

The figure provides an illustration of the monotonicity
principle using a matching of a simplified version of two
Web forms.

Both schemata have nine attributes, all of which are
matched under the exact matching.

Given a set of matchings, each value on the x-axis
represents a class of schema matchings with a different
precision.

The z-axis represents the similarity measure.

The y-axis stands for the number of schema matchings
from a given precision class and with a given similarity
measure.
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Matcher monotonicity: insights

The similarity measures of matchings within each schema
matching class form a “bell” shape, centered around a
specific similarity measure.

This behavior indicates a certain level of robustness, where
the schema matcher assigns similar similarity measures to
matchings within each class.

The “tails” of the bell shapes of different classes overlap.

Therefore, a schema matching from a class with lower
precision may receive a higher similarity measure than one
from a class with higher precision.

Contradiction to monotonicity.
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Statistical monotonicity

Definition (Statistical monotonicity)

Let Σ = {σ1, σ2, ..., σm} be a set of matchings over schemata
S1 and S2 with n1 and n2 attributes, respectively, and define
n = max(n1, n2). Let Σ1,Σ2, ...,Σn+1 be subsets of Σ such
that for all 1 ≤ i ≤ n+ 1, σ ∈ Σi iff i−1

n ≤ P (σ) < i
n . We

define Mi to be a random variable, representing the similarity
measure of a randomly chosen matching from Σi. Σ is
statistically monotonic if the following inequality holds for any
1 ≤ i < j ≤ n+ 1:

Ω̄ (Mi) < Ω̄ (Mj)

where Ω̄ (M) stands for the expected value of M .
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Statistical monotonicity

A schema matching algorithm is statistically monotonic
with respect to two given schemata if the expected
certainty increases with precision.

Statistical monotonicity can help explain certain
phenomena in schema matching:

It can explain the lack of “industrial strength” [6] schema
matchers.
It serves as a guideline as we seek better ways to use
schema matchers.
It helps understanding why schema matcher ensembles
work well
It serves as a motivation for seeking top-K matchings.
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Motivation

In an effort to increase the robustness of individual
matchers in the face of matching uncertainty, researchers
have turned to schema matcher ensembles.

Ensembles combine different schema matchers that use
complementary principles to judge the similarity between
concepts.

An ensemble of complementary matchers can potentially
compensate for the weaknesses of any given matcher in
the ensemble.

Several studies report on encouraging results when using
schema matcher ensembles (e.g., [9, 14, 21, 33, 42]).

Tools developed for ensemble design include eTuner [31],
LSD [10] and OntoBuilder [35, 37].
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The Art of Matcher Ensembling

A schema matching ensemble is a set of schema matchers.

An ensemble aggregates the similarities assigned by
individual matchers to reason about the resulting
aggregated ranking of alternative matchings.

Such an aggregation can be modeled in various ways:

A cube, aggregated into a matrix by aggregating the
similarity values of each correspondence across ensemble
members. [9]
Extended by analyzing the relationships between local and
global aggregators. [11]

Local aggregators combine the similarity measures of
attribute correspondences into a schema matching
similarity measure by a single matcher.
Global aggregator combine the similarity measures of
multiple matchers.
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The Art of Matcher Ensembling

Ensemble Design Dimensions

Table: Ensemble design dimensions

Participation →
↓ Execution

Single Multiple

Sequential [13]

Parallel [18] [9]

Participation dimension

Works in the literature typically construct matcher
ensembles from multiple matchers.

top-k matching combines the input of a single matcher
with different settings.
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The Art of Matcher Ensembling

Execution dimension

To date, parallel ensembling dominantes the ensemble
research:

Combine the judgments of multiple matchers (a similarity
cube) into a single matcher (a similarity matrix).
eTuner [31] tunes the weights of the different matchers,
giving greater weight to more effective matchers.

Less common is the sequential ensemble approach:

Matchers are added to an ensemble sequentially, based on
the outcomes of earlier stages.
Allows matchers to suggest correspondences in “regions” of
the similarity matrix in which they “feel” more confident.
A matcher can identify correspondences for which it is less
confident and pass them on to another matcher.
A matcher needs to be able to identify its “strong regions.”
An example of this line of work is that of [13], which
introduces a decision tree to combine matchers.
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The Art of Matcher Ensembling

Aggregation dimension

Linear aggregation.

Non-linear aggregation, working directly with a global
aggregator [1].
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Impact of Matcher Ensembling: an Empirical
Example

Figure: Relative matcher weights in SMB and individual performance
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Constructing Ensembles

Choosing among schema matchers is far from trivial.

The number of schema matchers is continuously growing,
and this diversity by itself complicates the choice of the
most appropriate tool for a given application domain.
Empirical analysis shows that there is not (and may never
be) a single dominant schema matcher that performs best,
regardless of the data model and application domain [19].

Most research work devoted to constructing ensembles
deals with setting the relative impact of each participating
matcher. For example, Meta-Learner [10] aims at a
weighted average of the decisions taken by the matchers in
an ensemble, using least-square linear regression analysis
[10]
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Boosting Ensembles

Research has shown that many schema matchers perform
better than random choice.

We argue that any (statistically) monotonic matcher is a
weak classifier [45]—a classifier that is only slightly
correlated with the true classification.

A weak classifier for binary classification problems is any
algorithm that achieves a weighted empirical error on the
training set which is bounded from above by
1/2− γ, γ > 0 for some distribution on the dataset (the
dataset consists of weighted examples that sum to unity).

A weak classifier can produce a hypothesis that performs
at least slightly better than random choice.

The theory of weak classifiers has led to the introduction
of boosting algorithms (e.g., [45]) that can strengthen
weak classifiers to achieve arbitrarily high accuracy.

Given a set of weak classifiers, the algorithm iterates over
them while re-weighting the importance of elements in the
training set.
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AdaBoost

The AdaBoost algorithm [17] is the most popular and
historically most significant boosting algorithm.

Figure: The SMB Algorithm
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AdaBoost explained

The input to a boosting algorithm is a set of m examples
where each example (xi, yi) is a pair of an instance xi and
the classification of the instance mapping, yi.

yi typically (though not always) accepts a binary value in
{−1,+1}, where −1 stands for an incorrect classification
and +1 stands for a correct classification.

The last input element is a hypothesis space H, a set of
weak classifiers.

The algorithm works iteratively. In each iteration the input
set is examined by all weak classifiers.

From iteration to iteration the relative weight of examples
changes.

Most weight is set on the examples most often
misclassified in preceding steps.
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AdaBoost explained (cont.)

The algorithm assign an initial equal weight to all
examples. Weights are updated later

Weak classifiers are applied in parallel, looking for the
most accurate ht over the weighted examples.

The amount of error of each weak classifier is computed.

The error measure is in general proportional to the
probability of incorrectly classifying an example under the
current weight distribution (Pri∼Dt (ht (xi) 6= yi)).

At round t, the weak classifier that minimizes the error
measure of the current round is chosen.

The stop condition limits the amount of error to no more
than 50%.

The stop condition also restricts the maximum number of
iterations.
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AdaBoost explained (cont.)

The amount of change to example weights αt is
determined in a way that reduces error most rapidly (in a
greedy way) [16] by minimizing

Zt =
m∑
i=1

Dt(i)e−αtyiht(xi).

The learned weights are then used to classify a new
instance x, by producing H (x) as a weighted majority
vote, where αk is the weight of the classifier chosen in
step k and hk (x) is the decision of the classifier of step k.
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from AdaBoost to ensemble tuning

The boosting algorithm is merely a shell, serving as a
framework for many possible instantiations.

What separates a successful instantiation from a poor one
is the selection of three elements:

the instances (xi)
the hypothesis space (H)
the error measure (εt).
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The example set

The example set {(xi, yi)} consists of a set of attribute
pairs (xi is a pair!), comprising one attribute from each
schema and belonging to the classification of the instance
mapping yi.

Such a pair represents an attribute correspondence.

Each instance xi can be correct (i.e., belonging to the
exact matching) or incorrect.

Therefore, yi can have two possible values: (+1) (for a
correct matching) and (−1) (for an incorrect matching).

This approach can be easily extended to select multiple
attributes from each schema, as long as the matcher itself
can assess the similarity measure of multiple attributes.

For holistic matching, examples can be designed to be sets
of attributes from multiple schemata rather than a pair.
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The hypothesis space

Choosing the hypothesis space is more tricky.

The input to SMB is a similarity matrix M (S, S′)
(together with Γ, the constraint enforcer function).

Given schemata S and S′, we denote by M (S, S′) the
(possibly infinite) set of similarity matrices M (S, S′).

The SMB heuristic is a mapping

SMB :M
(
S, S′

)∗ × Γ→M
(
S, S′

)
,

transforming one (or more) similarity matrices into another
similarity matrix.

Elements of the hypothesis space are matrices.
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The hypothesis space: cont.

The most promising hypothesis space seems to be a set of
second-line matchers of the type decision makers (whose
output is a binary matrix).

For example, a hypothesis h in H is (Term, Dominants),
where the Dominants second-line matcher is applied to the
outcome of the Term first-line heuristic.

SMB is also a decision maker and the outcome of SMB is
a binary matrix.
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The error measure ε

A matcher can either determine a correct attribute
matching to be incorrect (false negative) or it can
determine an incorrect attribute matching to be correct
(false positive).

Let At denote the total weight of the false negative
examples, Ct the total weight of the false positive
examples, and Bt the total weight of the true positive
examples, all in round t.

Typically, one would measure error in schema matching in
terms of precision and recall, translated into boosting
terminology as follows:

P (t) =
Bt

Ct +Bt
;R (t) =

Bt
At +Bt

(1)
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The error measure ε: cont.

These are combined using F-Measure:

FM (t) =
2Bt

At + Ct + 2Bt
(2)

A plausible error measure for the SMB heuristic is:

εt = 1− FM (t) = 1− 2Bt
At + Ct + 2Bt

=
At + Ct

At + Ct + 2Bt
(3)

Empirical evaluation suggests that Eq. 3 performs better
than other error measures.
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Example of SMB

Example

This example is due to [22].

Given the hypothesis space H as described above, and
given a dataset of size 70, the SMB heuristic performs 5
iterations.

First, it creates a dataset with equal weight for each
mapping.

In the first iteration, it picks (Composition, Dominants),
which yields the most accurate hypothesis over the initial
weight distribution (ε1 = 0.328⇒ α1 = 0.359).

In the second iteration, the selected hypothesis is
(Precedence, Intersection) with ε2 = 0.411 and
α2 = 0.180.
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Example of SMB: cont.

Example

In the third, (Precedence, MWBG) is chosen with
ε3 = 0.42⇒ α3 = 0.161.

The fourth hypothesis selected (Term and Value,
Intersection), with ε4 = 0.46 and α4 = 0.080.

The fifth and final selection is (Term and Value, MWBG),
with ε5 = 0.49⇒ α5 = 0.020.

In the sixth iteration no hypothesis performs better than
50% error, so the training phase is terminated after 5
iterations, each with strength αt.

The outcome classification rule is a linear combination of
the five weak matchers with their strengths as coefficients.
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Example of SMB: cont.

Example

Given a new attribute pair (a, a′) to be considered, each of
the weak matchers contributes to the final decision such
that its decision is weighted by its strength.

If the final decision is positive, the given attribute pair is
classified as an attribute correspondence. If not, it will be
classified as incorrect.
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Decision Making of SMB

Figure: Relative matcher weights in SMB and individual performance
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Motivation

Top-K schema matchings are intuitively defined as a
ranked list of the best K schema matchings a matcher can
generate.

The formal definition is recursive, providing interesting
insights into the behavior patterns of matchers.

Top-K schema matchings play a pivotal role in managing
uncertain schema matching.

The effectively unlimited heterogeneity and ambiguity of
data description suggests that in many cases an exact
matching will not be identified as a best matching by any
schema matcher.

Top-K schema matchings are useful:

Creating a search space in uncertain settings.
Assigning probabilities in probabilistic schema matchings.
Improving the precision of matching results.
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Definition

Let G = (X,Y,E) be an undirected bipartite graph with
nodes representing attributes of two schemata and edges
representing the degree of similarity between attributes.

Assume a problem instance with a positive weight function
$ : E → (0, 1] defined on edges.

We are given a schema matcher and a similarity matrix
M , $ (i, j) = Mi,j .

G contains no edges with 0 weight.

A matching σ is a subset of G’s edges, σ ⊆ E.

σ ⊆ E is equivalent to σ ∈ Σ.

The weight of a matching σ is f(σ,M)
Given a constraint specification Γ, we consider only valid
schema matchings in ΣΓ.
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Definition: cont.

Top-K schema matchings is defined recursively.

For K = 1, the K-th best matching σ∗1 is any maximum
weight matching in G satisfying

∀σ ⊆ E, f(σ,M) ≤ f(σ∗1,M).

Let σ∗i denote the i-th best matching, for any i > 1.

Given the best i− 1 matchings σ∗1, σ
∗
2, . . . , σ

∗
i−1, the i-th

best matching σ∗i is a matching of maximum weight over
matchings that differ from each of σ∗1, σ

∗
2, . . . , σ

∗
i−1.

Given top-K matchings, any matching σ ⊆ E such that
σ /∈ {σ∗1, σ∗2, . . . , σ∗K} satisfies

f(σ,M) ≤ min
1≤j≤k

f(σ∗j ,M) = f(σ∗K ,M).
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Intuitive interpretation

Suppose an edge weight represents a matcher’s belief in
the correctness of an attribute correspondence, where a
higher weight indicates greater confidence.

When switching from the i-th best matching to the
(i+ 1) best matching, the matcher is forced to give up at
least one attribute correspondence, while maintaining an
overall high confidence in the matching.

To do so, the matcher cedes an attribute correspondence
in which it is less confident.

Generating top-K matchings can be seen as a process by
which a matcher iteratively abandons attribute
correspondences in which it is less confident.
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Impact of top-K Matching: an Empirical Example

Figure: Precision and recall for stability analysis with K = 10
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