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Introduction

On the importance of graphs in

deep learning



Data ingestion in deep learning
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WaveNet, Wav2Vec, ...
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(Dies ist ein Blindtext. An ihm lédsst SD

vieles tiber die Schrift ablesen, in der er ge-
setzt ist. Auf den ersten Blick wird der
Grauwert der Schriftfliche sichtbar. Dann
kann man priifen, wie gut die Schrift zu
lesen ist und wie sie auf den Leser wirkt.
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Dies ist ein Blindtext. An ihm lasst sich
vieles tiber die Schrift ablesen, in der er ge-
setzt ist. Auf den ersten Blick wird der
Grauwert der Schriftflache sichtbar. Dann
kann man priifen, wie gut die Schrift zu
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CNNs, Vision

Transformers, ...

Word embeddings,
Transformers, ...
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Defining a graph Other graphs!
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Edge

j Edge features

Node features j Node (vertex)




Applications (1/3)

Name: ...

Age: ...
Name: ... Verified: yes .
Age: ... Name: ...
Verified: yes Age: ...

\ Verified: NA

Suggesting friendships?
(Link prediction)

Is this user a bot?

Name: ... (Node classification)
Age: ...
Verified: NA




Fake news detection on Twitter

Figure 4: Subset of the Twitter network used in our study with estimated user credibility. Vertices
represent users, gray edges the social connections. Vertex color and size encode the user credibility
(blue = reliable, red = unreliable) and number of followers of each user, respectively. Numbers 1 to 9
represent the nine users with most followers.

Monti, F., Frasca, F., Eynard, D., Mannion, D. and Bronstein, M.M,, 2019. Fake News Detection on
Social Media using Geometric Deep Learning. arXiv preprint arXiv:1902.06673.



https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673

Recommending systems in Uber
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Food Discovery with Uber Eats: Using Graph Learning to Power Recommendations



https://eng.uber.com/uber-eats-graph-learning/

o o [2203.02923] GeoDiff: a Geometric Diffusion Model
Appl ications (2/3) for Molecular Conformation Generation



https://arxiv.org/abs/2203.02923
https://arxiv.org/abs/2203.02923

Applications (3/3)

/I'VAV Anomaly

lllll detection

/V/A\V User
segmentation




Traffic prediction on Google Maps
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Traffic prediction with advanced Graph Neural Networks



https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Distributed energy grids

T AN —(\/\/\/\\/\/ O Consumer
V\/\/\\/\/QW\/\/\/ W\/\/\/ = O Producer

What happens when our graph is also
?



Energy forecasting on smart-grids

TABLE 1
1-DAY AHEAD FORECASTING ERROR OF MODELS TESTED ON UNIVARIATE REAL AND SYNTHETIC DATASETS

Model PV 4 PV31 PV 10
MSE MAE MSE MAE MSE MAE
LSTM-FC  0.0085 + 0.0002  0.0491 £ 0.0011  0.0243 £ 0.0002  0.0861 + 0.0008  0.0116 + 0.0007  0.0598 * 0.0046
CNN-FC 0.0144 + 0,0003  0.0673 = 0,0009  0.0237 £ 0,0003  0.0855 = 0,0010  0.0109 £ 0,0056  0.0578 + 0,0019
GNN 0.0063 £ 0.0002  0.0412 = 0.0003  0.0108 = 0.0004  0.0559 = 0.0013  0.0043 + 0,0008  0.0355 + 0,0003

Fig. 2. Map showing the distribution of 31 simulated photovoltaic plants.

< <

A.Verdone, S. Scardapane, M. Panella, 2022. Multi-site Forecasting of Energy Time Series with Spatio-Temporal Graph Neural Networks.
Accepted at 2022 IEEE WCCI.



Power systems
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Donon, B., Donnot, B., Guyon, . and Marot, A., 2019. Graph neural solver for power systems. In 2019 International Joint Conference on
Neural Networks (IJCNN) (pp. 1-8). IEEE.



Fully distributed GCNs

1 - Inference ( ) 3 - Consensus
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Fig. 1. TIllustration of the proposed approach. In step 1, nodes communicate to perform inference. In step 2, a symmetric communication phase is executed

to compute local gradients. In step 3, agents exchange local variables to asymptotically reach agreement. For steps 1-2, a representative active node is shown
in red. Directed arrows show the flow of messages.
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Scardapane, S., Spinelli, I. and Di Lorenzo, P., 2020. Distributed Training of Graph Convolutional Networks. [EEE Transactions on Signal
and Information Processing over Networks.




Graph networks in classic deep learning

Translation?

[1911.12247] Contrastive Learning

@> :::: of Structured World Models
GNNs can be used to include
in classical
are basically models!
GNNs on fully-connected
graphs!

. [ GNN | [
https://thegradient.pub/transformers b L % o E r %’
-are-graph-neural-networks/ m = —

» Object i Object 3 Transition , . A, Contrastive
; extractor t encoder ; model : loss i



https://thegradient.pub/transformers-are-graph-neural-networks/
https://thegradient.pub/transformers-are-graph-neural-networks/
https://arxiv.org/abs/1911.12247
https://arxiv.org/abs/1911.12247

Integrating GNNs in other networks

ResNet-34
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) ResNet-34 ]

§' | Fully-connected

8 ResNet-34 E—’ 'l Neural Network
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é j‘, ResNet-34
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Graph extraction

buijood
Y

Asset detector

({

Graph Neural
Network

<& \ 4

Graph of assets

Devoto, A, et al,, 2022. Re-identification of objects from aerial photos with hybrid siamese neural networks. /EEE Transactions on
Industrial Informatics, in press.




Graph and learning

Graphs and matrices



Graphs are (represented by) matrices

(" Node features R
d g N \_ €ach node has d features
0011 0101 0110
A I I rdge featares
1 100 1 010 0110

E ¢ R/
.

( L] L]
Adjacency matrix \_ each edge has f features )

A E Ran

\_ n vertices in the graph )

Adjacency Matrix -- from Wolfram MathWorld



https://mathworld.wolfram.com/AdjacencyMatrix.html

Other interesting matrices

The degree matrix is a diagonal matrix collecting the degrees:
Dj; = E Aij
J

We can use the degree matrix to normalize the adjacency matrix:

Anorm — D_1/2AD_1/2

We can also add self-loops to the adjacency matrix: A — A —+ I

In general, we can replace the adjacency with any matrix with a
corresponding sparsityf3dg«dVI¢=}



Diffusion over a graph

We can view the adjacency matrix as an operator
that diffuses information across the graph:

[AX]; =) AjX,

J
| S

sparse sum!

For a classical adjacency matrix (only 0/1), the above simplifies to a sum,
but in general it will be a weighted sum.




Laplacian of a graph

The Is another fundamental graph matrix:

L=D-A

(Note: we can also build normalized variants by replacing A with any
variant seen above.)

Any Laplacian acts as a diffusion operator as above, but its
eigen-decomposition is fundamental in a number of disciplines:

1. Spectral graph theory, and associated ML algorithms (e.g., spectral

clustering).
2. Graph signal processing, where it allows to define equivalents of a

Fourier transformation.



Tip: Working with Sparse Data in SAS - SAS Support

Storing the graph matrices Comnmunities

Matrix notation is convenient for describing the operations, but sparse
matrices have dedicated storage formats in most software.

Coordinate list (COQO) and its variants (CSR, CSC) is typical:

Sparse Format

Feature | Feature | Feature | Feature | Feature
1 2 3 4 5 Row | Column | Value
0 0 0 0 0 3 3
0 0 0 0 0 - 4 1
0 0 U 0 0 5 5
N o 0 0 o | . : :

Coordinate List (COO) Format

This also allows highly optimized variants of matrix multiplication.


https://communities.sas.com/t5/SAS-Communities-Library/Tip-Working-with-Sparse-Data-in-SAS/ta-p/221136
https://communities.sas.com/t5/SAS-Communities-Library/Tip-Working-with-Sparse-Data-in-SAS/ta-p/221136

Handling multiple graphs

We can handle multiple graphs (e.g., mini-batches) by considering a single
graph with several disconnected components:

Graph Q e —> Q
e Y .

Graph V ¢ lw —* \

GraphwW ¢« , "  —» w
[} A *

Adjacency matrix A

N input graphs Sparse / block-diagonal

tkipf/acn: Implementation of Graph Convolutional Networks in TensorFlow



https://github.com/tkipf/gcn

Implementing graph NNs

Software and code



Scaling up to huge graphs

Open Graph Benchmark

Benchmark datasets, data loaders and evaluators for graph machine learning

GET STARTED ‘f W UPD

The Open Graph Benchmark (OGB) is a collection of

realistic, large-scale, and diverse benchmark

datasets for machine learning on graphs. OGB “
datasets are automatically downloaded, processed,

and split using the OGB Data Loader. The model
performance can be evaluated using the OGB “

Evaluator in a unified manner.

OGB is a community-driven initiative in active OPEN GRAPH BENCHMARK

development. We expect the benchmark datasets to




Software?

DeepGraphLibrary @ PyTorch

geometric
Amazon based, production-ready

m Spektral

Keras-like, TensorFlow 2.0

PyTorch, more research oriented

JAX-based
tensorflow/gnn 1\ Strong DeepMind adoption

TensorFlow GNN is a library to build Graph Neura
Networks on the TensorFlow platform.

Alpha release, poorly documented




Notebook time!

Colab Notebooks and Video Tutorials — pytorch_geometric documentation

https://colab.research.google.com/drive/InV44NrNgcXC2thU6-zzxnJPnlalo87
Om?usp=sharing



https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing

Building graph layers

Graph convolutional layers



Neural networks in a single slide

[ Dataset ]
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How can we learn on a graph?

fo )

We want to do deep learning, hence fshould be

! !




Summary: what can we learn on a graph?

Edge
classification

Graph
classification

Graph
generation

e
.~ Edge
completion Graph
summarization

Node O—0O

classification y

7’




GNNs before deep learning!

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

61

The Graph Neural Network Model

Franco Scarselli, Marco Gori, Fellow, IEEE, Ah Chung Tsoi, Markus Hagenbuchner, Member, IEEE, and
Gabriele Monfardini

Abstract—Many underlying relationships among data in several
areas of science and engineering, e.g., computer vision, molec-
ular chemistry, molecular biology, pattern recognition, and data
mining, can be represented in terms of graphs. In this paper, we
propose a new neural network model, called graph neural network
(GNN) model, that extends existing neural network methods for
processing the data represented in graph domains. This GNN
model, which can directly process most of the practically useful
types of graphs, e.g., acyclic, cyclic, directed, and undirected,
implements a function 7(G,n) € IR™ that maps a graph G
and one of its nodes n into an m-dimensional Euclidean space. A
supervised learning algorithm is derived to estimate the param-
eters of the proposed GNN model. The computational cost of the
proposed algorithm is also considered. Some experimental results
are shown to validate the proposed learning algorithm, and to
demonstrate its generalization capabilities.

ples a function 7 that maps a graph (G and one of its nodes n to
a vector of reals!: 7(G,n) € IR™. Applications to a graphical
domain can generally be divided into two broad classes, called
graph-focused and node-focused applications, respectively, in
this paper. In graph-focused applications, the function 7 is in-
dependent of the node n and implements a classifier or a re-
gressor on a graph structured data set. For example, a chemical
compound can be modeled by a graph G, the nodes of which
stand for atoms (or chemical groups) and the edges of which
represent chemical bonds [see Fig. 1(a)] linking together some
of the atoms. The mapping 7(G) may be used to estimate the
probability that the chemical compound causes a certain disease
[13]. In Fig. 1(b), an image is represented by a region adjacency
graph where nodes denote homogeneous regions of intensity of




Geometric deep learning

GEOMETRIC DEEP LEARNING

Grids, Groups, Graphs, Geodesics, and Gauges

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veli¢kovié¢

\ Read the paper Read the blog post Watch the ICLR'21 keynote

Watch the Erlangen keynote | Follow the Lectures (AMMI 2021)

( Contact the authors )

<& \ 4

Bronstein, M.M., Bruna, J., Cohen, T. and Velickovi¢, P., 2021. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478.




A zoo of techniques...

TABLE III: Summary of RecGNNs and ConvGNNSs. Missing values (“-”) in pooling and readout layers indicate that the method
only experiments on node-level/edge-level tasks.

Approach Category Inputs Pooling Readout Time Complexity
GNN* (2009) [15] RecGNN A X, Xe - a dummy super node  O(m)
GraphESN (2010) [16] RecGNN A X 2 mean O(m)
GGNN (2015) [17] RecGNN A X - attention sum O(m)
SSE (2018) [18] RecGNN A X - - -
Spectral CNN (2014) [19]  Spectral-based ConvGNN A, X spectral clustering+max pooling  max O(n?)
Henaff et al. (2015) [20] Spectral-based ConvGNN A, X spectral clustering+max pooling O(n?)
ChebNet (2016) [21] Spectral-based ConvGNN A, X efficient pooling sum O(m)
GCN (2017) [22] Spectral-based ConvGNN A, X - - O(m)
CayleyNet (2017) [23] Spectral-based ConvGNN A, X mean/graclus pooling - O(m)
AGCN (2018) [40] Spectral-based ConvGNN A, X max pooling sum 0(n?)
DualGCN (2018) [41] Spectral-based ConvGNN A, X - - O(m)
NN4G (2009) [24] Spatial-based ConvGNN A X - sum/mean O(m)
DCNN (2016) [25] Spatial-based ConvGNN A X - mean 0(n?)

Wu, Z., Pan, S, Chen, F,, Long, G., Zhang, C. and Yu, P.S., 2019. A comprehensive survey on graph
neural networks. arXiv preprint arXiv:1901.00596.



Deep learning is about leveraging structure

Generate cross-stitch patterns from any image.



http://xstitch.zachrattner.com/HowItWorks.html

Image convolutions

Local pixel
operation |
Neighbour pixel

Aggregation operation




Images vs. graphs

How much of the structure of an image do we find
IN graphs?

v (neighbourhood).

X Fixed number of neighbours.

X Neighbours have a definite ordering.



https://emojipedia.org/check-mark/
https://emojipedia.org/cross-mark/
https://emojipedia.org/cross-mark/

Permutation equivariance

Consider a generic permutation matrix of dimension n:

_O 0 1- X1 X9
1 00 X211 = 1 X1
001 X3 X3
L . Jd, L9 | O

Permuting the nodes of a graph results in an equivalent
graph (isomorphism):

(PX,PAP') ~ (X, A)
D



Permutation equivariance (2)

Any graph layer must possess a property called
permutation equivariancel

permuted output

[(PX,PAP") = Pf(X,A)

permuted input

Running the layer with a different node ordering should
modify the output ordering only.



Putting everything together (graph convolutions)

fE5) = Ao+ ) A0

JECY

Local vertex
operation

We use the

. . adjacency matrix
Note: the mixing coefficients are no more learnable! (or similar)

Here, only local operations can be trainable.




Graph convolutions

Writing it out explicitly for a single node:

HJZ o ZAZ]f +Azzg(X)
INn the simplest case (thls Is a classical

f(%) = glx) = W

Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907.




Properties of a graph convolutional layer

The layer can be understood as:

1. Applying a local operation at every node;
2. Aggregating the updated embeddings depending on the graph

topology.

(If you are curious: it can be understood as a linear filter in the
spectral domain given by the Graph Fourier transform.)

We can write it out compactly as:

H=AXW
D



Graph convolution visualized

D *KD Pixel/Node updated
Convolution

—>» Graph Convolution

Seminar on Graph Neural Networks |
Indro Spinelli



https://spindro.github.io/post/gnn/
https://spindro.github.io/post/gnn/

Building graph networks
Stacking graph layers



Stacking graph convolutional layers

Q GC

O/O\O O‘/O\Q 2 6C
' Direct update
() Indirect update

Performing multiple updates increases the
" of each node.

1

https://spindro.github.io/post/ann/



https://spindro.github.io/post/gnn/

Building deep graph networks

Stacking graph layers works similarly to standard deep networks,
since the topology of the graph is unchanged:

H=¢|A¢(AXW,) W,
layer 1

Deep graph networks may suffer from (all
representations collapse to the same). Some specialized solutions
exist (e.g., PairNorm regularization).



Pooling

Table 1: Pooling methods in the SRC framework. GNN indicates a stack of one or more message-
passing layers, MLP is a multi-layer perceptron, L is the normalized graph Laplacian, 3 is a regular-
ization vector (see [42]), D is the degree matrix, u,,,. is the eigenvector of the Laplacian associated
with the largest eigenvalue, i is a vector of indices, Aj; ; selects the rows and columns of A according

to i.

Method Select Reduce Connect

DiffPool [55] S = GNN; (A, X) (w/ auxiliary loss) X’'=8T.GNNy(A,X) A’=STAS

MinCut [6] S = MLP(X) (w/ auxiliary loss) X'=8"X A’ =STAS

NMF [3] Factorize: A=WH — S=HT X'=8TX A’ =STAS
W= ||LX||d ;

LaPool [42] i={i|Vj eN(@):Vi>V;} X' =8TX A’ =STAS
S = SparseMax (ﬂ%)

Graclus [16] S = {x,—,xj | arg max; (3’ + S—Jj)} X(=8TX METIS [26]

NDP [7] i={i| Unaz: >0} X' = X; Kron r. [18]

Top-K [24]  y = 15 i = topg(y) X'=(Xoo(y) A=Ay

SAGPool [30] y = GNN(A,X); i = topg(y) X' =Xooy)) A= A;;

& <&

Grattarola, D., Zambon, D., Bianchi, F.M. and Alippi, C., 2021. Understanding pooling in graph neural networks. arXiv preprint
arXiv:2110.05292.



Tackling multiple tasks

1. Node classification: Sotfmax(hi)

2. Edge classification: SOtfmaX(h;hj)

1
3. Graph classification: sotimax (N > hi)




Mini-batching in graph networks

There are two types of mini-batching for

graph networks: ﬁ' o N
1. For graph-level tasks, we can create ° . .o l\ .
a mini-batch of several graphs.
2. For node/edge-level tasks, we can |
create a mini-batch by sampling i ° 7L/ AN NN
nodes and edges from a larger
graph.

Simple scalable graph neural networks



https://blog.twitter.com/engineering/en_us/topics/insights/2021/simple-scalable-graph-neural-networks

Notebook time!

Colab Notebooks and Video Tutorials — pytorch_geometric documentation

https://colab.research.google.com/drive/InV44NrNgcXC2thU6-zzxnJPnlalo87
Om?usp=sharing



https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing

Beyond graph convolutions

Message-passing graph layers



Revisiting the GCN layer

We can write down the GCN layer in a slightly more general form:

H; = Aggregate ({¢(X)]7 € Ni})

For each neighbour we build an update, which is the GCN case is
weighted by the corresponding element of the adjacency matrix.




Attention over nodes

The biggest limit of graph convolutional layers is
that the weight node / gives to nodej is fixed.

INn principle, it is possible that one neighbour is
more important than another, and we would like to

learn this.

This can be achieved with an




Visualizing graph attention (for node Q)

8 Attention score > . . ‘

g Attention score >

8 Attention score |:| O O

Xeulljos
uonebalbby

Node updates

) \ 4

Brody, S., Alon, U. and Yahay, E., 2021. How attentive are graph attention networks?. arXiv preprint arXiv:2105.14491.



A more general setup (2)

More in detail, in a , We compute messages using an
attention mechanism:

V(xi,X,) = a' LeakyReLU (W [x; || x5])

m,; = Z SOftman(mij)(WXj)
J

L . 4
Brody, S., Alon, U. and Yahay, E., 2021. How attentive are graph attention networks?. arXiv preprint arXiv:2105.14491.




Message-passing neural networks

m(i, ])

O—=—=0

Instead of using directly the adjacency matrix,
nodes can exchange with several
mechanisms (e.g., attention models).

Gilmer, 3., Schoenholz, S.S., Riley, P.F., Vinyals, O. and Dahl, G.E., 2017, July. Neural message passing for
quantum chemistry. In International Conference on Machine Learning (pp. 1263-1272). PMLR.



A more general setup

ot

<
Yavdl

2 (&

<*

4

Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D.,

Santoro, A, Faulkner, R. and Gulcehre, C., 2018. Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.




Notebook time!

Colab Notebooks and Video Tutorials — pytorch_geometric documentation

https://colab.research.google.com/drive/InV44NrNgcXC2thU6-zzxnJPnlalo87
Om?usp=sharing



https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing

Beyond message-passing

Transformers as universal neural
models



The Transformers revolution

-

Audio

\_

~

Audio Transformers
(2020-2021)

-||n||||||‘||||||||||‘|||||.....u||“|m-||||||-||“[

J

NLP Transformers
(2017)

Texts

(Dies ist ein Blindtext. An ihm lédsst SD

vieles tiber die Schrift ablesen, in der er ge-
setzt ist. Auf den ersten Blick wird der
Grauwert der Schriftfliche sichtbar. Dann
kann man priifen, wie gut die Schrift zu
lesen ist und wie sie auf den Leser wirkt.
Dies ist ein Blindtext. An ihm lasst sich
vieles tiber die Schrift ablesen, in der er ge-
setzt ist. Auf den ersten Blick wird der
Grauwert der Schriftflache sichtbar. Dann
kann man priifen, wie gut die Schrift zu

Qen ist und wie sie auf den Leser wiy

* Transformer

sabew|

Vision Transformers
(2020-2021)

Graph Transformers
(2022)
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Scaling laws for Vision Transformers

[2106.04560] Scaling Vision
Transformers
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Figure 2. Left/Center: Representation quality, measured as ImageNet finetune and linear 10-shot error rate, as a function of total training
compute. A saturating power-law approximates the Pareto frontier fairly accurately. Note that smaller models (blue shading), or models
trained on fewer images (smaller markers), saturate and fall off the frontier when trained for longer. Top right: Representation quality when
bottlenecked by model size. For each model size, a large dataset and amount of compute is used, so model capacity is the main bottleneck.
Faintly-shaded markers depict sub-optimal runs of each model. Bottom Right: Representation quality by datasets size. For each dataset
size, the model with an optimal size and amount of compute is highlighted, so dataset size is the main bottleneck.


https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2106.04560

Transformers at a glance Inpul-dependent
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Zooming in

Transformer Encoder

Embedded
Patches

A small neural network (e.g., 2 layers) applied to each
token independently.
Fast, average number of parameters.

Main component, allowing to combine information
across different tokens.
Quadratic in the number of tokens!

Normalization (typically layer normalization): helps in
stabilizing mean and variance of the embeddings.
Very fast, small number of parameters.




Positional embeddings

This vector should encode
iInformation about the
position of the
corresponding token.

O 0
O0—0OC—

A

Transformer — A

Positional
embeddings

T \ Positional embeddings do

not depend on the content

of the image or input.




Transformer Architecture: The Positional

Si n USOid a I e m bed d i n gS Encoding - Amirhossein Kazemnejad's Blog



https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
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Taxonomy of graph transformers

Graph Transformer

¥ ¥ ¥ T
Encodings [Sec. 2.2] Input Features [Sec. 2.3] Tokens [Sec. 2.4] Propagation [Sec. 2.5]
v —= 3 — v = v v 7 L
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Figure 1: Categorization of graph transformers along four main categories with representative architectures.

[2302.04181] Attending to Graph Transformers



https://arxiv.org/abs/2302.04181

Graph transformers

Vv Each MHA operation has a global receptive field over
the graph (better for long-range interactions).

Much harder to design structural embeddings to
X encode the graph connectivity (e.g., random walks,
Laplacian embeddings).

X Attention is quadratic in the number of tokens.

No clear scaling law for graphs / unclear
expressiveness compared to GNNSs.


https://emojipedia.org/check-mark/
https://emojipedia.org/cross-mark/
https://emojipedia.org/cross-mark/

Beyond graphs

Hypergraphs and latent inference



Scaling to higher-order structures

Traditional Discrete Domains Domains of Topological Deep Learning
o
ww @ o
o © AS N\
Simplicial  Cellular Combinatorial

Set Graph complex complex complex Hypergraph
No Pairwise Part-Whole Set-Type

Relation Relations Relations Relations

O :Nodes \ : Edges \ is part of V . not necessarily part of ¢

Figure 2: Domains: Nodes in blue, (hyper)edges in pink, and faces in dark red. Inspired by Hajij et al. (2022a).

[2304.10031] Architectures of Topological Deep Learning: A Survey on Topological Neural Networks



https://arxiv.org/abs/2304.10031

Topological message-passing
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Figure 8: Message passing steps: 1: Message (red), 2: Within-neighborhood aggregation (orange), 3: Between-

neighborhood aggregation (green), 4: Update (blue). The scheme updates a feature htz’(r) on a r-cell z at layer ¢ (left

column) into a new feature hffl’(r) on that same cell at the next layer ¢ + 1 (right column). Here, the scheme uses

four neighborhood structures Ny, for k € {1,2,3,4} (middle column). Inspired by (Hajij et al., 2023).

[2304.10031] Architectures of Topological Deep Learning: A Survey on Topological Neural Networks



https://arxiv.org/abs/2304.10031

Topological lifting

T -C V- ml

Graph Hypergraph Graph Simplicial Complex
C. d.
Graph Cellular Complex Cellular Complex Combinatorial
Complex

Figure 4: Lifting Topological Domains. (a) A graph is “lifted” to a hypergraph by adding hyperedges that connect
groups of nodes. (b) In the process of lifting a graph to a simplicial complex, a pairwise edge must be added in order to
form triangular faces. (c¢) A graph can be converted to a cellular complex by adding faces of any shape. (d) Hyperedges
can be added to a cellular complex to lift the structure to a combinatorial complex. Figure adapted from Hajij et al.
(2023).

[2304.10031] Architectures of Topological Deep Learning: A Survey on Topological Neural Networks



https://arxiv.org/abs/2304.10031

Learning the latent connectivity

Differentiable Graph Module (DGM) Graph Convolutional Networks
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Figure 1. Left: Two-layered architecture including Differentiable Graph Module (DGM) that learns the graph, and Diffusion Module that
uses the graph convolutional filters. Right: Details of DGM in its two variants, cDGM and dDGM.
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Kazi, A., Cosmo, L., Anmadi, S.A., Navab, N. and Bronstein, M., 2022. Differentiable graph module (dgm) for graph convolutional
networks. |[EEE Transactions on Pattern Analysis and Machine Intelligence.



Learning the topological connectivity

)
0 O O DCM e

O Ooo |:> a-DGM |:lj> |:{> PIM %@ prr— I:>
O O

Figure 1: The proposed two-step procedure for Latent Topology Inference (LTI) via regular cell
complexes. The Differentiable Cell Complex Module (DCM) is a function that first learns a graph
describing the pairwise interactions among data points via the a-Differentiable Graph Module
(a-DGM), and then it leverages the graph as the 1-skeleton of a regular cell complex whose 2-
cells (polygons), describing multi-way interactions among data points, are learned via the Polygon
Inference Module (PIM). The inferred topology is then used in two message passing networks, at
node (Graph Neural Network, GNN) and edge (Cell Complex Neural Network, CCNN) levels to
solve the downstream task. The whole architecture is trained in a end-to-end fashion.

<& \ 4

Battiloro, C., Spinelli, I, Telyatnikov, L., Bronstein, M., Scardapane, S., & Di Lorenzo, P. (2023). From Latent Graph to Latent Topology
Inference: Differentiable Cell Complex Module. arXiv preprint arXiv:2305.16174.




Introduction

A primer on explainability



What is explainable Al (XAl)?

1. Broad field concerning the development of tools to

increase gl and MMEEEE e ate of a model's

predictions.

2. Common folk dichotomy:. intrinsically interpretable
models (e.g., linear regression, decision trees) are
orthogonal to models with strong representational
power (e.g., deep networks).

Ras, G, Xie, N., van Gerven, M. and Doran, D., 2022. Explainable Deep Learning: A Field Guide for the
Uninitiated. Journal of Artificial Intelligence Research, 73, pp.329-397.



https://www.jair.org/index.php/jair/article/view/13200/26763
https://www.jair.org/index.php/jair/article/view/13200/26763

Explainability vs. accuracy?

ES
@® NN (e.g., Deep Learning)
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Explainability

Interpretability - MATLAB & Simulink



https://it.mathworks.com/discovery/interpretability.html

Who is explainability for?

1. Most XAl methods are targeted towards practitioners of
the same methods (i.e, they are akin to debugging
tools).

2. Itis much harder to target XAl tools towards end-users
(e.g., clinical staff). Different methods may disagree on
the “explanation”, they may not be accurate, and they

lack principled SYEUTEYdle] s Wa s =14 gl

Krishna, S, Han, T,, Gu, A, Pombra, J.,, Jabbari, S., Wu, S. and Lakkaraju, H., 2022. The Disagreement Problem in
Explainable Machine Learning: A Practitioner's Perspective. arXiv preprint arXiv:2202.01602.



https://arxiv.org/abs/2202.01602
https://arxiv.org/abs/2202.01602

™) Zachary Lipton &
;  @zacharylipton

The precarious state of “interpretable deep learning” is
that we should be far more scared upon hearing that a
hospital or government deploys any such technique
than upon hearing that they haven’t.

Traduci il Tweet

1:07 AM - 2 feb 2022 - Twitter for iPhone

73 Retweet 9 Tweet di citazione 520 Mi piace

Arora, S., Pruthi, D., Sadeh, N., Cohen, W.W,, Lipton, Z.C. and Neubig, G., 2021. Explain, Edit, and Understand:

Rethinking User Study Design for Evaluating Model Explanations. AAAI 2022.



https://arxiv.org/abs/2112.09669
https://arxiv.org/abs/2112.09669

XAl categorization

1. XAl tools can be categorized depending on whether
they provide EIeE] or Y]] explanations.

2. Some methods are model-agnostic (they only need the
outputs of the models), other are model-specific.

3. Finally, methods can be categorized depending on what
type of information they provide in output.

Molnar, C.,, 2020. Interpretable machine learning. Independently published.



https://christophm.github.io/interpretable-ml-book/index.html
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Introduction

Local explanations for graph NNs



Explaining a graph NN

Consider a trained graph NN. In the majority of works, a

Yo | KT ELALe)g] is @ small subgraph (and subset of
features) which “explain” the prediction.

GNN model training and predictions Explaning GNN’s predictions
A’Q “Basketball” R L) :
o ' 7; = “Basketball” 9; = “Sailing”

AL

GNNEXxplainer

—_—

“Sailing” ~—=




Masked predictions

fMMyoOX, M40 A)~ f(X,A)

\ 7 \

Binary masks Original prediction

A “good” explanation should have specific properties (e.g,
smallest possible masks).




A: Setup

Evaluating explanations

B : Metrics

Accuracy

Faithfulness

Task definition:
"Does the graph have
a 5-ring subgraph?"

N £
N
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Figure 1: Schematic of attribution task setup and attribution metrics. A. We create classification and regression tasks for which we have
a computable ground-truth. We train GNN models on these labels, and calculate attributions using the graph inputs and attribution methods we
adapt to graphs. B. We quantify attribution performance with four metrics. Accuracy measures how well an attribution matches ground-truth

Consistency measures how accuracy varies across different hyperparameters of a model. Faithfulness measures how well the performance of
an attribution method matches model performance. Stability measures how attributions change when the input is perturbed

Sanchez-Lengeling, B., Wei, J,, Lee, B, Reif, E., Wang, P., Qian, W., McCloskey, K., Colwell, L. and Wiltschko, A., 2020. Evaluating attribution for
graph neural networks. Advances in neural information processing systems, 33, pp.5898-5910.




“Classic” XAl methods

Attribution technigues



Saliency maps

A is an object of the same dimensionality as the

input, providing information about which features were most
important for a given prediction.

Formally (i is the index of the class of interest):

0 i\ L
Saliency map = }Enaxl J;( )
channels T

Simonyan, K, Vedaldi, A. and Zisserman, A., 2013. Deep inside convolutional networks: Visualising image classification models and
saliency maps. arXiv preprint arXiv:1312.6034.






Saliency maps for graphs

A very similar procedure can be done for a graph NN, to obtain
graph saliency maps:

OA
(We focus mostly on edge saliency maps, as they are easier to

visualize.)

Baldassarre, F. and Azizpour, H., 2019. Explainability techniques for graph convolutional networks. arXiv preprint arXiv:1905.13686.



Example

Output

2.5
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Figure 8: Graph 1: nodes 0, 1, 2 and 3 are initially sick; nodes 4 and 11 are immune; the others are healthy. After
one propagation step, the infection reaches nodes 5, 6, 7 and 10. The network predicts the correct label for every node of the
graph, following the spread of the infection along non-virtual edges to non-immune nodes. The figures that follow are a
visualization of the explanations produced for nodes: 10, 13, 4

Baldassarre, F. and Azizpour, H., 2019. Explainability techniques for graph convolutional networks. arXiv preprint arXiv:1905.13686.




Example
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Limits of saliency maps

Simple saliency maps have issues that balances their
simplicity:

1. They are highly unstable wrt small changes in the
INput.

2. They are not well localized.

3. They have no formal guarantees.

INn particular, they do not respect a property called
sensitivity: if two inputs differ for a single element but
have different predictions, a saliency map is not
guaranteed to highlight that pixel.



Integrated gradients

In the CV field, integrated gradients are a powerful alternative to
standard saliency maps.

They recover sensitivity by integrating the gradients along a path
moving from the empty image to the current one.

We can do something similar by considering an empty adjacency

matrix AO:
0f(X,aA + (1 —a)A
acl0,1]

Sundararajan, M., Taly, A. and Yan, Q., 2017, July. Axiomatic attribution for deep networks. In International conference on machine
learning (pp. 3319-3328). PMLR.




Some benchmarks

; : eme . Subgraph
Subgraph logic (binary classification), multiple ground truths regrgssi%n
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Figure 2: Example ground truth attributions for each task. The first four graph-classification tasks require a model to identify all nodes
(green) in one or more subgraphs (colored lasso) in molecular graphs. Each graph may have multiple positive ground-truths, shown in the
Benzene task. Ground truth attributions for the CrippenLogP regression task take on continuous values. Lower row has node-classification
tasks. Relevant subgraphs are circled. Only one neighborhood of the graph is shown.

Sanchez-Lengeling, B., Wei, J.,, Lee, B, Reif, E., Wang, P., Qian, W., McCloskey, K., Colwell, L. and Wiltschko, A., 2020. Evaluating
attribution for graph neural networks. Advances in neural information processing systems, 33, pp.5898-5910.



Some benchmarks (2)

Graph-level tasks

Benzene Amine AND Ether AND Benzene CrippenLogP
GCN MPNN GraphNets GAT GCN MPNN GraphNets GAT MPNN GraphNets
Random Baseline 0.61 0.61 0.61 0.61 0.5 0.5 0.5 0.5
GradInput 0.54 0.54 0.56 0.52 0.53 0.55 0.41
0.54 0.53 0.51 055 0.59 0.38

0.66 0.54 0.55 0.46

SmoothGrad(GI) 0.54
GradCAM-last 0.66

GradCAM-all 0.62 0.54 0.62 0.44
1G 0.54
CAM 0.65
Attention Weights - 0.51
Node-level tasks
BA-Shapes BA-Community Tree-Grid
GCN MPNN GraphNets GAT GCN MPNN GraphNets GAT MPNN GraphNets

0.38 0.38
0.52 0.51 0.5 0.5
0.51 0.51

0.27
0.39

0.27

Random Baseline

GradInput

SmoothGrad(GI) 0.39
GradCAM-last|

GradCAM-all

1G

Attention Weights o5

Figure 3: Attribution method accuracy across tasks and model architectures. Colors are used to distinguish two metric types — attribution
AUROC for attribution on classification tasks, and attribution Kendall’s tau on the regression task. CAM and IG perform consistently well
across tasks and models. For error bars, please see Figure S1.

Sanchez-Lengeling, B., Wei, J.,, Lee, B, Reif, E., Wang, P., Qian, W., McCloskey, K., Colwell, L. and Wiltschko, A., 2020. Evaluating
attribution for graph neural networks. Advances in neural information processing systems, 33, pp.5898-5910.



Tailored XAl methods
GNNEXxplainer



GNNEXxplainer

For graphs, it is fundamental that the resulting subgraph is
small, since visualizing and interpreting it is complex.

For this reason, tailored methods have been proposed to
force sparsity as the main concern.

GNNEXxplainer works by optimizing the masks using the
following criteria:

1. Keeping the original prediction consistent;
2. Having small masks (I1 regularization),

Ying, R., Bourgeois, D., You, J., Zitnik, M. and Leskovec, J., 2019. Gnn explainer: A tool for post-hoc explanation of graph neural
networks. arXiv preprint arXiv:1903.03894.



GNNEXxplainer cost function

M4 = arg min
M

CE(f(X,A), f(X,M®A))

ool M1+

/

Prediction should

FH [M]

/Weights should be

h tent The mask as close as possible
stay consisten <hould be 00 or
sparse

Ying, R., Bourgeois, D., You, J., Zitnik, M. and Leskovec, J., 2019. Gnn explainer: A tool for post-hoc explanation of graph neural
networks. arXiv preprint arXiv:1903.03894.




Some results

Computation graph GNN EXPLAINER Grad Attention Computation graph GNN EXPLAINER Grad Attention
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Figure 3: Examples of single-instance important subgraphs. The red node is the explained node.

Reddit - QA
Reddit - Disc.

Ying, R., Bourgeois, D., You, J., Zitnik, M. and Leskovec, J., 2019. Gnn explainer: A tool for post-hoc explanation of graph neural
networks. arXiv preprint arXiv:1903.03894.
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Figure 2: Illustration of PGExplainer for explaining GNNs on graph classification. (1) The left part
demonstrates the explanation network. It takes node representations Z as well as the original graph
G, as inputs to compute €2, the latent variables in edge distributions. Edge distributions are severed as
the explanation. In case that an explanatory subgraph is wanted, we select top-ranked edges according

to latent variables (2. (2) A random graph G is sampled from edge distributions and then feed to the
trained GNN model to get the prediction Y. (3) Parameter W in the explanation network is optimized
with cross-entropy between the original prediction Y, and the updated prediction Y.

Luo, D., Cheng, W., Xu, D., Yu, W.,, Zong, B., Chen, H. and Zhang, X,, 2020. Parameterized explainer for graph neural network.
Advances in neural information processing systems, 33, pp.19620-19631.



Notebook time!

Colab Notebooks and Video Tutorials — pytorch_geometric documentation

https://colab.research.google.com/drive/InV44NrNgcXC2thU6-zzxnJPnlalo87
Om?usp=sharing



https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing

Selected topics

Data influence






Limits of saliency maps

1. All the previous methods estimated the influence of
single features (e.g., edges) on the prediction.

2. An alternative class of methods explore the influence of
single data points on the prediction, e.g., how much
training on a certain graph (or node) has influenced the
prediction on a separate graph (or node).

3. Thisis a more complex scenario, since the influence has
to be computed across the entire training run.




Gradient tracing

Consider an idealized training procedure where at iteration
t we update the parameter vector as:

Wir1 = wy — NVI(wy, 2)

The influence of point z on point Z' is defined as:

TracInldeal(z, 2) Z l(wy, 2") — (w2

Pruthi, G,, Liu, F.,, Kale, S. and Sundararajan, M., 2020. Estimating training data influence by tracing gradient descent. Advances in
Neural Information Processing Systems, 33, pp.19920-19930.



Gradient tracing

By first-order approximation, it can be shown that:

TracInldeal(z, 2") =~ Z nVi(wy, 2) - Vi(wy, 2")

tizi==z
This can be approximated by storing k checkpoints
during training and computing:

TracInldeal(z, 2") ZUVZ w;, z) - Vi(w;, 2')

Pruthi, G,, Liu, F.,, Kale, S. and Sundararajan, M., 2020. Estimating training data influence by tracing gradient descent. Advances in
Neural Information Processing Systems, 33, pp.19920-19930.



Results on CV
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Results on CV
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Results on CV
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Figure 5: CIFAR-10 results: Proponents and opponents examples of a correctly classified cat for
influence functions, representer point, and TracIn. (Predicted class in brackets)




Notebook time!

Colab Notebooks and Video Tutorials — pytorch_geometric documentation

https://colab.research.google.com/drive/InV44NrNgcXC2thU6-zzxnJPnlalo87
Om?usp=sharing



https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing
https://colab.research.google.com/drive/1nV44NrNqcXC2thU6-zzxnJPnIalo870m?usp=sharing

Selected topics

New directions for improving XAl



Challenges for current XAl on graphs

1. Most interpretability methods are trained post-hoc.

2. Lack of datasets with an interpretability gold
standard.

3. Defining proper metrics for assessing the results is
non trivial.




Meta-learning for enhancing XAl

Inner Loop
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Fig. 3. Schematics of our meta-learning framework for improving GNN’s explainability at training time. MATE steers the optimization procedure toward
more interpretable minima in the inner loop, meanwhile optimizing for the original task in the outer one. The inner loop adapts the model’s parameters to a
single “explanation task.” It starts with the sampling of a random node and its computational subgraph. Then, we train GNNExplainer to explain the current
model’s prediction. Afterward, we can adapt the model’s parameters to the “explanation task” ending in a new model’s state. Finally, we meta-update the
original parameters minimizing the cross-entropy loss computed with the adapted parameters.

Spinelli, I, Scardapane, S. and Uncini, A.,, 2022. A Meta-Learning Approach for Training Explainable Graph Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems.




Some results

TABLE III

VISUALIZATION OF THE EXPLANATION SUBGRAPHS FOR THE NODE CLASSIFICATION TASK. NODE COLORS REPRESENT NODE LABELS. DARKNESS OF
THE EDGES SIGNALS IMPORTANCE FOR CLASSIFICATION. THE GROUND-TRUTH MOTIF IS PRESENTED IN THE FIRST ROW

BA-shapes BA-community Tree-cycles Tree-grids

Community 1

- e
Motif | L

GNNExp

< o
M7 =
] @

PGExp

MATE+PGExp

Spinelli, I, Scardapane, S. and Uncini, A.,, 2022. A Meta-Learning Approach for Training Explainable Graph Neural Networks.
IEEE Transactions on Neural Networks and Learning Systems.



Prototype-based GNNs
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Figure 1: The architecture of our proposed ProtGNN/ProtGNN+. The model mainly consists of three parts: GNN encoder f,
prototype layer gp, and the fully connected layer ¢ appended by softmax to output probabilities in multi-class classification
tasks. ProtGNN calculates the similarity score (sim(py,-) in the illustration) between the graph embedding and the learned
prototypes in the prototype layer. For further interpretability, the conditional subgraph sampling module (in the dashed bounding
box) is incorporated in ProtGNN+ to output subgraphs most similar to each learned prototype.

Zhang, Z., Liu, Q.,, Wang, H., Lu, C,, & Lee, C. (2022). ProtGNN: Towards self-explaining graph neural networks. In Proceedings of
the AAA| Conference on Artificial Intelligence (Vol. 36, No. 8, pp. 9127-9135).




Thanks! Questions?

Simone Scardapane
Tenure-track Assistant Professor

@ https://Wwww.sscardapane.it/

, https://twitter.com/s_scardapane
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