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Causal Machine Learning

Causal Machine Learning (CausalML) is an
Causal Machine Learning:

umbrella term for machine learning methods A Survey and Open Probiems
that are causally informed.
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Abstract

usal Machine Learning (CAUSALMLY) is an

This perspective enables us to reason about
the effects of changes in the data generation
process (interventions) and what would have
happened in hindsight (counterfactuals).
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Causal Machine Learning

Causal Machine Learning:

We can categorize work in CausalML into five A Survey ‘and Open raioms
groups according to the problems they

address: (1) causal supervised learning, (2
causal generative modeling, (3) causal
explanations, (4) causal fairness, and (5
causal reinforcement learning.
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Abstract

Causal Machine Learning (CAUSALML) is an umbrella term for machine learning
methods that, formalize process as a structural causal model
(SCM). This perspective about the effects of changes to this
process (interventions) and what would have happened in hindsight (counterfactu-
als). We categorize work in CAUSALML into five groups according to the problems
they address: (1) causal supervised learning, (2) causal generative modeling, (3)
causal explanations, (4) causal fairness, and (5) causal reinforcement learning. We
systematically compare the methods in each category and point out open problems
Further, we review data-modality-specific applications in computer vision, natu-
ral language processing, and graph representation learning. Finally, we provide an
overview of causal benchmarks and a critical discussion of the state of this nascent
field, including recommendations for future work
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Causal Supervised Learning

The goal of supervised learning is to learn the conditional distribution P(Y | X), or
more generally E(Y | X), by training on data of the form D = {(x;, yl-)}ﬁ.\il, where X
and Y denote covariates and label, respectively.

One of the most fundamental principles in supervised learning is to assume that our
data D is independent and identically distributed (i.i.d.).

The validity of this assumption has been challenged; it has been famously called “the
big lie in machine learning”.
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Causal Supervised Learning

As an alternative to the i.i.d. assumption, we can assume that our data is sampled from
interventional distributions governed by a causal model.

: : e ,,e\N
For a given dataset generated across a set of environments &, {(xl. , Vi )l.=1 }ocer WE
view each environment ¢ € € as being sampled from a separate interventional

distribution.

How can we estimate P(Y | X) in a principled, robust manner?

CAUSAL INFERENCE AND MACHINE LEARNING 5



Invariant Feature Learning

Invariant feature learning (IFL) is the task of identifying features of our data X, X,
that are predictive of Y across a range of environments &.

(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: (C) No Person: 0.97,
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: Mammal: 0.96, Water: 0.94,
0.98, Mammal: 0.98 0.97, Seashore: 0.97 Beach: 0.94, Two: 0.94
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Distribution Shifts

A UNIFYING CAUSAL FRAMEWORK FOR ANALYZING DATASET

In this paper, authors provide a unifying framework U STABLE LEAKNING ALGORITIAS

for specifying dataset shifts that can occur, analyzing i mom
model stability to these shifts, and determining e T
conditions for achieving the lowest worst-case error

across environments produced by these shifts.

Published May 19, 2022 in the Journal of Causal inference
ABSTRACT

Recent interest in the external validity of prediction models (i.., the problem of different train and
test distributions, k duced for fi

tions that are invariant to dataset shifts and can be used for prediction in new, unseen environments.
However, these methods consider different types of shifts and have been developed under disparate
frameworks, making it difficult to theoretically analyze how solutions differ with respect to stability
and accuracy. Taking a causal graphical view, we use a flexible graphical representation to express
various types of dataset shifts. Given a known graph of the data generating process, we show that
all invariant distributions correspond to a causal hierarchy of graphical operators which disable the
edges in the graph that are responsible for the shifts. The hierarchy provides a common theoreti-
cal underpinning for understanding when and how stability to shifts can be achieved, and in what
ways stable distributions can differ. We use it to establish conditions for minimax optimal perfor-
mance across environments, and derive new algorithms that find optimal stable distributions. Using
this new perspective, we empirically demonstrate that that there is a tradeoff between minimax and
average performance,

1 Introduction

905.11374v5 [stat ML] 18 Jul 2022

Statistical and machine learning (ML) predictive models are being deployed in a number of high impact applications,
including healtheare [1], law enforcement [2], and criminal justice [3]. These safety-critical applications have a high
cost of failure—model errors can lead to incomrect decisions that have a profound impact on the quality of human

This provides common ground so that we can begin to
answer fundamental questions such as:
« To what dataset shifts are the model’s predictions

in which the model will be deployed that manifest as changes in the data distribution. These differences can arise due

to deploying a model at a new site from which data was unavailable during training, or due to natural variations that
oceur over time. Failing to account for these differences can result in model predictions with worse performance (i.e.,

, L expected loss) than anticipated.
stable vs unstable? (Stabilitv of the data o ot of sl domsins, e rce COVID 19 panderic hs demonstd ey n i da
. shifts can induce model failures. For example, the pandemic resulted in a drastic shift in online retail and the consumer

‘packed goods industries: during the onset of the pandemic, the predictive algorithms powering Amazon’s supply chain
failed due to the sudden increased demand for household supplies (e.g., bottled water and paper products), resulting in

generating model
« How will the model's performance be affected by
these shifts?

arXiv

s A, Chea B, Sura S ing causal ramerw
Causal Inference. 2022;10(1): 64-89. htps/do org/10.1515/jck 2021.0042

https://arxiv.org/pdf/1905.11374.pd
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Distribution Shifts

Example: The goal is to diagnose pneumonia Y from chest x-rays Z and stylistic features of
the image X (i.e., orientation and coloring). The latent variable W represents the hospital
department the patient visited. department

g e disease style In the pneumonia example, each
department has its own
protocols and equipment, so the

g style preferences P(X | W)
' vary across departments.

X-ray image
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Distribution Shifts

Each environment is a different instantiation of that graph such
that certain mechanisms differ.

Thus, the factorization of the data distribution is the same in
each environment, but the terms in the factorization
corresponding to shifts will vary across environments.

E={P(Z|Y,X)P(Y|W)P(X|W)P(W)}
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Distribution Shifts

Key Result: Distribution shifts can be expressed in terms of edges.
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Distribution Shifts

A graph and a set of edges which are marked as unstable defines an uncertainty set of
environments whose distributions differ in the unstable factors.

@ @

PZ|Y,X)P(Y | W)P(X|W)P(W) E={PZ|Y,X)P(Y|W)PX|W)P(W)}
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Distribution Shifts

In this pneumonia example, if W is unobserved, a model of P(Y | X, Z) will
learn an association between Y and X through W.Thus, P(Y | X, Z) contains
an unstable path, and this distribution is unstable to shifts in the style
mechanism. This means that P(Y | X, Z) is different in each environment.

By contrast, if W were observed and we could condition on it, then
P(Y | X, Z, W) is stable to shifts in the style mechanism because all paths
containing the unstable edge are blocked by W.

Thus, P(Y | X, Z, W) is invariant across environments.
P(Y'| X, Z) is unstable because of the backdoor path.
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Distribution Shifts

In order to achieve stable distributions to shifts
we can
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