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In this section we’ll see

→Causal effects estimation under the backdoor adjustment 

→Estimation using meta learners 

→Propensity score methods 

→Deep Learning methods 

→A real case application example by Netflix
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Preliminaries and notation

 

 

ITE = 𝔼[Yi |do(Ti = 1)] − 𝔼[Yi |do(Ti = 0)] = Yi(1) − Yi(0)
ATE = 𝔼[Y |do(T = 1)] − 𝔼[Y |do(T = 0)] = 𝔼[Y(1)] − 𝔼[Y(0)]
CATE = 𝔼[Y |do(T = 1), S] − 𝔼[Y |do(T = 0), S] = 𝔼[Y(1) |X = x] − 𝔼[Y(0) |X = x]
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Backdoor Adjustment
Backdoor Criterion: A set of variables  satisfies the backdoor criterion 
relative to  and  if the following are True: 

1.  blocks all backdoor paths from  to  
2. does not contain any descendants of 

X
T Y

X T Y
X T

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼X[𝔼[Y |Y = 1,X] − 𝔼X[𝔼[Y |Y = 0,X]]

If  satisfies the Backdoor Criterion:X
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Backdoor Adjustment http://causality.cs.ucla.edu/blog/wp-content/uploads/
2019/08/clear_m_1.png

Pr(Y |do(X )) = ∑
z

Pr(Y |X, Z ) Pr(Z )

Confounder

We can compute the causal effect of  on  if we control by X Y Z
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Remember - Estimand based Causal Inference Workflow

In this section we will deal with the estimation 
phase of the Causal Inference Workflow when the 
identification method is the Backdoor Criterion

Assumptions, 
Backdoor,  
Frontdoor,  
[…]
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Why backdoor: 1 - Its a usual scenario

Example:  
 
Proposed Causal Graph in the Criteo benchmark dataset. X are user attributes, 
E are clicks, V are visits and C are conversions. U are potential unobserved 
confounders 
https://ailab.criteo.com/criteo-uplift-prediction-dataset/

→Most real life Causal Inference problems 
fall into a scenario that can be identified 
using the backdoor criterion 

→After applying the backdoor adjustment, 
the statistical estimand we obtain can be 
estimated using all the classical methods 
in machine learning and statistics
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Backdoor criterion and ML: 
Estimation using meta learners
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Meta Learners

→Meta learners are discrete treatment CATE estimators that that can take 
advantage of any supervised learning or regression method in machine 
learning and statistics 
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Meta Learners

→Meta learners are discrete treatment CATE estimators that that can take 
advantage of any supervised learning or regression method in machine 
learning and statistics 

→They build on base algorithms such as Random Forests or Gradient Boosted 
Trees to estimate CATE, thus being able to leverage their strengths 
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Meta Learners

→Meta learners are discrete treatment CATE estimators that that can take 
advantage of any supervised learning or regression method in machine 
learning and statistics 

→They build on base algorithms such as Random Forests or Gradient Boosted 
Trees to estimate CATE, thus being able to leverage their strengths 

→Meta learners assume that  is a sufficient adjustment set. In other words, 
assuming it satisfies the backdoor criterion 

X
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Estimation: SLearner

y = 𝔼(Y |T, Z )Pr(Y |do(T )) = ∑
z

Pr(Y |T, Z ) Pr(Z )
ML model (Random Forest, MLP, etc.)

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼(Y |T = 1,Z ) − 𝔼(Y |T = 0,Z )

T

W
Y
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Estimation: SLearner

y = 𝔼(Y |T, Z )Pr(Y |do(T )) = ∑
z

Pr(Y |T, Z ) Pr(Z )
ML model (Random Forest, MLP, etc.)

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼(Y |T = 1,Z ) − 𝔼(Y |T = 0,Z )

T

W
Y

In high dimensions, the 
model can ignore  and the 
estimate can be biased 
toward 0.

T
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Estimation: TLearner

y = 𝔼(Y |T, Z )Pr(Y |do(T )) = ∑
z

Pr(Y |T, Z ) Pr(Z )
ML model (Random Forest, MLP, etc.)

T = 0

W
Y

T = 1

W
Y

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼T=0(Y |Z ) − 𝔼T=1(Y | , Z )
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Estimation: TLearner

y = 𝔼(Y |T, Z )Pr(Y |do(T )) = ∑
z

Pr(Y |T, Z ) Pr(Z )
ML model (Random Forest, MLP, etc.)

T = 0

W
Y

T = 1

W
Y

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼T=0(Y |Z ) − 𝔼T=1(Y | , Z )

Problem: networks have higher variance than they would if they were trained with all the data (not efficient)
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Model properties intuitions
→SLearner uses the treatment  as a covariate, so in cases where the 

number of variables is high, it’s possible the model isn’t making any 
use of it. 

→Due to this, SLearner has a bias. 

→TLearner models treatment and control group separately, so we 
have less data to train each model.  

→Due to this, SLearner has a variance.

T
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Improving data efficiency: TARNet
Intuition: The goal of TARNet is to estimate the treatment and no treatment 
separately, like the TLearner, but making a more efficient use of the data. 

W

Y

Y

T = 1

T = 0

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼(Y |T = 1,Z ) − 𝔼(Y |T = 0,Z )
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Improving data efficiency: XLearner (TARNet)

W

Y

Y

T = 1

T = 0

𝔼[Y(1)] − 𝔼[Y(0)] = 𝔼(Y |T = 1,Z ) − 𝔼(Y |T = 0,Z )

Neural Nets at the rescue of CI

→This model makes use of all the datapoints and is forced to take into account  

→Each subnetwork is still only trained with treatment group data

T



CAUSAL INFERENCE AND MACHINE LEARNING 19

Existence of other estimand based methods

→There exists other estimand based methods when the backdoor criterion 
doesn’t hold: 

→Frontdoor adjustment methods 

→Instrumental Variables (IV) 

→These cases are not as common as the backdoor cases and usually 
require a more customised approach

Out of scope for this course of this talk!!
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Real Case by Netflix

20
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Netflix Case
https://netflixtechblog.medium.com/causal-machine-learning-for-creative-insights-4b0ce22a8a96
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Netflix Case
https://netflixtechblog.medium.com/causal-machine-learning-for-creative-insights-4b0ce22a8a96

They know that the image on the left performed better than the image on the right. However, the 
difference between them is not only the presence of a face. There are many other variances, like 
the difference in background, text placement, font size, face size, etc. 
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Netflix Case
https://netflixtechblog.medium.com/causal-machine-learning-for-creative-insights-4b0ce22a8a96

Two many combinations to perform AB Testing!
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Netflix Case
https://netflixtechblog.medium.com/causal-machine-learning-for-creative-insights-4b0ce22a8a96
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Netflix Case
https://netflixtechblog.medium.com/causal-machine-learning-for-creative-insights-4b0ce22a8a96
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Netflix Case
https://netflixtechblog.medium.com/causal-machine-learning-for-creative-insights-4b0ce22a8a96

This a backdoor scenario with a rich covariate set! 
Let’s train Metalearners to estimate the causal effect of a face!


