Eleventh European Big Data Management & Analytics Summer School (eBISS 2023) July 2023, Barcelona

CAUSAL INFERENCE AND MACHINE LEARNING (or a crash course on causality for ML practitioners)

Dr. Jordi Vitrià, Full Professor, Departament de Matemàtiques i Informàtica, Universitat de Barcelona.

About this talk

The relationship between causality and artificial intelligence can be seen from two points of view: how causality can help solve some of the current problems of AI and how causal inference can leverage machine learning techniques. In this course we will review the two points of view with special emphasis on examples and practical cases.

01 Introduction Observational and Interventional Distributions. Causal Thinking.

02 Causal Graphs Do Calculus

• Estimand Based CI Metalearners

• Estimand Agnostic Cl O4 Counterfactuals

05

• Causal ML Invariances

About the course

The relationship between causality and artificial intelligence can be seen from two points of view: how causality can help solve some of the current problems of AI and how causal inference can leverage machine learning techniques. In this course we will review the two points of view with special emphasis on examples and practical cases.

DataScienceUB / EBISS2023	Q Type 🛛 to search	> + • 💿 n 🖻 🐝
<> Code ⊙ Issues the Pull requests ⊙ Actions ⊞ Project	ts 🖽 Wiki 🛈 Security 🗠 Insig	hts 🔞 Settings
EBISS2023 Public	☆ Edit Pins ▼	▼ ♥ Fork 0 ▼ ☆ Star 0 ▼
💱 main - 🐉 1 branch 🛇 0 tags Go	to file Add file - <> Code -	About 🛞
algorismes Update README.md	b2e2313 8 minutes ago 🔞 2 commits	No description, website, or topics provided.
C README.md Update README.md	8 minutes ago	Readme Activity
README.md	ı	☆ 0 stars ⊙ 1 watching ♀ 0 forks
EBISS2023: Causal Artificial Ir	ntelligence	O TORKS Report repository

The scientific method aims at the discovery and modeling of causal relationships from data. It is not enough to know that smoking and cancer are correlated; the important thing is to know that if we start smoking or stop smoking, it will change our chance of getting cancer. Artificial Intelligence and Machine learning as it exists today does not take causation into account and instead make predictions based on statistical associations. This can give rise to problems when they are used in environments in which the associations used are not necessarily fulfilled or when such models are used for decision making. This picture has begun to change with recent advances in techniques for causal inference, which make it possible (under certain circumstances) to measure causal relationships from observational and experimental data and, in general, to make formal reasoning about cause and effect. As we will discuss in the talk, the convergence between machine learning and causal inference opens the door to answering questions relevant to many AI tasks.

Releases

No releases published Create a new release

Packages

No packages published Publish your first package

https://github.com/DataScienceUB/EBISS2023

Introduction

.

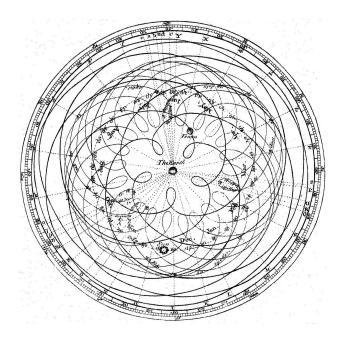
Observational and Interventional Distributions. Causal Thinking.

> Jordi Vitrià jordi.vitria@ub.edu

Can we predict what we see in the sky?

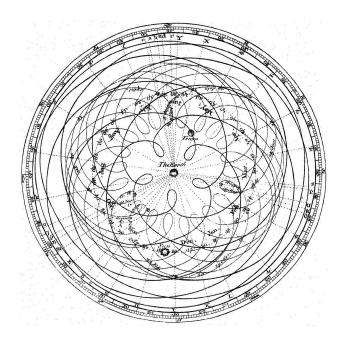
ML Mindset = Gathering data + Building a model

CAUSAL INFERENCE AND MACHINE LEARNING

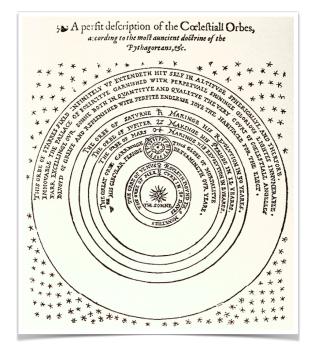


Ptolemaic model (circular orbits, geocentric) 100 AD

CAUSAL INFERENCE AND MACHINE LEARNING



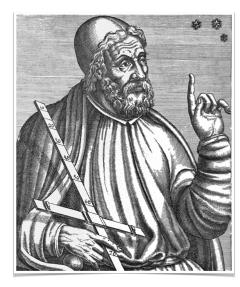
Ptolemaic model (circular orbits, geocentric) 100 AD



Copernican model (heliocentric, harmonious = fewer causes) 1543 AD

CAUSAL INFERENCE AND MACHINE LEARNING

Ptolomeus and Copernicus build models with **high predictive power.** (Statistical/ML Mindset)



But they both were "false"! (Causal/Scientific Mindset)

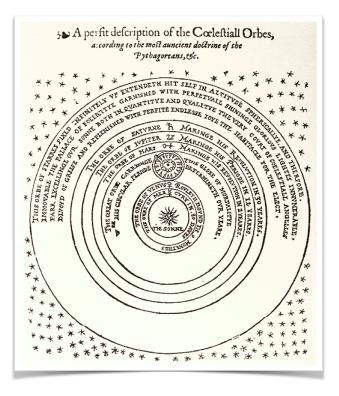
- → Predictions were not false in the "predictive" (Statistical/ML) sense, but in the "interventional" (scientific/causal) sense.
- → What about aliens destroying (**intervening**) a planet instantly?

Statistical inference and machine learning models are designed to predict observations (observational data) in stable environments.

They are based on analyzing data to answer **associative questions**.

What can I say about Y given that I have observed X?

What can I say about X given that I have observed Y?



Modern ML models are very good at discovering and using associative structures in (X, Y)for predicting the value of Y in **pure observational settings**.

But predictive models can be accurate without being "correct" in **interventional settings**.

Al sucks... or how CI can help ML

AI based **high stake decisions** (risk scoring in home credit)

 \bigcirc

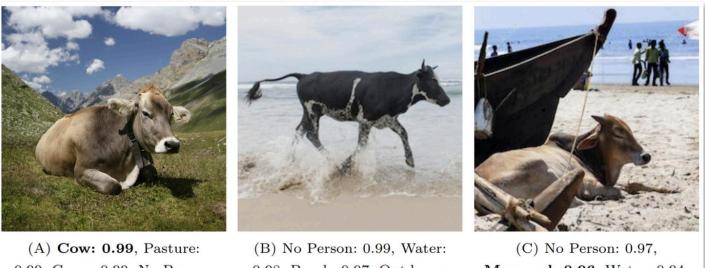
Bogdan Kulynych @hiddenmarkov · 19 h "Number of elevators in the building where the client *currently lives*"

0 8

Use of spurious correlations.

1 1

Image classification



0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water:
0.98, Beach: 0.97, Outdoors:
0.97, Seashore: 0.97

(C) No Person: 0.97,Mammal: 0.96, Water: 0.94,Beach: 0.94, Two: 0.94

Use of spurious correlations.

Spoiler:

A **spurious correlation** is a correlation that **results** from a **non-causal path.**

P(Y|X) - P(Y|do(X))

- → We want to minimize the **Empirical Risk**.
- → We want to maximize **robustness** against changes in data distribution.
- → We want to maximize **robustness** against adversarial attacks.
- → We want to be able of **explaining** my predictions to different stakeholders.
- → We want to measure and mitigate harmful biases (**discrimination**).
- → We want to use predictions to support a **decision** that may influence the outcome they aim to predict (performative predictions).

 \rightarrow Etc.

- → We want to minimize the **Empirical Risk**.
- → We want to maximize **robustness** against changes in data distribution.
- → We want to maximize **robustness** against adversarial attacks.
- → We want to be able of **explaining** my predictions to different stakeholders.
- → We want to measure and mitigate harmful biases (**discrimination**).
- → We want to use predictions to support a **decision** that may influence the outcome they aim to predict (performative predictions).

All these considerations involve causal thinking.

OBSERVATIONAL DATASET

(passive observation of the world)

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

Let's consider some different features in this dataset, (X, Y, Z).

Which can of questions can we answer from this dataset?

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

X Y Z

Q1: Which is the *expected income* Y that would have been observed if an individual had X = x and Z = z?

Association (or prediction) is using data to map some features of the world (the inputs) to other features of the world (the outputs) based on the observed p(X, Y, Z). For example, $\mathbb{E}(Y | X, Z)$.

All we need to do prediction is a dataset sampled from p(X, Y, Z) and some inference tools (statistical inference & machine learning).

Q1: Which is the *expected income* Y that would have been observed if an individual had X = x and Z = z?

<u>Mapping observed inputs to observed outputs</u> is a **natural candidate for automated data analysis** because this task only requires

1) a large **dataset** with inputs and outputs, 2) an **algorithm** that establishes a mapping between inputs and outputs, and 3) a metric to assess the performance of the mapping, often based on a gold standard.

Causal effect of Race on Income

Q2: Estimate the **mean income** Y that would have been observed if all individuals had (X = 1) vs. if they had ($X \neq 1$).

Causal Inference is using data to **predict certain features of the world if the world had been different is some aspect**. We cannot get these data by passive observation of the world! The world was real only in a way!

Causal effect of Race on Income

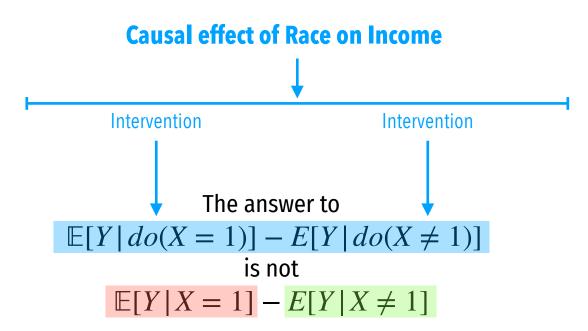
Q2: Estimate the **mean income** Y that would have been observed if all individuals had (X = 1) vs. if they had $(X \neq 1)$.

Answers to causal questions cannot be derived exclusively from p(X, Y, Z). Answering a causal question (yes, sometimes is possible!) typically requires a combination of data, analytics, and **expert causal knowledge**.

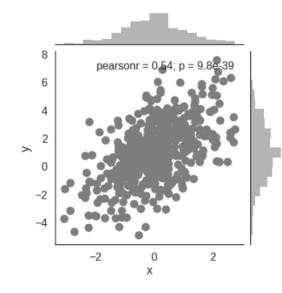
	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	М	1	70	50	1	12	1.73
R1002	М	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	М	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	М	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	М	1	69	67	1	12	3.25

 $\mathbb{E}[Y|do(X=1)] - E[Y|do(X \neq 1)]?$

Causal effect of Race on Income



In order to understand what is p(Y | do(X = x)), let's suppose I have observed p(X, Y).



This is all we need to compute p(Y|X). We can give an answer to any <u>associational</u> <u>question</u>.

For example:

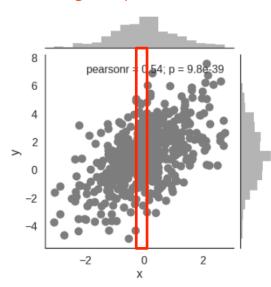
- What is the expected value of Y if we observe
 - X = 0, $\mathbb{E}(Y | X = 0)$? (Regression)
- What is the expected MAX/MIN/MEDIAN value of

Y if we observe X = 0? (Quantile regression)

• Etc.

• What is the expected value of Y if we observe X = 0, $\mathbb{E}(Y | X = 0)$? (**Regression**)

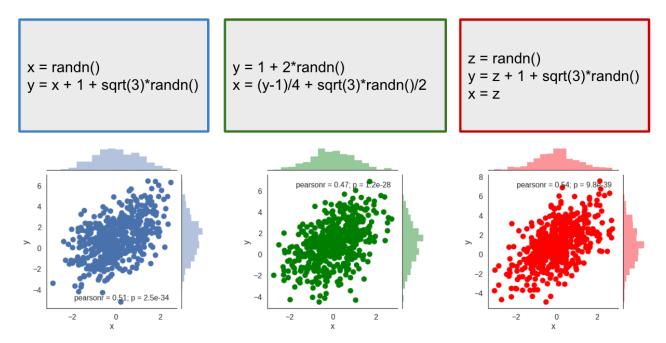
p(Y|X=0)



https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

OBS and INT are not generally the same! Let's consider three generative models corresponding to the same p(X, Y)

Generative Models



Based on the joint distribution the three scripts are indistinguishable.

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

z = randn() $y = 1 + 2^{randn}$ x = 3x = randn()x = 3 x = 3x = zx = (y-1)/4 + sqrt(3)*randn()/2x = 3 y = x + 1 + sqrt(3)*randn()x = 3y = z + 1 + sqrt(3)*randn()x = 3 x = 3 8 6 6 6 4 4 2 2 2 > 0> 0> 0-2 -2 -2 -4 -4 -4 -6 -6 -6 pearsonr = nan: p = 1 pearsonr = nan; p = 1pearsonr = nan; p = 1-8 -8 -8 2.50 3.00 3.25 3.50 2.50 2.75 3.00 3.25 3.50 2.50 2.75 3.00 3.25 3.50 2.75 p(Y | do(X = 3))p(Y | do(X = 3))p(Y | do(X = 3))

Intervention p(Y | do(X = 3))

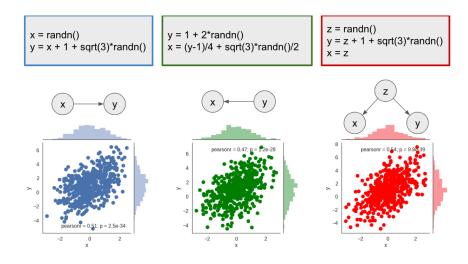
The joint distribution of data p(X, Y, Z) alone is insufficient to predict behavior under interventions.

https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

Generative Models

An intervention can be understood as a **modification of the generative model of the data, producing a different probability distribution:**

p(do(X = 3), Y, Z)



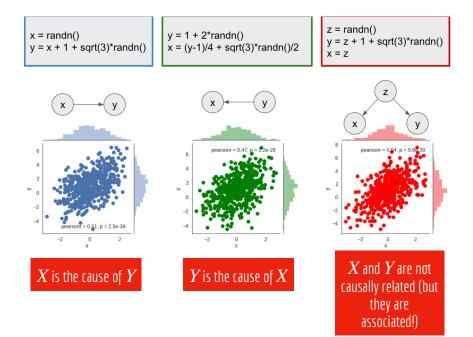
Directed Acyclic Graphs (DAG).

No assumptions about the exact form of the functional relationships are needed. The only requirement is that causal relationships are **acyclic**.

Generative Models

An intervention can be understood as a **modification of the generative model of the data, producing a different probability distribution**

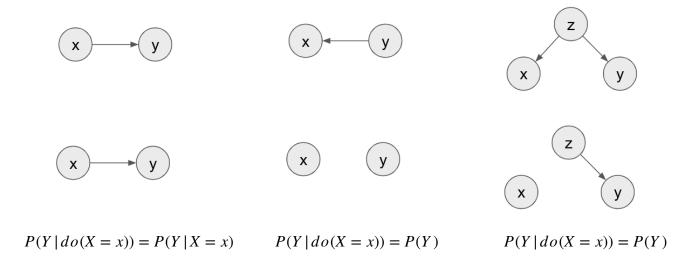
p(do(X=3),Y,Z)



https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

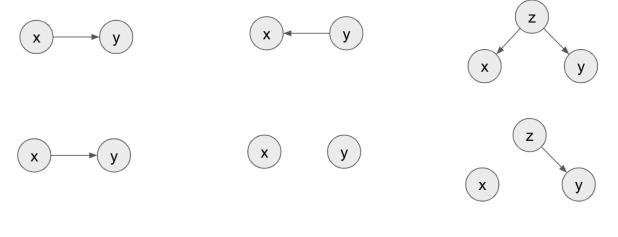
What is an intervention?

Graphically, to **simulate the effect of an intervention**, you **mutilate** the graph by removing all edges that point into the variable on which the intervention is applied, in this case *x*.



Causal Data Science

What is an intervention?

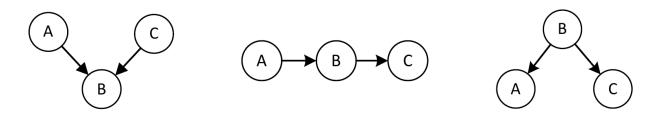


 $P(Y | do(X = x)) = P(Y | X = x) \qquad P(Y | do(X = x)) = P(Y) \qquad P(Y | do(X = x)) = P(Y)$

Just by looking at the causal diagram, we are now **able to predict** how the scripts are going to behave under the intervention X = 3.

Causal Data Science

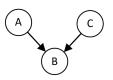
• The primary language for modeling causal mechanisms and expressing our assumptions is the **language of causal graphs**.



- Causal graphs encode our domain knowledge about the causal mechanisms underlying a system or phenomenon under study.
- Causal graphs are assumed to be acyclic. This is why they are called DAGs (Directed Acyclic Graphs).

Causal Data Science

- Fundamentally, a causal graph describes a non-parametric data-generating process over its nodes.
- By specifying independence and dependence between the nodes, the graph constrains relationship between generated variables corresponding to those nodes.

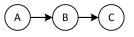


B is a **collider** for A and C A and B create an **inverted fork** to B

A and C are independent

B is a **confounder** B creates a **fork** to A and C

A and C are not independent. A and C are independent conditional on B



B forms a **chain** from A to C

A and C are conditionally independent given B

A DAG provides enough extra-data information (in terms of conditional independences) **to answer many causal queries**, **even with the data generating process hidden**.

Causal Thinking

.

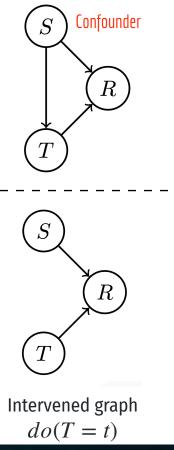
Basic Concepts: Causal Effect

 The average treatment/causal effect (ATE) of T on R:

$$\mathbb{E}[R \,|\, do(T=1)] - \mathbb{E}[R \,|\, do(T=0)]$$

• The conditional average treatment/causal effect (CATE):

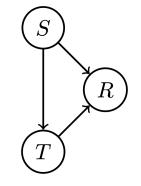
$$\mathbb{E}[R \mid do(T = 1), S] - \mathbb{E}[R \mid do(T = 0), S]$$



Basic Concepts: Counterfactual

- Counterfactuals: hypothetical result that an intervention may have on an individual for whom we have already observed a different *factual* outcome.
 - Counterfactuals allow us to mix factual information with alternative scenarios.
 - Explainability and Fairness applications.
- Given a certain patient with symptoms *s*, who was not given a treatment and didn't recover, **would they have recovered had we given them the treatment?**
- The individual treatment/causal effect (ITE):

$$\mathbb{E}[R_i | do(T_i = 1)] - \mathbb{E}[R_i | do(T_i = 0)]$$



Causal Thinking Process

- 1. Asking a causal/counterfactual query (ATE, CATE, ITE,...)
- 2. Gathering knowledge from experts
- 3. Building a DAG
- 4. Identifying the causal query
- 5. Gathering data.
- 6. Computing and estimand/building a SCM
- 7. Answering the causal/counterfactual query

Asking a causal query

 \rightarrow Possible interesting queries:

Salary Dataset

→ Variables:

→ Gender.

→ **D**epartment.

→ Benefits.

→ Seniority.

→ **S**alary.

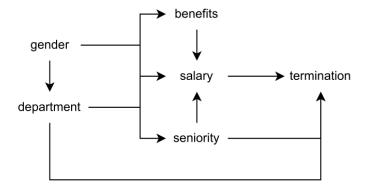
→**T**ermination.

 $\rightarrow \mathbb{E}[S \mid do(G = male)] - \mathbb{E}[S \mid do(G = female)]:$ **ATE** of gender (binary) on salary. $\rightarrow \mathbb{E}[S_i^* \mid do(G_i^* = male), G_i = female, S_i = s]:$

given a particular woman *i* with salary s, **counterfactual** salary when male.

Gathering knowledge and data

- → We need to find the corresponding causal graph.
 - → Causal Discovery algorithms.
 - → Domain Experts.
 - \rightarrow Experiments.



Salary Dataset

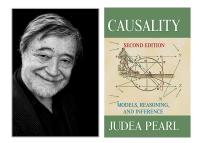
Causal Graph

There are <u>two ways</u> to measure the **causal relationship** between two variables, S and G:

1. The easiest way is an **intervention** in the real world: You **randomly** force G to have different values and you measure S.

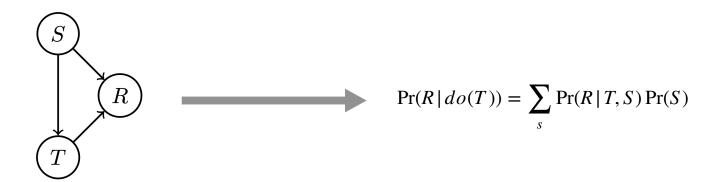
This is what we do in Randomized Clinical Trial (RCT) or in an A/B Test.

This is not always feasible (because of practical, ethical or economical reasons)



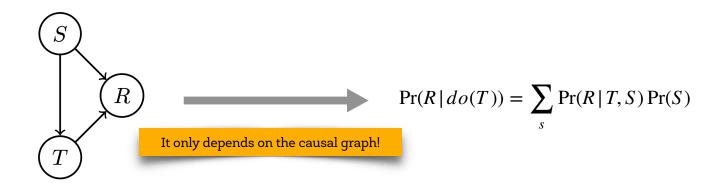
2. If the query is **identifiable** we can compute an estimand.

For example, in this case, **do-calculus** allows us to massage p(S, R, T) until we can express p(R | do(T)) in terms of various marginals, conditionals and expectations under p(S, R, T).



2. If the query is **identifiable** we can compute an estimand.

For example, in this case, **do-calculus** allows us to massage p(S, R, T) until we can express p(R | do(T)) in terms of various marginals, conditionals and expectations under p(S, R, T).

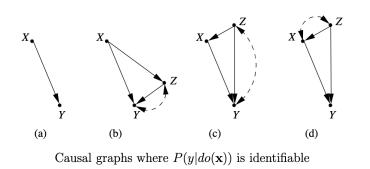


- → Causal query \hat{Q} , e.g., $\hat{Q} := \mathbb{E}[S \mid do(G = male)] \mathbb{E}[S \mid do(G = female)].$
 - → It contains interventional terms, so we can't use the dataset directly.
 - → Identification: transform every interventional term into an expression using only observational terms ⇒ estimand.
 - → There are **automated algorithms** that do this work for us.

Salary Dataset

Given a causal query for a certain DAG, we say it is **identifiable** if we can derive an statistical estimand (**only using observational terms**) for this query using the rules of **do-calculus**.

The *do-calculus* is an axiomatic system for replacing probability formulas containing the *do* operator with ordinary conditional probabilities. It consists of three axiom schemas that provide **graphical criteria** for when certain substitutions may be made.



Dashed lines correspond to unobserved confounders, associations produced by unobserved variables.

Source: Complete Identication Methods for Causal Inference, PhD Thesis, University of California. I.Shpitser

pedemonte96 / causaleffe > Code ن Issues ع اثر	Pull requests 🕑 Actions 🖽 Projects	s □ Wiki ① Security 🗠 Insig	3 thr Star 20 ♥ Fork 0
9 main - ¥ 2 branches 🛇	2 tags	Go to file Add file - Code -	About Python package to compute
pedemonte96 Create CONTRI	BUTING.md	320d16f on 12 Jul 🕚 19 commits	conditional and non-conditional
.github/ISSUE_TEMPLATE	Update issue templates	3 months ago	causal effects.
causaleffect	improved verbose d-separation	4 months ago	টা MIT License
documentation	improved documentation	4 months ago	Ala MII License
examples	fixed example and added documentation	4 months ago	Delesson
images	updated readme	4 months ago	Releases 2
tests	add id tests	3 months ago	▶ v0.0.2 (Latest) on 19 Jun
] .gitignore	causal effect added	4 months ago	+ 1 release
CODE_OF_CONDUCT.md	Create CODE_OF_CONDUCT.md	3 months ago	
CONTRIBUTING.md	Create CONTRIBUTING.md	3 months ago	Packages
	Create LICENSE	3 months ago	No packages published Publish your first package
B README.md	removed pycairo dependency	4 months ago	Publish your first package
pyproject.toml	build done	4 months ago	Languages
requirements.txt	removed pycairo dependency	4 months ago	
setup.py	Update setup.py	3 months ago	• Python 100.0%

import causaleffect

G = causaleffect.createGraph(['X<->Y', 'Z->Y', 'X->Z', 'W->X', 'W->Z'])
causaleffect.plotGraph(G)

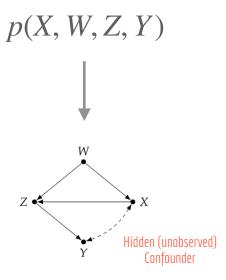
P = causaleffect.ID({'Y'}, {'X'}, G)
P.printLatex()

The code above computes the causal effect, and returns a string encoding the distribution in LaTeX notation:

 $\label{eq:sum_w, z}P(w)P(z|w, x)\left(\sum_{x}P(x|w)P(y|w, x, z)\right)'$

This string, in LaTeX, is

$$\sum_{w,z} P(w)P(z|w,x) \left(\sum_{x} P(x|w)P(y|w,x,z)\right)$$



Building a causal model

→ Once we have an estimand, we need to build
 models to use it for our estimation.

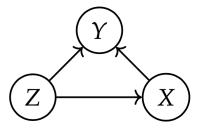
$$\rightarrow \mathcal{Q} := \mathbb{E}[Y \mid do(X = x)] = \mathbb{E}_{Z}[\mathbb{E}_{Y|x,Z}[Y]].$$

$$\rightarrow \text{We need to model the } f(x, Z) := \mathbb{E}_{Y|x,Z}[Y]$$

term.

 \rightarrow If Y is binary, with a ML classifier.

 \rightarrow If Y is continuous, with a ML regressor.



Answering the query

→ Now that we have our ML model, we can follow the **estimand** formula:

$$\rightarrow \mathcal{Q} := \mathbb{E}[Y \mid do(X = x)] = \mathbb{E}_{Z}[\mathbb{E}_{Y|x,Z}[Y]].$$

 \rightarrow The \mathbb{E}_Z expectation can be estimated by averaging dataset samples:

$$\mathcal{Q} = \mathbb{E}_{Z}[\mathbb{E}_{Y|x,Z}[Y]] \approx \frac{1}{n} \sum_{i=1..N} f(x, z_{i}).$$

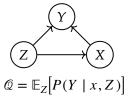
Answering the query

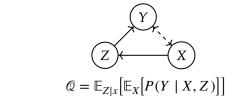
- → The **estimand-based** approach:
 - 1. Derive an **estimand** for our graph & query.
 - 2. Train ML models for the terms we need to compute.
 - 3. Follow the estimand formula to obtain an **estimation**.

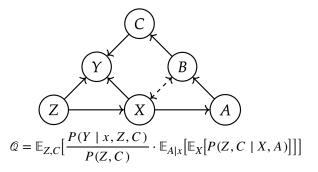
Answering the query

→ However, depending on the graph, even the same query results in different estimands.

 $\rightarrow P(Y \mid do(X = x)):$







From "Causal Inference in AI Education: A Primer"

Example 3.1. AdBot Consider an online advertising agent attempting to maximizing clickthroughs, with $X \in \{0,1\}$ representing two ads, $Y \in \{0,1\}$ whether or not it was clicked upon, and $Z \in \{0,1\}$ the sex of the viewer. A marketing team collects the following data on purchases following ads shown to focus groups to be used by AdBot:

	Ad 0	Ad 1
Male	108/120 (90%)	340/400 (85%)
Female	266/380 (70%)	65/100~(65%)
Total	374/500 (75%)	405/500 (81%)

Table 1. Clickthroughs in the AdBot setting striated by the ad shown to participants in a focus group, and the sex of the viewer.

If the sex of a viewer is not know, which ad is the best choice?

From "Causal Inference in Al Education: A Primer"

Example 3.1. AdBot Consider an online advertising agent attempting to maximizing clickthroughs, with $X \in \{0,1\}$ representing two ads, $Y \in \{0,1\}$ whether or not it was clicked upon, and $Z \in \{0,1\}$ the sex of the viewer. A marketing team collects the following data on purchases following ads shown to focus groups to be used by AdBot:

Simpson's paradox

	Ad 0	Ad 1
Male	108/120 (90%)	340/400 (85%)
Female	266/380 (70%)	65/100~(65%)
Total	374/500~(75%)	405/500 (81%)

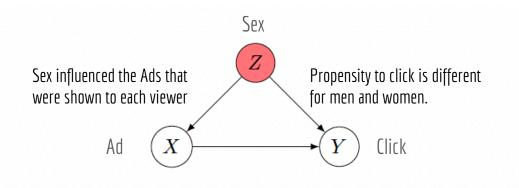
Table 1. Clickthroughs in the AdBot setting striated by the ad shown to participants in a focus group, and the sex of the viewer.

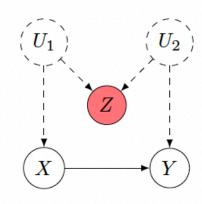
If the sex of a viewer is not know, which ad is the best choice?

From "Causal Inference in AI Education: A Primer"

If the sex of a viewer is not know, which ad is the best choice?

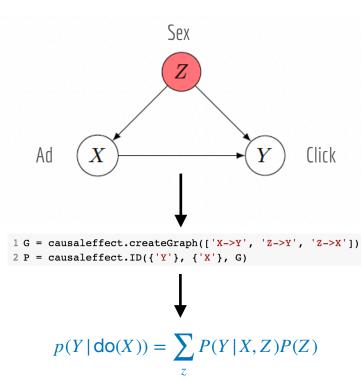
These are two different causal stories:

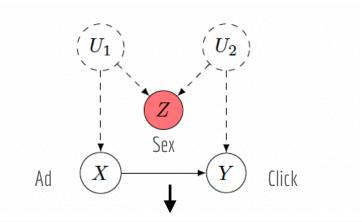




Relevant question: $p(Y | do(X_0)) > p(Y | do(X_1))$?

From "Causal Inference in Al Education: A Primer"





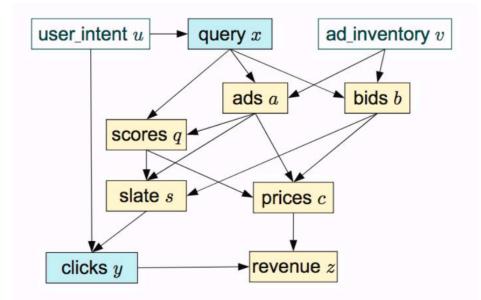
1 G = causaleffect.createGraph(['U1<->X', 'U1<->Z', 'U2<->Z', 'U2<->Y','X->Y'])
2 P = causaleffect.ID({'Y'}, {'X'}, G)
3 P.printLatex()

 $p(Y | \mathsf{do}(X)) = P(Y | X)$

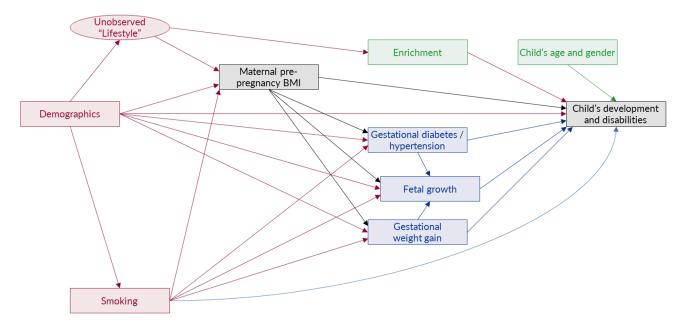
From "Causal Inference in AI Education: A Primer"

Example 3.1. AdBot Consider an online advertising agent attempting to maximizing clickthroughs, with $X \in \{0,1\}$ representing two ads, $Y \in \{0,1\}$ whether or not it was clicked upon, and $Z \in \{0,1\}$ the sex of the viewer. A marketing team collects the following data on purchases following ads shown to focus groups to be used by AdBot:

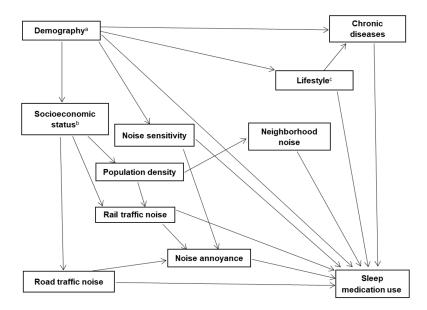
		Ad 0	Ad 1	
If (a) is our explanation of the data, then AdBot should display Ad0.	Male	108/120 (90%)	340/400 (85%)	$\int p(Y \operatorname{do}(X)) = \sum P(Y \operatorname{do}(X))$
		266/380 (70%)		
If (b) is our explanation of the data, then AdBot should display Ad1.	Total	374/500 (75%)	405/500 (81%)	$\mathbf{I} p(Y \mathbf{do}(X)) = P(Y X)$



Bottou, Léon, et al. "Counterfactual reasoning and learning systems: the example of computational advertising." *The Journal of Machine Learning Research* 14.1 (2013): 3207-3260.

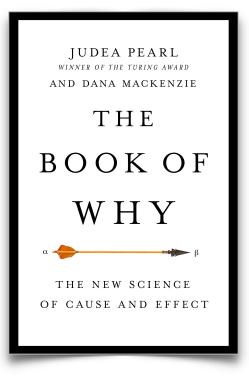


ADAPTED FROM: Hinkle SN, Sharma AJ, Kim SY, Schieve LA. Maternal prepregnancy weight status and associations with children's development and disabilities at kindergarten. *Int J Obes (Lond)*. 2013;37(10):1344-51. DOI: 10.1038/ijo.2013.128 (Figure 1). Freely available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407562



REPRODUCED UNDER CC-BY 4.0 LICENSE FROM: Evandt J. Oftedal B, Krog NH, et al. Road traffic noise and <u>registry</u> <u>based</u> use of sleep medication. *Environ Health.* 2017;16(1):110. DOI: 10.1186/s12940-017-0330-5 (Figure S1). Freely available at: <u>https://www.doi.org/10.1186/s12940-017-0330-5</u>

References



CAUSALITY **SECOND EDITION** MODELS, REASONING, AND INFERENCE JUDEA PEARL

References

- Glymour, Madelyn, Judea Pearl, and Nicholas P. Jewell. Causal inference in statistics: A primer. John Wiley & Sons, 2016.
- Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
- Hünermund, Paul, and Elias Bareinboim. "Causal inference and data fusion in econometrics." The Econometrics Journal, forthcoming. Also in arXiv preprint arXiv:1912.09104 (2019).
- Neal, Brady. "Introduction to causal inference from a machine learning perspective." Course Lecture Notes (draft) (2020).
- Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foundations and learning algorithms. The MIT Press, 2017.
- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
- Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J., & Silva, R. (2022). Causal machine learning: A survey and open problems. arXiv preprint arXiv:2206.15475.
- Mitchell, Shira, et al. "Algorithmic fairness: Choices, assumptions, and definitions." Annual Review of Statistics and Its Application 8 (2021): 141-163.
- Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., & Bengio, Y. (2021). Toward causal representation learning. Proceedings of the IEEE, 109(5), 612-634.
- Schölkopf, B. (2022). Causality for machine learning. In Probabilistic and Causal Inference: The Works of Judea Pearl (pp. 765-804).
- Hünermund, Paul and Kaminski, Jermain and Schmitt, Carla, Causal Machine Learning and Business Decision Making (February 19, 2022). Available at SSRN: https://ssrn.com/abstract=3867326 or http://dx.doi.org/10.2139/ssrn.3867326.

Which causal inference book you should read

