
Leveraging HPC
techniques for data

analytics
Anna Queralt, Francesc Lordan,

Alex Barceló
Workflows and Distributed Computing Group

July 4, 2023

eBISS 2023

This project has received funding from the European Union’s Horizon 2020 JTI-EuroHPC
research and innovation programme H2020-JTI-EuroHPC-2019-1, under grant agreements No:
955558 — eFlows4HPC, 956748 — ADMIRE

2

Barcelona Supercomputing Center
Centro Nacional de Supercomputación

Spanish Government 60%

Catalan Government 30%

Univ. Politècnica de Catalunya (UPC) 10%

BSC-CNS is
a consortium
that includes

BSC-CNS objectives

Supercomputing services
to Spanish and EU researchers

R&D in Computer, Life, Earth and
Engineering Sciences

PhD programme, technology
transfer, public engagement

3

The MareNostrum 4 supercomputer
Total peak performance:

13,9 Pflops/s

Access: prace-ri.eu/hpc-access Access: bsc.es/res-intranet

4

Computer Sciences

Influence
the way

machines
are

BUILT

PROGRAMMED

USED

Holistic Computer
Architecture Research

20 years innovating in
Programming Models

Performance Analytics
Tools: From Data to Insight

In the
context
of

Race towards Exascale

HPC and Big Data convergence

Artificial Intelligence era

Multiple architectures for different applications domains

Leveraging HPC
techniques for data

analytics

6

Outline
• Motivation

• BSC vision on data analytics

• Distributed computing platform: COMPSs
• COMPSs overview
• Demo

Coffee Break

• Distributed data management platform: dataClay
• dataClay overview
• Demo

• COMPSs and dataClay for data analytics
• ML application
• DL application

Until mid 2000’s…

Relational databases and data
warehouses

8

Then…
• 2005: Facebook, Youtube

• 2006: Twitter, Amazon Web Services

• 2007: Netflix, iPhone

• 2008: Spotify

• 2009: Whatsapp, Instagram

• …

New data processing and management solutions
are required:
 Complex analytics workflows including ML/DL
 More flexible (and efficient) data models
 Distribution and parallelism (clusters)

Photo by Sara Kurfeß in Unsplash

9

Now…
• Some platforms have been widely adopted in the

data analytics community

• In the meantime, in HPC…

• Main differences/disadvantages:
• Data analytics: “requires” memory, data movements
• HPC: steep learning curve

Photo by Alexander Schimmeck in Unsplash

10

The best of both worlds
• From data analytics

• Programmability
• Abstraction of the infrastructure

• From HPC
• Performance and scalability
• Flexibility

Photo by Ahtziri Lagarde in Unsplash

11

Achieving flexibility
…And programmability at the same time

Photo by Tim Mossholder in Unsplash

Algorithms

Operators

Parallelism

Scheduling

Data types

MLlib

Spark operators

Pre-defined tasks

Spark runtime

RDD/DataFrame

dislib

DDS

Arbitrary tasks

COMPSs runtime

Arbitrary types

12

… and performance and scalability
• K-means clustering

• For very large sizes, MLlib and Dask-ML fail to finish the
execution

Photo by Tim Mossholder in Unsplash

1 billion samples, 50 features500 million samples, 100 features

2 billion samples, 100 features

13

… even beyond the datacenter
Photo by Akhil Yerabati in Unsplash

For different reasons than in HPC, in edge computing
you also want to:

Distribute the processing
• Due to limited resource capabilities
Minimize data transfers
• To avoid network and privacy issues
Avoid disk accesses
• Many devices don’t have them
Abstraction of the infrastructure for programmability
• Very complex and unstable

Edge-to-cloud environments can be seen as
“a single” data processing platform

14

The Workflows and Distributed Computing group

Data
Management

0

Programming
models

Compute
Continuum

Specific hardware

Artificial Intelligence

High Performance

Complex workflow
development

• Different methodologies and software
stacks are available

• HPC simulation and modeling
• Big Data
• Artificial Intelligence

• There is a need for integration into a single
application workflow

• Facilitates complex workflow development
• Enables global optimizations

Software stack

Computing InfrastructureComputing Infrastructure

Runtime
system

Runtime
system

Programming Model:
High-level, clean, abstract interface
Programming Model:
High-level, clean, abstract interface

Compute
distribution

Compute
distribution

Applications / ServicesApplications / Services

Data
management

Data
management

Libraries:
Collection of methods
Libraries:
Collection of methods DDS

PyCOMPSs
ecosystem

Francesc Lordan

francesc.lordan@bsc.es

Motivation
New complex architectures constantly emerging

• Hardware Heterogeneity
• Different HW characteristics (performance, memory, etc)
• Different architectures -> compilation issues

• Network
• Different types of networks
• Instability

• Dynamicity
• How to dynamically add/remove nodes to the infrastructure

• Trust and Security

• Power constraints from the devices in the edge

Motivation
New complex architectures constantly emerging

• With their own way of programming them
• Fine grain: e.g. Programming models and APIs to run with GPUs, NVMs (Non-Volatile Memories)
• Coarse grain: e.g. APIs to deploy in Clouds

• Difficulty to develop applications
• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficulty to understand what is going on during execution (Efficiency)
• Was it fast? Could it be even faster?
• Am I paying more than I should?

• Tune your application for each architecture (or cluster)
• E.g. partitioning data among nodes

Motivation
• Create tools that make developers’ life easier

• Allow developers to focus on their problem
• Integration of computational workloads (PyCOMPSs)
• with machine learning and data analytics (dislib / DDS)

• Intermediate layer: let the difficult parts to those tools
• Act on behalf of the user
• Distribute the work through resources
• Deal with architecture specifics
• Automatically improve performance

• Tools for visualization
• Monitoring
• Performance analysis

ApplicationsApplications

Power to the runtimePower to the runtime

High-level, clean, abstract interface

Motivation
• Programming

• Sequential programming
• Agnostic of the target computing platform
• Standard programming languages: Java, Python, C/C++

• annotations/hints

• Task based: task is the unit of work

• Runtime
• Builds a task graph at runtime that express potential concurrency (workflow)
• Exploitation of parallelism
• Resource Management and Workload distribution

PyCOMPSs ecosystem overview

ApplicationsApplications

COMPSs
Runtime
COMPSs
Runtime

PyCOMPSs

DDS dislib

General-purpose task-
based programming
model

Skeletons to operate
on large datasets

Library of ML
algorithms

: parallel machine learning

dislib: Collection of machine learning algorithms
• Unified interface, inspired in scikit-learn (fit-predict)
• Based on a distributed data structure (ds-array)
• Unified data acquisition methods
• Parallelism transparent to the user – PyCOMPSs parallelism hidden
• Open source, available to the community

Provides multiple methods:
• data initialization
• Clustering
• Classification
• Model selection, ...

Distributed array (ds-array)
• 2-dimensional structure (i.e., matrix)

• Divided in blocks (NumPy arrays)

• Works as a regular Python object
• But not always stored in local memory!

• Methods for instantiation and slicing with the same syntax of numpy arrays:
• Loading data (e.g., from a text file)
• Indexing (e.g., x[3], x[5:10])
• Operators (e.g., x.min(), x.transpose())

• ds-arrays can be iterated efficiently along both axes

• Samples and labels can be represented by independent distributed arrays

• Data not always in memory:
• Inherent support for out-of-core operations, enabling large data-sets

sa
m

pl
es

features

block

Supported Methods
• Array creation routines

• random,
• existing data
• files

• Matrix decomposition:
• Principal Component Analysis (PCA)
• QR
• TSQR
• SVD

• Clustering
• DBSCAN
• K-Means
• Gaussian Mixture
• Daura (Gromos)

• Neighbour queries
• K-nearest neighbours (KNN)

• Classification
• CascadeSVM
• RandomForest classifier
• DecisionTree classifier

• Recommendation:
• Alternating least squares (ALS)

• Regression
• Linear regression
• LASSO
• RandomForest regressor
• DecisionTree regressor

• Model Selection
• GridSearch
• RandomizedSearch
• K-fold

Classification – Labeled data

Clustering – Unlabeled data

Typical program using dislib

x = load_txt_file("train.csv", (10, 780))
x_test = load_txt_file("test.csv", (10, 780))

kmeans = KMeans(n_clusters=10)

kmeans.fit(x)

kmeans.predict(x_test)

1. Read input data
from file/s

2. Instantiate estimator
with parameters

3. Fit estimator
with training data

4. Make predictions
on test data

Block size

Performance evaluation

1 billion samples
50 features

500 million samples
100 features

2 billion samples
100 features

For very large sizes, dislib can obtain results while MLlib and dask fail to finish the execution

DDS

DDS

DDS: Optimizations

Performance
Wordcount Gutenberg dataset (80GB)

Performance
Wordcount Lorem Ipsum dataset (100GB)

Performance
Terasort (200GB dataset)

Performance
Transitive Closure (15GB dataset)

COMPSs Documentation

• Official Website:
• http://compss.bsc.es

• Github repository
• https://github.com/bsc-wdc/compss

• Documentation
• https://compss-doc.readthedocs.io/en/stable/

• Tutorials
• https://compss-doc.readthedocs.io/en/stable/Sections/10_Tutorial.html

Anna Queralt, Alex Barceló

anna.queralt@bsc.es

alex.barcelo@bsc.es

40

From the application point of view
• There is still a gap between computation and data

• Physical separation Communications
• Serialization/deserialization is the main cost in data

analytics applications [NSDI15]

• Different data models Transformations
• Overcoming the impedance mismatch amounts to up

to 30% of the code [ICSE14]

[NSDI15] K.Ousterhout et al. Making sense of
performance in Data Analytics Frameworks. USENIX
Symposium on Networked Systems Design and
Implementation, 2015)
[ICSE14] T.H.Chen et al. Detecting performance anti-
patterns for applications using object-relational
mapping. Intl. Conf. Software Enginneering 2014

41

From the hardware point of view

• New storage devices, called Non-Volatile
Memories or Persistent Memories, are
becoming available

• Performance similar to memory, capacity
similar to disk

• Byte-addressable: can store objects, not files

HDD - 1,000 µs

SSD - 100 µs

Memory - 0.1µs
Caching
indexing

in-memory

Analytics OLTP

Database Web Hosting

Mail Servers CRM

VOD Media Streaming Surveillance

Data Warehouse Content Delivery

Archive Backup

NVM - 1µs

Computation can be done directly on
stored data, without moving it to RAM

42

Goal
• Building a distributed data management solution

that:

• Maximizes performance and scalability
• Bringing computation close to data by design

• Enabling the execution of arbitrary code within the
data store

• Providing mechanism without imposing policy
• Enabling customization (replication, placement,

consistency guarantees…) according to application
semantics

• Can take advantage of new storage devices

• Lets the programmer focus on the domain
• Supporting the data structures needed by the

application
• All data accessed in the same way, regardless if it’s

local or remote, persistent or volatile
• Providing the illusion of infinite memory

43

Approach
• Taking object stores as a starting point

• Provides scalability

• Adding semantics to objects
• Enables managing data at fine granularity

• Associating behavior to stored objects
• Avoids data movements

Implementation using object-oriented abstractions
 Natural way of joining data and computation performance
 Structure and behavior customizable per type scalability
 Arbitrary data structures representation of the domain

44

in a nutshell

• Distributed active object store for HPC and data analytics applications
• Facilitates the development
• Optimizes execution

• A single data model to manage transparently:
• Persistent and volatile data
• Local and remote data

• Inherently exploits data locality
• Objects = data + methods

• In-memory
• Objects ready to be used
• No transformations or serializations

45

architecture

• Several backends for storage and execution of
methods

• Logic module as entry point

• Persistent classes are registered in dataClay
• Remote method execution
• Fast serialization

• dataClay transparently forwards method execution
to the backends

46

DataClayObject

• A class that enriches Python objects with generic data storage and access functionalities

DataClayObject

make_persistent(self, alias=None)
get_by_alias(cls, alias)
delete_persistent(self)

“Retrieves” an object
Alias is required

Deletes the object “self”

Stores the object “self”
Alias is optional and unique per class

47

Example: a simple persistent class

• Derive class from DataClayObject

• Specify properties and their types

• Annotate methods with @activemethod

• Specify types of parameters

48

Example: a simple persistent class

• Derive class from DataClayObject

• Specify properties and their types

• Annotate methods with @activemethod

• Specify types of parameters

49

Example: a simple persistent class

• Derive class from DataClayObject

• Specify properties and their types

• Annotate methods with @activemethod

• Specify types of parameters

50

Example: an application with persistent objects

• Code application using the classes

• To store an object, call its
make_persistent method

• Related objects will be made
persistent recursively

• To update a persistent object, just
use the assignment instruction

• Changes will be persistent, too

• To access a persistent object, either:
• Retrieve it by alias
• Navigate through relationships

51

Example: an application with persistent objects

• Code application using the classes

• To store an object, call its
make_persistent method

• Related objects will be made
persistent recursively

• To update a persistent object, just
use the assignment instruction

• Changes will be persistent, too

• To access a persistent object, either:
• Retrieve it by alias
• Navigate through relationships

52

Example: an application with persistent objects

• Code application using the classes

• To store an object, call its
make_persistent method

• Related objects will be made
persistent recursively

• To update a persistent object, just
use the assignment instruction

• Changes will be persistent, too

• To access a persistent object, either:
• Retrieve it by alias
• Navigate through relationships

53

Example: an application with persistent objects

• Code application using the classes

• To store an object, call its
make_persistent method

• Related objects will be made
persistent recursively

• To update a persistent object, just
use the assignment instruction

• Changes will be persistent, too

• To access a persistent object, either:
• Retrieve it by alias
• Navigate through relationships

54

Active storage

Logic module

N backends
Storage and execution

Method invocation

return

Client lib
Stubs

Application

Application Registered class

55

Why is this useful?

Without using active storage features Using active storage features

The whole content of “temps” is
transferred from dataClay to the
application to find the average

The method is executed in
dataClay, only the average is
transferred. Now “temps” can be
bigger than memory

56

Performance improvement

• Processing a dataset (an int array) and returning 50% of
its elements as a result

• 1GB per dataset

• Executed in Grid5000, 4 nodes
• 128 GB RAM, 48 cores

• Comparison with other object stores
• With RADOS, OpenIO and MinIO the datasets are

returned to the application, where the processing is
applied

• As the amount of data grows, performance gains with
dataClay increase

• Same happens as the size of the result decreases (not
shown)

• The difference is even higher when using Non-Volatile
Memories instead of disk

dataClay demo

58

Links of interest

• eBISS 2023 demos: https://github.com/bsc-dom/eBISS-2023

• dataClay site: http://www.bsc.es/dataClay

• Documentation: https://dataclay.readthedocs.io

• Repository: https://github.com/bsc-dom
• Source code
• Examples
• Demos

• Contact and support: support-dataclay@bsc.es

An integrated demo

60

dataClay within a workflow

o1o1

Producer app

o1o1

o2o2

• Applications can operate on persistent
and in-memory objects seamlessly

• Producer-consumer workflows can easily share
objects

• Flat object space shared across nodes
• Data transfers are avoided (in-situ processing)

61

dataClay within a workflow

o1o1

Producer app

o1o1

o2

make_persistent

• Applications can operate on persistent
and in-memory objects seamlessly

• Producer-consumer workflows can easily share
objects

• Flat object space shared across nodes
• Data transfers are avoided (in-situ processing)

62

Consumer app

dataClay within a workflow

o1o1

Producer app

o1o1

o2

make_persistent

o3o3

No transformations or serializations needed

• Applications can operate on persistent
and in-memory objects seamlessly

• Producer-consumer workflows can easily share
objects

• Flat object space shared across nodes
• Data transfers are avoided (in-situ processing)

63

Integration with COMPSs

• Abstract Storage Object Interface

• Two types of functionalities:
• For the application developer

• Storage Object Interface
• For the programming model runtime

• Storage Runtime Interface

Storage API

Storage Runtime
Interface

Storage Runtime
Interface

Storage Object
Interface

Storage Object
Interface

PyCOMPSs Application (Python)PyCOMPSs Application (Python)

Others

Runtime

COMPSsCOMPSs

PyCOMPSs

64

Integration with COMPSs

• Abstract Storage Object Interface

• Two types of functionalities:
• For the application developer

• Storage Object Interface
• For the programming model runtime

• Storage Runtime Interface

Storage API

Storage Runtime
Interface

Storage Runtime
Interface

Storage Object
Interface

Storage Object
Interface

PyCOMPSs Application (Python)PyCOMPSs Application (Python)

Others

Runtime

COMPSsCOMPSs

PyCOMPSs

65

Demo

• Handwritten digits recognition

• 2 alternatives
• Machine Learning version

• K-nearest neighbors
• Implemented using COMPSs (and dislib) and dataClay

• Deep Learning version
• CNN
• Implemented using PyTorch and dataClay

66

Bibliography
• ServiceSs: an interoperable programming framework for the Cloud. F. Lordan, E. Tejedor, J. Ejarque, R.

Rafanell, J. Álvarez, F. Marozzo, D. Lezzi, R. Sirvent, D. Talia, and R. M. Badia, Journal of Grid Computing
12(1): 67-91 (2014)

• PyCOMPSs: Parallel computational workflows in Python. Enric Tejedor, Yolanda Becerra, Guillem Alomar,
Anna Queralt, Rosa M. Badia, Jordi Torres, Toni Cortes, Jesús Labarta, IJHPCA 31(1): 66-82 (2017).

• dataclay: A distributed data store for effective inter-player data sharing. Jonathan Martí, Anna Queralt,
Daniel Gasull, Alex Barceló, Juan José Costa, Toni Cortes. Journal of Systems and Software, Volume 131: 129-
145 (2017).

• dislib: Large Scale High Performance Machine Learning in Python. J. Álvarez Cid-Fuentes, S. Solà, P. Álvarez,
A. Castro-Ginard, and R. M. Badia, in 15th International Conference on eScience: 96-105 (2019)

• Workflow Environments for Advanced Cyberinfrastructure Platforms. R.M. Badia, J. Ejarque, F. Lordan, D.
Lezzi, J. Conejero, J. Álvarez, Y. Becerra, A. Queralt. ICDCS 2019: 1720-1729 (2019).

• DDS: Integrating data analytics transformations in task-based workflows. N. Mammadli, J. Ejarque, J.
Álvarez, R.M. Badia, Open Research Europe 2023, 2:66.

• Revisiting active object stores: Bringing data locality to the limit with NVM. Future Generation Computer
Systems 129: 425-439 (2022).

Thank you

This project has received funding from the European Union’s Horizon 2020 JTI-EuroHPC
research and innovation programme H2020-JTI-EuroHPC-2019-1, under grant agreements No:
955558 — eFlows4HPC, 956748 — ADMIRE

