Graph Data Analysis \& Exploration

- Graph Structure Analysis -

Matteo Lissandrini - Aalborg University

Outline

1. Graph Structure Mining

- Graph homomorphism/isomorphism
- Simulation/Strong Simulation
- Graphlets/Motifs
- Triangle Counting

2. Frequent Graph Pattern Mining

- Graph-level subgraph frequency
- Frequent Subgraph Mining
- Extracting Shapes

3. Graph Clustering \& Communities

- Connected components \& Cliques
- K-core \& K-core decomposition
- Community detection
- Graph Partitioning \& Conductance
- Girvan Newman algorithm
- Overlapping Communities

4. Network Sampling

- Scale-down / Back-in-time sampling
- Induced vs. Incident graph sampling
- Biased Node Sampling
- Shape Sampling

Graph Structure Matching

- G is a large graph (the input)
- H is a small"pattern" graph (the query)
- Count/find all occurrences of H in G
- Other names: graphlet analysis, motif counting

What is a match?

Any set of 5 edges gives non-induced H

Induced H-subgraph

- Must match non-edges

Non-induced H-subgraph

- Don't care about non-edges

Subgraph-isomorphism vs Homomorphism

- 1-1 mapping of vertices vs many-1

Homomorphism vs. Isomorphism

An isomorphism between two graphs G and H is a bijective mapping

$$
\phi: G \mapsto H
$$

such that

$$
(x, y) \in E(G) \Leftrightarrow(\phi(x), \phi(y)) \in E(H)
$$

A homomorphism between two graphs G and H is a mapping

$$
(x, y) \in E(G) \Rightarrow(\phi(x), \phi(y)) \in E(H)
$$

Isomorphism is a stricter condition, while homomorphism just preserves edges in one direction

Homomorphism vs. Isomorphism (2)

$$
\begin{aligned}
& \phi: G \mapsto H \\
& (x, y) \in E(G) \Rightarrow(\phi(x), \phi(y)) \in E(H)
\end{aligned}
$$

H: Schema of bi-partite graph

A bipartite graph is homomorphic to the 2-nodes 1-edge graph that describes its schema.

The schema is a form of summary of the graph

Isomorphism vs. Subgraph-isomorphism

As decision problem:

- Isomorphism between G and H :
is G isomorphic to H ?

> Subgraph-Isomorphism is NP-complete
> Isomorphism is -_(ツ)_/-

- Subgraph-isomorphism between G and H : is there a subgraph $\mathrm{H}_{0} \sqsubseteq \mathrm{H}$ such that G is isomorphic to H_{0}

Complexity classes are tricky:

In reality, the subgraph isomorphism problem can be considered to be solvable in graph has a bounded size!

Graph Simulation Matching

A graph G can simulate a graph H if there exists a binary relation $\operatorname{Sim} \subseteq V_{G} \times V_{H}$ where for each $(u, v) \in \operatorname{Sim}$ if $\left(v, v^{\prime}\right) \in E_{H}$ there is $\left(u, u^{\prime}\right)$ in E_{G} such that $\left(\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right) \in \operatorname{Sim}$

If I can follow one transition (edge) in one graph, the other should also be able to follow in the same way

Graph Simulation Matching

Preserves only Parent \rightarrow Child relationships

A graph G can simulate a graph H if there exists a binary relation $\operatorname{Sim} \subseteq \mathrm{V}_{\mathrm{G}} \times \mathrm{V}_{\mathrm{H}}$ where for each $(\mathrm{u}, \mathrm{v}) \in \operatorname{Sim}$ if $\left(\mathrm{v}, \mathrm{v}^{\prime}\right) \in \mathrm{E}_{\mathrm{H}}$ there is $\left(\mathrm{u}, \mathrm{u}^{\prime}\right)$ in E_{G} such that $\left(\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right) \in \operatorname{Sim}$

Usually, Simulation takes into consideration Node/Edge Labels

Graph Isomorphism vs. Simulation Variants

Structural Congruence/Similarity

Isomorphism requires an bijective function

Simulation requires only a parent-child edge preserving relation Strong Simulation requires also child-parent, connectivity and limited diameter

Example of Simulating (G1~ \{G2,G3,G4\}) and Strong-simulating Graphs (G1~G2)
Strong Simulation preserves close connectivity

Automorphism

S4

- A graph G is trivially isomorphic to itself
- so it exists always at least one bijective mapping $\phi: G \mapsto G$
- but what if there exist more than one $\phi_{1} \neq \phi_{2} \neq \ldots: G \mapsto G$?
- Automorphism: an homomorphism from a graph to itself

Analyzing Network Motifs

- Network Motif: a recurrent, significant node-induced subgraph
structure in a network (graph)
- Recurrent \rightarrow Frequent: How to identify "frequency"?
- Significant \rightarrow appears more often than in a random graph

Z_{i} is the significance score of $\mathrm{S}_{\mathrm{i}} \quad Z_{i}=\frac{N_{i}^{\text {real }}-\bar{N}_{i}^{\text {rand }}}{\operatorname{std}\left(N_{i}^{\text {rand }}\right)} \longleftarrow \quad$| Average frequency of S_{i} |
| :--- |
| in random graphs |
| under-representation |

- Motifs analysis is based on network structure (i.e., not considering labels)

What are the possible motifs that can appear in a graph given a fixed number of nodes K ?

They are called Graphlets

Graphlets

A graphlet is class of connected isomorphic subgraphs of a given size.
Two graphlet occurrences are isomorphic, whereas two occurrences of two distinct graphlets are non-isomorphic

Example: all non-isomorphic, connected, directed graphltes of size 3

\#6

There are 30 Graphlets of size $\leqslant 5$ but $\sim 11 \mathrm{M}$ of size 10

2-node
graphlet 3 -node graphlets

4-node graphlets

$\mathrm{G}_{8} \quad$ In a graphlet G_{i}, nodes belonging to the same orbit

5-node graphlets

 are of the same shade (Pržulj, 2006).

Pržulj, Nataša. "Biological network comparison using graphlet degree distribution."
Bioinformatics 23.2 (2006): e177-e183.

Outline

1. Graph Structure Mining

- Graph homomorphism/isomorphism
- Simulation/Strong Simulation
- Graphlets/Motifs
- Triangle Counting

2. Frequent Graph Pattern Mining

- Graph-level subgraph frequency
- Frequent Subgraph Mining
- Extracting Shapes

3. Graph Clustering \& Communities

- Connected components \& Cliques
- K-core \& K-core decomposition
- Community detection
- Graph Partitioning \& Conductance
- Girvan Newman algorithm
- Overlapping Communities

4. Network Sampling

- Scale-down / Back-in-time sampling
- Induced vs. Incident graph sampling
- Biased Node Sampling
- Shape Sampling

Outline

1. Graph Structure Mining

- Graph homomorphism/isomorphism
- Simulation/Strong Simulation
- Graphlets/Motifs
- Triangle Counting

2. Frequent Graph Pattern Mining

- Graph-level subgraph frequency
- Frequent Subgraph Mining
- Extracting Shapes

3. Graph Clustering \& Communities

- Connected components \& Cliques
- K-core \& K-core decomposition
- Community detection
- Graph Partitioning \& Conductance
- Girvan Newman algorithm
- Overlapping Communities

4. Network Sampling

- Scale-down / Back-in-time sampling
- Induced vs. Incident graph sampling
- Biased Node Sampling
- Shape Sampling

A detour: Association Rules

- If someone buys diapers and milk, then they are likely to buy beer
- Don't be surprised to find beers placed next to diapers!

Supermarket shelf management - Market-basket model:
(1) Goal: Identify items that are bought together by sufficiently many customers
(1) Approach: Process the sales data collected with barcode scanners to find dependencies among items

The Market-Basket Model

- A large set of items
- e.g., things sold in a supermarket

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

- A large set of baskets
- Each basket is a small subset of items
- e.g., the things one customer buys on one day
- Want to discover association rules
- People who bought $\{x, y, z\}$ tend to buy $\{v, w\}$

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in \boldsymbol{I}
- (Often expressed as a fraction of the total number of baskets)
- Given a support threshold s,
the sets of items that appear in at least \boldsymbol{s} baskets are called frequent itemsets

A-priori principle:

if $\{A, B, C\}$ is frequent $\rightarrow\{A, B\}$ is also frequent
if $\{A, B\}$ is not frequent $\rightarrow\{A, B, C\}$ cannot be frequent

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of
$\{$ Beer, Bread $\}=2 / 5=0.4$

Frequent Graph Pattern Mining

- Frequent subgraphs
- A (sub)graph is frequent if its support (occurrence frequency) in a dataset is no less than a minimum support threshold
- Applications of graph pattern mining:
- Mining biochemical structures
- Program control flow analysis
- Mining Social/Web communities
- Building blocks for graph classification, clustering, compression, comparison

Graph Pattern Mining - Database (Set) of graphs

Problem

Given a set of graphs $\left\{G_{1}, G_{2}, \ldots, G_{N}\right\}$ find pattern P that appear at least in σ of them

G1
Frequent

Non-Frequent

G2

G3

G4

Frequent Subgraph Mining - Single Large Graph

Problem

Find all subgraphs of G that appear at least σ times

Suppose $\sigma=2$, the frequent subgraphs are (only edge labels)

- a,b,c
- a-a, a-c,b-c, c-c
- a-c-a ...

Exponential number of patterns!!!

Support over a single large graph

A support measure is admissible if for any pattern P and any sub-pattern $Q \subset P$ the support $\boldsymbol{\sigma}(\boldsymbol{P})$ is not larger than support of Q, i.e., $\sigma(Q) \geq \sigma(P)$.
This is also referred as anti-monotonicity property.

Problem: The number of occurrences of a pattern in a single large graph is not an admissible support measure

G

$$
P 1 \sqsubset P 2 \text {, but } 1=\sigma(P 1)<\sigma(P 2)=2 \quad \begin{gathered}
\text { How can we solve } \\
\text { this problem? }
\end{gathered}
$$

Support over a single large graph

A number of admissible support measures have been proposed:

1. Maximum Independent Set support (MIS)

- Based on maximum number of non-overlapping matches

2. Harmful overlap support (HO)

- Based on the number of patterns for which no (multi-node) subgraph is identical

3. Minimum Image-based support (MNI)

- Based on the number of times a node in the pattern is mapped into a distinct node in the graph

Maximum independent set support (MIS)

- Idea: Count how many times a pattern is mapped to a non-overlapping subgraph

MIS computation

1. Construct an overlap graph $\mathrm{G}_{\mathrm{O}}:\left\langle\mathrm{V}_{\mathrm{O}}, \mathrm{E}_{\mathrm{O}}\right\rangle$, in which the set of nodes V_{O} is the set of matches of a pattern P into a graph G and
$E_{O}=\left\{\left(f_{1}, f_{2}\right) \mid f_{1}, f_{2} \in V_{O} \wedge f_{1} \neq f_{2} \wedge f_{1} \sqcap f_{2} \neq \emptyset\right\}$,
i.e., E_{O} has an an edge among each pair of overlapping matches.
2. $\sigma_{M I S}=$ size of the maximum independent set of nodes in the overlap graph.

- An independent set of nodes in a graph is a subset of non-adjacent nodes of the graph,
i.e. $\mathrm{G}:\langle V, E\rangle, I \subseteq V$ s.t. $\forall(u, v) \in I,(u, v) \notin E$
- The biggest possible independent set is called the maximum independent set

Maximum independent set support (MIS) : Example

Maximum independent set support (MIS) : Example 2

Finding a maximum independent set is NP-hard \rightarrow Very High computational cost

Harmful overlap support (HO)

- MIS support can be very restrictive and considers overlap among single nodes

- Harmful overlap support $\sigma_{H O}$ considers as harmful those subgraphs that share a common (multi-node) subgraph

Support is computed like in MIS, the difference is how we compute the overlap graph

Minimum Image-based support (MNI) : Example

Simpler support based on the minimum number of times a node of the pattern is mapped to the graph

Let f_{1}, \ldots, f_{m} be the set of isomorphisms of a pattern $P:\left\langle V_{P}, E_{P}, \ell_{P}\right\rangle$ in a graph G. Let $F(v)=$ $\left|\left\{f_{1}(v), \ldots, f_{m}(v)\right\}\right|$ be the number of distinct mappings of a node $v \in V_{P}$ to a node in G by functions f_{1}, \ldots, f_{m}. The Minimum Image-based support (MNI) $\sigma_{M N I}(P)$ of P in G is $\sigma_{M N I}(P)=\min \left\{F(v), v \in V_{P}\right\}$

Pattern

$$
F\left(v_{1}\right)=2
$$

$$
F\left(v_{2}\right)=2
$$

$$
F\left(v_{3}\right)=3
$$

$$
\sigma_{M N I}(P)=\min \left\{F\left(v_{1}\right), F\left(v_{2}\right), F\left(v_{3}\right)\right\}=2
$$

Graph

Properties of the support measures

- MIS, HO, and MNI are anti-monotone (proof omitted)
- Computation time:
- MIS and HO are NP-hard to compute (there is no algorithm to solve them efficiently)
- MNI can be computed in polynomial time!
- What is the relationship among the support sets?
- MIS support set is a subset of HO support set, which is a subset of MNI support set
- $\sigma_{M I S}(P) \leq \sigma_{H O}(P) \leq \sigma_{M N I}(P)$

Mining Graph Shapes: a.k.a. structural summarization

Validating Graph Data with Shapes

Mining Graph Shapes

Rabbani, Kashif, Matteo Lissandrini, and Katja Hose. "Extraction of Validating Shapes from very large Knowledge Graphs"- VLDB'23 https://relweb.cs.aau.dk/qse/

A FullProfessor must have :

- a name
- a degree from a University

Using Support and confidence allows to avoid extracting spurious shapes

Support

Support of property shape is defined as the number of entities conforming to its constraints.

Confidence

The ratio between how many entities conform to a specific constraint and the total number of entities for the target class of the node shape.

Outline

1. Graph Structure Mining

- Graph homomorphism/isomorphism
- Simulation/Strong Simulation
- Graphlets/Motifs
- Triangle Counting

2. Frequent Graph Patterns

- Graph-level subgraph frequency
- Frequent Subgraph Mining
- Extracting Shapes

3. Graph Clustering \& Communities

- Connected components \& Cliques
- K-core \& K-core decomposition
- Community detection
- Graph Partitioning \& Conductance
- Girvan Newman algorithm
- Overlapping Communities

4. Network Sampling

- Scale-down / Back-in-time sampling
- Induced vs. Incident graph sampling
- Biased Node Sampling
- Shape Sampling

Outline

1. Graph Structure Mining

- Graph homomorphism/isomorphism
- Simulation/Strong Simulation
- Graphlets/Motifs
- Triangle Counting

2. Frequent Graph Patterns

- Graph-level subgraph frequency
- Frequent Subgraph Mining
- Extracting Shapes

3. Graph Clustering \& Communities

- Connected components \& Cliques
- K-core \& K-core decomposition
- Community detection
- Graph Partitioning \& Conductance
- Girvan Newman algorithm
- Overlapping Communities

4. Network Sampling

- Scale-down / Back-in-time sampling
- Induced vs. Incident graph sampling
- Biased Node Sampling
- Shape Sampling

Reachability: Connected components

- A connected component is a portion of the graph where each node can reach all other nodes: pairwise reachable.

In a directed graph we can have connected components, but if we follow directions, then it may happen that we cannot reach all nodes.

USE BFS :

1) Start from a node;
2) Obtain all reachable nodes
and mark them;
3) Increment CC counter
4)Take next node not already marked, and start again

- A strongly connected component is a portion of a directed graph where there is a directed path between any two nodes. All nodes are pairwise reachable when following directions.
- A weakly connected component is a portion of a directed graph where there is an undirected path between any two nodes. All nodes are pairwise reachable when ignoring directions.

Cliques

Subset of vertices of an undirected graph such

 that every two distinct vertices in the clique are adjacent

Complete subgraphs:
A portion of the graph forming a clique, each node is connected to each other node

Communities: locally dense connected subgraphs

Connected \& Density Hypothesis: Communities are locally dense connected subgraphs in a network.

Connectedness Hypothesis:

Each community corresponds to a connected subgraph: a community cannot consist of two subgraphs that do not have a link to each other.

Density Hypothesis:

Nodes in a community are more likely to be connected to members of the same community than to nodes in other communities.

[BA01, chapter] Barabási, Albert-LÁszló, Network science,

Graph Partitioning

Graph Cut: The number of edges that go from G_{1} to G_{2}

$$
\mathbb{C}=\left|\operatorname{Cut}\left(G_{1}, G_{2}\right)\right|
$$

If we need to split the graph in 2 parts, I want to minimize the number of edges I "break".

But I also want the 2 parts to be "densely connected"

Conductance: given two portions of a graph G_{1} and G_{2}, the conductance is the sum of the edges going from G_{1} to G_{2} divided the the minimum between the edges in G_{1} and in G_{2}

We want to minimize the following
$C\left(G_{1}, G_{2}\right)=\frac{\mathbb{C}}{\min \left\{\left(\mathbb{C}+\left|G_{1}\right|\right),\left(\mathbb{C}+\left|G_{2}\right|\right)\right\}}$

Graph Partitioning (Example)

$$
\mathbb{C}=\left|C u t\left(G_{1}, G_{2}\right)\right|
$$

We want to minimize the following
$C\left(G_{1}, G_{2}\right)=\frac{\mathbb{C}}{\min \left\{\left(\mathbb{C}+\left|G_{1}\right|\right),\left(\mathbb{C}+\left|G_{2}\right|\right)\right\}}$

$$
\begin{aligned}
& |\mathbf{A}|=10 \quad|\mathbf{B}|=10 \quad|\mathbf{C}|=\mathbf{3} \\
& |\boldsymbol{\alpha}|=\mathbf{3} \quad|\boldsymbol{\beta}|=\mathbf{3} \\
& \mathbf{C}(A, B+C)=\frac{3}{\min \{(3+10),(3+16)\}} \approx 0.231 \\
& \mathbf{C}(A+B, C)=\frac{3}{\min \{(3+23),(3+3)\}} \approx 0.5
\end{aligned}
$$

Where should we cut?

Basic Centrality measures

How important is a node in a graph?

1. Degree centrality: number of neighbors of node v
2. Closeness centrality: reciprocal of the total distance from a node v to all the other nodes in a network
3. Betweenness centrality: ratio of the number of shortest paths passing through a node vout of all shortest paths between all node pairs in a network

$$
C_{c}(v)=\frac{1}{\sum_{u \in V} \delta(u, v)}
$$

$\delta(u, v)$ is the distance between node u and v.

$$
C_{B}(v)=\sum_{s \neq t \neq v \in V} \frac{\sigma_{s t}(v)}{\sigma_{s t}}
$$

$\sigma_{s t}$: number of shortest paths between node s and t $\sigma_{s t}(v)$: number of shortest paths passing on a node v out $\sigma_{\text {st }}$

Connected graphs:
These measure have meaning only when referring to a connected graphs

Community Detection

Community: portion of a graph with high internal connectivity (also called modules or clusters)

Divisive hierarchical clustering based on the notion of edge betweenness (Girvan-Newman Algorithm):

1. Calculate edge betweenness: find edges that are more "central" in the graph
2. Delete high-betweenness edges: delete the edges with highest betweenness
3. Connected components are communities

Repeat until stopping condition
Hierarchical decomposition!

Community Detection

Divisive hierarchical clustering based on the notion of edge betweenness (Girvan-Newman Algorithm):

Hierarchical network decomposition:

This method is not very effective for overlapping communities!

Non-overlapping vs. overlapping communities

See Community-Affiliation Graph in the Mining of Massive Datasets book

Which one is Facebook?

Some nodes belong to multiple communities

Graph Data Analysis \& Exploration

- Graph Exploration -

Matteo Lissandrini - Aalborg University

Outline

1. Intro to Graph Exploration

- Taxonomy of Graph Exploration
- Exploratory Search
- Example Based Exploration

2. Node-based Exploratory Search

- Seed-set expansion
- Minimum Wiener Connector problem
- Focused Clustering
- Entity Set Search

3. Structure-based Exploratory Search

- Reverse-engineering Queries
- Entity Tuples
- Exemplar Queries
- Example-Based Graph suggestion

(Big) Data Exploration

 4.

Semantic (Big) Data

(a.k.a. Knowledge Graphs)

Semantic Data Exploration

KG as a Data Model for Data Integration

The entries of data sources used to construct the KG are continuously changing...
[...]
Self-serve data onboarding: Low-effort onboarding of new data sources is important to ensure consistent growth of the KG.

Saga: A Platform for Continuous Construction and Serving of Knowledge At Scale

Thab F. Ilyas, Theodoros Rekatsinas, Vishnu Konda
Jeffrey Pound, Xiaoguang Qi, Mohamed Soliman

ABSTRACT

We introduce Saga, a next-generation knowledge construction and serving platform for powering knowledge-based applications at in-
dustrial scale. Saga follows and continuously integrate billions of facts about real dental design to and construct a central knowledge graph that supports entitie production use cases with diverse requirements around data freshness, accuracy, and availabiilty. In this paper, we discuss the unique challenges associated with knowledge graph construction at inthey address these chailenges. Finally from a wide array of production use cases powered by S-learn CCS CONCEPTS
Computer systems organization \rightarrow Neural networks; Data yystems \rightarrow Dises, Special purpose systems; • Information loading: Data cleaning .

KEYWORDS

knowledge graphs, knowledge graph construction, entity resolu-
tion, entity linking
tion, entity linking
ACM Reference Format:
ii. Mohamed Soliman Rekarsinas, , ishnu Konda, Jeffrey Pound, Xiaoguan Qi, Mohamed Soilman. 2022. Saga: A Platform for Continuous Construc-
tion and Serving of Knowledge At Scale In Proceding ternational Conference on Management of Data (SIGMOD of the 2022 In2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages. https:

INTRODUCTION
Accurate and up-to-date knowledge about real-world entities is eeded in many applications. Search and assistant servicestites is pen-domain knowledge to power question answering. Other plications need rich entity data to render entity-centric experi ences. Many intermal applications in machine learning need trairll of these applications require antities and their relationship accurate and continuously updated with faf knowledge that rmission to make digital or hard Pamssion to make digitat or hard dopies of all or part of this work for perssanal

Figure 1: Overview of the Saga knowledge platform.
Constructing a central knowledge graph (KG) that can serve thes needs is a chalenging problem, and developing a KG constructio ious benefits. This paper describes our effort in building a nexgeneration knowledge platform for continuously integrating biiacross a variety of production use cases Knowledge can be represente cases.
Knowledge can be represented as a graph with edges encodin
facts amongst entities (nodes) [61]. Information about entities obtained by integrating data from multiple stwat about entities is and data records that are extracted from unstructured data $[19]$ The process of cleaning, integrating, and fusing this data into an accurate and canonical representation for each entity is referred to as knowledge graph construction [80]. Continuous construction date and trustworthy information is key to user engagement. The entries of data sources used to construct the KG are continuously changing: new entities can appear, entities might be deleted, and facts about existing entities can change at different frequencies. Moreover, the set of input sources can be dynamric. Changes to ilcan affect the set of admissible data sources during KG construc-
位 ion. Such data feeds impose unique requirements and challengethat a knowledge platform needs to handle:
${ }^{(1)}$ Hybrid batch and stream construction: Knowledge construction requires operating on data sources over heterogeneous
domains. The update rates domains. The update rates and freshness requirements can game scores need to be reflected in the $K G$ within seconth but sources that focus on verticals such as songs can provide batch updates with millions of entries on a deily ba

Modern Information Search Use-case

The Data Novice:
A user unfamiliar with the data at hand and its structure

Opportunity: Empower Data Scientists to find the information they need in large heterogenous data repositories

Exploration

 We know where we start we don't know what we'll find
Data Exploration

the process of gradual discovery and understanding of the contents of large datasets.

Data Exploration Needs

Data Exploration Methods

Data Exploration Methods

KG Profiling

Obtain a basic understanding of the contents of a KG

1. How many instances? How many classes?
2. What's the vocabulary (predicates/attributes)
3. Are there big-hubs? Are there disconnected islands?

Table 1: Global Properties of the Knowledge Graphs compared in this paper

	DBpedia	YAGO	Wikidata	OpenCyc	NELL
Version	$2016-04$	YAGO3	$2016-08-01$	$2016-09-05$	08 m .995
\# instances	$5,109,890$	$5,130,031$	$17,581,152$	118,125	$1,974,297$
\# axioms	$397,831,457$	$1,435,808,056$	$1,633,309,138$	$2,413,894$	$3,402,971$
avg. indegree	13.52	17.44	9.83	10.03	5.33
avg. outdegree	47.55	101.86	41.25	9.23	1.25
\# classes	754	576,331	30,765	116,822	290
\# relations	3,555	93,659	11,053	165	1,334
Releases	biyearly	>1 year	live	>1 year	$1-2$ days

KG Summarization \& Pattern Mining

Extract overall structural information

1. How are classes connected?
2. Which predicates and attributes are shared by entities of this type?
3. What is the prevalence of connections across nodes with this properties?

Data Exploration Methods

| No Interaction and Personalization
 Requires: No Domain Knowledge | Medium-High Interactivity
 Requires: High-level Information Need | High Interactivity and Personalization
 Requires: Detailed Sample or Ouery Intent |
| :--- | :---: | :---: | :---: |
| Output: High Level Overview | Output: Overview of Specific Aspects | Output: Detailed Answers |

Examples as Exploratory Methods

Examples as Exploratory Methods

Example is always more efficacious than precept
Samuel Johnson, Rasselas (1759)

Similarities are the key ...

If we knew how similar each item is with respect to any other for each user, we would know the answer

The Example-based problem

Given
a set of examples \mathcal{E} from a universe \mathcal{U}

Find

such that

1. When \mathcal{E} is part of the answers \mathcal{A} (partially or totally)
2. The answers in \mathcal{A} are the most similar to the examples in \mathcal{E} according to " \sim "

$$
\begin{aligned}
& \text { What similarity " ~" should we use? } \\
& \text { How do we identify " ~" (for each user)? }
\end{aligned}
$$

Example-based methods

Book on Example-based methods

Exemplar Oueries

Example-driven graph search

Input: Q_{e}, an example element of interest
Output: set of elements in the desired result set

Nodes/Entities

Edges/Facts

 Structures
Exemplar Query Evaluation

- evaluate Q_{e} in a database D, finding a sample S
- find the set of elements A similar to S given a similarity relation
- [OPTIONAL] return only the subset A^{R} that are relevant

Usually requires an intermediate step:

SIMILARITY for GRAPHS

SEARCHING FOR

BY LOOKING AT

PRODUCES

Challenges: 1. Discover User Preference
2. Efficient Search

SIMILARITY for GRAPHS

SEARCHING FOR
BY LOOKING AT

PRODUCES

Challenges: 1. Discover User Preference
2. Efficient Search

Seed Set Expansion

Nodes connected

 by a community

Given a graph G, and a set of query nodes $\mathrm{V}_{0} \subseteq \mathrm{~V}_{\mathrm{G}_{1}}$ retrieve all other nodes $\mathrm{V}_{\mathrm{c}} \subseteq \mathrm{V}_{6}$,
where C is a community in G, and $V_{0} \subseteq V_{c}$.

Communities can be extremely large Identify "central nodes" or "the core subgraph"

Traverse (Document) Networks How to navigate links and connections

Global Page Rank
Starting from a random node, traversing randomly, random restart point anywhere in the graph

Personalized Page Rank

- Start from seed nodes, i.e. the documents $D_{\text {rel }}$
- Navigate towards locally connected nodes

Example based Exploration

 implies locality
CHALLENGE:

Identify meaningful transition probabilities
E.g., El-Arini and Guestrin [2011]

SIMILARITY for GRAPHS

SEARCHING FOR

BY LOOKING AT

PRODUCES

Maximal Aspect Sets

Selecting Features of Entity Similarity

SIMILARITY for GRAPHS

Reverse engineering SPAROL queries

Knowledge Graph Search

Model: Knowledge Graph (Edge-labels)

Query: Set of Answers \rightarrow Not Graphs but Tuples (of Nodes?)
Similarity: common AND/OPT/FILTER query

Output: a SPAROL query / query results

Case: Open Data \longrightarrow Query Unknown Schema

Case: Novice User \longrightarrow Avoid SPARQL

	?e1	?e2
M1	Mexico	Spanish
M2	Haiti	
M3	Jamaica	English
MATCH (?X, is_a, Country)		
OPT (?X, has_language, ?Y)		

Reverse engineering SPAROL queries

Challenges and Complexity

Query: Set of Variable Mappings

	$? X$	$? Y$	$? Z$
M1	John		
M2	Mary	mary@email.eu	
M3	Lucy		Roses Street

Incomplete Mappings are
treated as OPTIONAL
Typical of RDF queries

SIMILARITY for GRAPHS

SEARCHING FOR

BY LOOKING AT

PRODUCES

Graph Exemplar Oueries

Search for Structures

Model: Knowledge Graph
Query: Example Structure
Similarity: Isomorphism/Simulation
Output: A set of Sub-Graphs

Case: Rich Schema \longrightarrow Find complex structures

Graph Isomorphism vs. Simulation Variants

Structural Congruence/Similarity

Isomorphism requires an bijective function

Simulation requires only a parent-child edge preserving relation Strong Simulation requires also child-parent, connectivity and limited diameter

Example of Simulating (G1~ \{G2,G3,G4\}) and Strong-simulating Graphs (G1~G2)
Strong Simulation preserves close connectivity

Help the user formulate an Exploratory Graph Query

lo Machiavelli
Erust Cassirer
Jacques Ellul chem Fraucis Fukuyama Jerome Lettin Herachitus
 W Will Nikolai Berdraev

- User knows a "starting point"
- Expand User knowledge

Allow to identify complex structures

Schopenh
Michel de Montaigne
Peter Kropotkin
Max Stinner Thomas Jefferson
Samuel Finedrich Jesus Otto Wein
William Hazlitu
Le
Ralph Waldo Emers Chris Bateman

er
 Viario Christran Meyer

Nietzsche
Kierkegaad
Fernando Gonzale Rudolf Stemer os haviah Prillips \qquad Karl Robert Eduard von Hartmann
Herbert Marcuse Ramon Xirau

500+ outgoing relationships
Walter Benjamin
41 Edge Types
Douglas Hoftradter
Simone de Beatror
Colin Claude Levi-Strauss Erich Fromm Wolfi Landstreicher Mario Kopic Roy Johuston Comelius Castonadis Theodor W. Adorno

Graph-Ouery Suggestion

Suggesting Ouery Expansions

[WebConf '20]

The User Search

Which Expansion to Suggest?

Rank Expansions

We show how to apply IR approaches to graphs queries instead of keywords

The User Search

How can we exploit the document model?

The Bag-of-Labels Model

- Graphs can be modeled as Bag of Words
- Describes MORE than what is in the query

Pseudo Relevance Feedback for Document Search

Pseudo Relevance Feedback Models

2 Models of Estimation MLE \& KL-Divergence

Maximum Likelihood Estimation

$$
\hat{p}\left(\bar{Q} \mid M_{\bar{G}}\right) \propto \prod_{l \in \bar{Q}} \hat{p}\left(l \mid M_{\bar{G}}\right)
$$

KL-Divergence

$$
\hat{p}\left(l \mid M_{r e l}\right)_{K L} \propto
$$

$$
\exp (\underbrace{\frac{1}{(1-\lambda)} \frac{1}{\left|\bar{G}_{r e l}\right|} \underbrace{\sum_{\bar{G}}^{\bar{G}_{r e l}} \log \left(\hat{p}\left(l \mid M_{\bar{G}}\right)\right)}_{\bar{G}}-\underbrace{\frac{\lambda}{(1-\lambda)} \log (\hat{p}(l \mid \mathcal{K}))}_{\text {Frequent in the Graph }}) . \underbrace{-}) .}_{\text {Frequent in the PRS }}
$$

SIMILARITY for GRAPHS

SEARCHING FOR

BY LOOKING AT

PRODUCES

Data Exploration Methods

No Interaction and Personalization Requires: No Domain Knowledge

Medium-High Interactivity Requires: High-level Information Need

High Interactivity and Personalization Requires: Detailed Sample or Ouery Intent

Output: Detailed Answers

Overview: Goals/Tasks/Operations/Challenges

A map of retracted papers(11k) in PubMed (21m).

There are clear clusters and we believe it's paper mill activity.

Explore a Paper Mill activity network

https://en.wikipedia.org/wiki/Research_paper_mill

You have access to a large citation graph with authors, papers, venues, affiliations, years, citations.

You want to analyze retracted papers and identify possible paper mill activities.

What model and methods do you apply?

Mining Patterns from a Ouery log

You have access to the log of all SPAROL queries submitted to a large KG DBMS.

What graph analysis approached can you apply to this data.

Define how you would approach it.
Can you find patterns? Communities?
What can a pattern or community tell you?
How can you use this information?

Acknowledgments

We would like to thank the authors of the papers who kindly provided us the slides

Angela Bonifati, Radu Ciucianu, Marcelo Arenas, Gonzalo Diaz, Egor Kostylev, Yaacov Weiss, Sarah Cohen, Fotis Psallidas, Li Hao, Chan Chee Yong, Ilaria Bordino, Mohamed Yakout, Kris Ganjam, Kaushik Chakrabati, Thibault Sellam, Rohit Singh, Maeda Hanafi, Dmitri Kalashnikov, Marcin Sydow, Mingzhu Zhu, Yoshiharu Ishikawa, Daniel Deutch, Nandish Jayaram, Paolo Papotti, Bryan Perozzi, Kiriaki Dimitriadou, Yifei Ma, Natali Ruchansky, Quoc Trung Tran, Hastagiri Prakash Vanchinathan

References

M. Arenas, G. I. Diaz, and E. V. Kostylev. Reverse engineering sparql queries. WWW, 2016.

Agichtein, E. and Gravano, L. Snowball: Extracting relations from large plain-text collections. ICDL, 2000.
A.Bonifati, R.Ciucanu, and A.Lemay. Learning path queries on graph databases. EDBT, 2015.
A. Bonifati, R. Ciucanu, and S. Staworko. Learning join queries from user examples. TODS, 2016.
A. Bonifati, U. Comignani, E. Coquery, and R. Thion. Interactive mapping specification with exemplar tuples. SIGMOD, 2017.
I. Bordino, G. De Francisci Morales, I. Weber, and F. Bonchi. From machu picchu to rafting the urubamba river: anticipating information needs via the entity-query graph. WSDM, 2013.
D. Deutch and A. Gilad. Oplain: Query by explanation. ICDE, 2016.

References

G. Diaz, M. Arenas, and M. Benedikt. Sparqlbye: Querying rdf data by example. PVLDB, 2016.
K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example: An automatic query steering framework for interactive data exploration. In SIGMOD, 2014.
B. Eravci and H. Ferhatosmanoglu. Diversity based relevance feedback for time series search. PVLDB, 2013.
A. Gionis, M. Mathioudakis, and A. Ukkonen. Bump hunting in the dark: Local discrepancy maximization on graphs. ICDE, 2015.
M. F. Hanafi, A. Abouzied, L. Chiticariu, and Y. Li. Synthesizing extraction rules from user examples with seer. SIGMOD, 2017.

He, J., Veltri, E., Santoro, D., Li, G., Mecca, G., Papotti, P. and Tang, N. Interactive and deterministic data cleaning. SIGMOD, 2016.
Y. Ishikawa, R. Subramanya, and C. Faloutsos. Mindreader: Querying databases through multiple examples. VLDB, 1998.

References

N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge graphs by example entity tuples. TKDE, 2015.
H. Li, C.-Y. Chan, and D. Maier. Query from examples: An iterative, data-driven approach to query construction. PVLDB, 2015.
M. Lissandrini, D. Mottin, Y. Velegrakis, T. Palpanas. Multi-Example Search in Rich Information Graphs ICDE 2018
Y. Ma, T.-K. Huang, and J. G. Schneider. Active search and bandits on graphs using sigma-optimality. UAI, 2015.
S. Metzger, R. Schenkel, and M. Sydow. Qbees: query by entity examples. CIKM, 2013.
D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Searching with xq: the exemplar query search engine. SIGMOD, 2014.
D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Exemplar queries: a new way of searching. VLDB J., 2016.
B. Perozzi, L. Akoglu, P. Iglesias Sanchez, and E. Müller. Focused clustering and outlier detection in large attributed graphs. KDD, 2014.

References

F. Psallidas, B. Ding, K. Chakrabarti, and S. Chaudhuri. S4: Top-k spreadsheet-style search for query discovery. SIGMOD, 2015.
R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann. Learning syntactic program transformations from examples. ICSE, 2017.
N. Ruchansky, F. Bonchi, D. García-Soriano, F. Gullo, and N. Kourtellis. The minimum wiener connector problem. SIGMOD, 2015.
T. Sellam and M. Kersten. Cluster-driven navigation of the query space. TKDE, 2016.
Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. Discovering queries based on example tuples. SIGMOD, 2014.
R. Singh. Blinkfill: Semi-supervised programming by example for syntactic string transformations. PVLDB, 2016.
G. Sobczak, M. Chochół, R. Schenkel, and M. Sydow. iqbees: Towards interactive semantic entity search based on maximal aspects. Foundations of Intelligent Systems, 2015.

References

Y. Su, S. Yang, H. Sun, M. Srivatsa, S. Kase, M. Vanni, and X. Yan. Exploiting relevance feedback in knowledge graph search. KDD, 2015.
Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query reverse engineering. VLDB J., 2014.
H. P. Vanchinathan, A. Marfurt, C.-A. Robelin, D. Koss- mann, and A. Krause. Discovering valuable items from massive data. In KDD, 2015.
C.Wang, A.Cheung, and R.Bodik. Interactive query synthesis from input-output examples. In SIGMOD, 2017.
C. Wang, A. Cheung, and R. Bodik. Synthesizing highly expressive sql queries from input-output examples. In PLDI, 2017.
Y. Y. Weiss and S. Cohen. Reverse engineering spj-queries from examples. SIGMOD, 2017.
M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri. Infogather: Entity augmentation and attribute discovery by holistic matching with web tables. SIGMOD, 2012.
M. Zhu and Y.-F. B. Wu. Search by multiple examples. WSDM, 2014.
M. M. Zloof. Query by example. AFIPS NCC, 1975.

Further References

```
DAVIS SHURBERT, AN INTRODUCTION TO GRAPH HOMOMORPHISMS
http://buzzard.ups.edu/courses/2013spring/projects/davis-homomorphism-ups-434-2013.pdf
ANDREAS SCHMIDT, IZTOK SAVNIK, CONFERENCE ON ADVANCES IN DATABASES, KNOWLEDGE, AND DATA ApPLICATIONS, OVERVIEW OF REGULAR
PATH OUERIES IN GRAPHS
https://www.iaria.org/conferences2015/filesDBKDA15/graphsm_overview_of_regular_path_queries_in_graphs.pdf
Jure LeSkOVEC, CS224W: Machine LEARNINg WITH Graphs|2019|
LECTURE 3-MOTIFS AND STRUCTURAL ROLES IN NETWORKS
http://snap.stanford.edu/class/cs224w-2019/slides/03-motifs.pdf
DAVIDE MOTTIN AND EmMANUEL MÜLLER, GRAPH EXPLORATION:
LET ME SHOW WHAT IS RELEVANT IN YOUR GRAPH, KDD TUTORIAL
https://mott.in/slides/KDD2018-Tutorial-Compressed.pdf
KolacZyk, E.D., Statistical Analysis of Network Data, Chapter 5: Sampling and Estimation in Network Graphs.
HTTPS://LINK.SPRINGER.COM/CHAPTER/10.1007/978-0-387-88146-1_5
JURE LESKOVEC, CHRISTOS FALOUTSOS, SAMPLING FROM LARGE GRAPHS
HTTPS://DL.ACM.ORG/DOI/PDF/10.1145/1150402.1150479
```

