Hi! My name is Matteo Lissandrini

My Background Italy \rightarrow Denmark

Research Focus Knowledge Graphs \& Data Exploration

Research Direction
 Example-Based Exploration

Graph Data Analysis \& Exploration

- Modelling \& Ouerying Graphs -

Matteo Lissandrini - Aalborg University

Course Objectives:

at the end of the course

1. You understand the different ways in which the graph model can be adopted in different domains
2. You are familiar with graph terminology in relation to challenges, methods, and solutions for graph analysis
3. You can identify core methods and challenges to study the content and structure of a large graph
4. You have concrete pointers and references of advanced methods of graph analysis and exploration

Agenda

- Part 1: Core Concepts

- Modelling \& Ouerying Graphs
- Network Analysis

- Part 2: Advanced Methods

- Graph Structure Analysis
- Graph Exploration

Extra Materials:

slides contain extra materials that we will not be able to cover today. Feel free to ask questions about those.

Optional Hands-On Exercises

github.com : AAU-WebDataScience/F23-PhD-GraphAnalysis

On References

Slides contain pointers to relevant materials

1. Many slides have been adapted from existing courses and presentations; they are referenced whenever possible
2. Some slides point to other online documentation, relevant Wikipedia pages (when sufficient), published papers, to expand when/if needed

Further Based on chapter \& online slides:

from Mining of Massive Datasets; Leskovec, Rajaraman, Ullman (3rd edition)
from Web Data Mining; Bing Liu, Second Edition (July 2011)

Outline

1. Graphs are Everywhere

- The Web-Link structure
- The Query-Log graph
- The Social network
- The Knowledge graph

2. The Graph Model

- Undirected/Directed graphs
- Labelled/Unlabelled graphs
- N-partite graphs
- RDF graphs
- Property Graph
- Graph Database vs. Database of Graphs

3. Representing Graphs

- Adjacency matrix
- Adjacency List
- Triples \& Storage for Triplestore
- Property graph storage models

4. Graph Navigation

- Breadth-First Search / Depth-First Search
- Connected Components
- Paths \& Shortest path
- CYPHER
- SPAROL
- Gremlin

Webpages and Links

read information from local files and remote servers. It allows hypertext links to be made and traversed, and also remote indexes to be interrogated for lists of useful documents. Local files may be edited, and links made from areas of text to other files, remote files, remote indexes, remote index searches, internet news groups and articles. All these sources of information are presented in a consistent way to the reader. For example, an index search returns a hypertext document with pointers to documents matching the query. Internet news articles are displayed with hypertext links to other referenced articles and groups.

- Tim Berners-Lee, 20 Aug 1991

Hyper-Links:
Text in pages links
to other pages containing
relevant information

Traversing a Link:

A link from Page A to Page B tells us that there is a relationship between the two documents. Page A mentions something for which Page B contains additional relevant information

Ouery Logs

Monitoring Search Activites

1. Record Search query + User Click: Click Log
2. Record for the same user keyword search happening one after the other: Search Session

The user search for B after searching for A

Searches related to google search suggestions
how do i get rid of google search suggestions?
google search suggestions turn off
how do i turn on google search suggestions?
how do i turn on google search suggestions on android
turn off google search suggestions android
google search predictions
google predictive search
google suggestion

Implicit Links:

We infer a link from the behaviour of the user

Social Networks

User connections

- On a social media platform users can express explicitly their connection with other users
- Connection can be:

1. Undirected: friendship, colleague
2. Directed: Follow

User Connections: Establish a directed or undirected connection between users based on explicit information

Objects and links are all of the same type:
Pages, Search queries, Users...

Product \& Customer Networks

Heterogenous Networks:

Nodes are of different types

User-product \& product-product connections

- Main nodes are customers \& products, edges are transactions or interactions
- Other nodes can describe products
$\rightarrow \quad$ Likes
\rightarrow Starring
$\rightarrow \quad$ Directed by
\rightarrow Has genre
\rightarrow Subgenre of

"Concept Networks"

Abstract model of Knowledge

- Links represent «facts»
- Facts connect different objects

1. Real Entities
2. Abstract Concepts
3. Pieces of Data

- Facts are of different type they have different meaning

This model is called "Knowledge Graph":

The term has been popularized by Google in 2012 but it existed in different forms earlier than that.
https://blog.google/products/search/introducing-knowledge-graph-things-not/

Knowledge Graph Adoption

Apple Baie̛ó百度
Microsoft
amazon

Alibaba.com

Walmart+

\& Spotify
SIEMENS

B B C

facebook

Bloomberg
(-) IIffbot

Deloitte.
\oplus © BOSCH

Existing Open Knowledge Graphs

1.9B Facts

210M Facts

DBpedia

52M Facts

linked lifés data

http://linkedlifedata.com/sources.html
6.7B Facts
https://pubchem.ncbi.nlm.nih.gov/docs/rdf
132B Facts

The Growing Role of Graphs \& Knowledge Graphs

COMMUNICATIONS
 *" $A C M$

Home / Magazine Archive / August 2019 (Vol. 62, No. 8) / Industry-Scale Knowledge Graphs: Lessons an

practice

Industry-Scale Knowledge Graphs:
Lessons and Challenges

By Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, Jamie Taylor
Communications of the ACM, August 2019, Vol. 62 No. 8, Pages $36-43$
Communications
10.1145/3331166
Comments

Credit: Adempercem / Stutterstock

Knowledge graphs are critical to many enterprises today provide the structured data and factual knowledge that many products and make them more intelligent and " m : In general, a knowledge graph describes objects of inter connections between them. For example, a knowledge g have nodes for a movie, the actors in this movie, the dir so on. Each node may have properties such as an actor's and age. There may be nodes for multiple movies invol particular actor. The user can then traverse the knowled to collect information on all the movies in which the act appeared or, if applicable, directed.
Many practical implementations impose constraints on

COMMUNICATIONS " ${ }^{\text {" }}$ ACM

Home / Magazine Archive / September 2021 (Vol. 64, No. 9) / The Future Is Big Graphs: A Community View on Graph... /
contributed articles
The Future Is Big Graphs: A Community View on Graph Processing Systems

By Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru losup, Khaled Amma Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Hasilhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana lamnitchi, Vasiliki Ka Ozsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab, Matei R. Ripeanu, Semil Juan F. Sequeda, Joshua Shinavier
Communications of the ACM, September 2021, Vol. 64 No. 9, Pages 62-7 10.1145/3434642

Comments

Credit: Alll Torban
Graphs are, by nature, 'unify interconnectedness to repre real- and digital-world pheno consumers of graph instance these abstractions, future pr and systems. What needs to graph processing to contin Back to Top Key Insights

The Future Is Big Graphsi, 4

COMMUNICATIONS

" ACM
Home / Magazine Archlve / March 2021 (Vol. 64, No. 3) / Knowledge Graphs / Full Text

REVIEW ARTICLES

Knowledge Graphs

By Claudio Gutierrez, Juan F. Sequeda
Communications of the ACM, March 2021, Vol. 64 No. 3, Pages 96-104 10.1145/3418294

Comments

"Those who cannot remember the past are condemned to repeat it."
-George Santayana
Back to Top
Key Insights

- Data was traditionally considered a material object, tied to bits, with no semantics per
Knowledge was traditionally conceive as the immaterial object, living only in people's minds and language. The destin
of data and knowledge became bound together, becoming almost inseparable their own properties: a link connecting an actor and a movie might have the name of the specific role the acto .

Outline

1. Graphs are Everywhere

- The Web-Link structure
- The Query-Log graph
- The Social network
- The Knowledge graph

2. The Graph Model

- Undirected/Directed graphs
- Labelled/Unlabelled graphs
- N-partite graphs
- RDF graphs
- Property Graph
- Graph Database vs. Database of Graphs

3. Representing Graphs

- Adjacency matrix
- Adjacency List
- Triples \& Storage for Triplestore
- Property graph storage models

4. Graph Navigation

- Breadth-First Search / Depth-First Search
- Connected Components
- Paths \& Shortest path
- CYPHER
- SPAROL
- Gremlin

Outline

1. Graphs are Everywhere

- The Web-Link structure
- The Query-Log graph
- The Social network
- The Knowledge graph

2. The Graph Model

- Undirected/Directed graphs
- Labelled/Unlabelled graphs
- N-partite graphs
- RDF graphs
- Property Graph

- Graph Database vs. Database of Graphs

3. Representing Graphs

- Adjacency matrix
- Adjacency List
- Triples \& Storage for Triplestore
- Property graph storage models

4. Graph Navigation

- Breadth-First Search / Depth-First Search
- Connected Components
- Paths \& Shortest path
- CYPHER
- SPAROQL
- Gremlin

The Graph Model: Formalized

G: 〈 Nodes ; Edges 〉
These are "simplistic" formalization, we will see better versions

- Nodes N : identified by some ID
- Edges $\mathrm{E}: \mathrm{E} \subseteq \mathrm{N} \times \mathrm{N} \rightarrow$ identified by pair of nodes

The Graph Model: Formalized

$\mathrm{G}:\langle\mathrm{N} ; \mathrm{E}\rangle$

- Nodes N : identified by some ID
- Edges $\mathrm{E}: \mathrm{E} \subseteq \mathrm{N} \times \mathrm{N} \rightarrow$ identified by pair of nodes

The Graph Model: Formalized

G: $\langle\mathrm{N} ; \mathrm{E}\rangle$

- Nodes N : identified by some ID

- Edges $\mathrm{E}: \mathrm{E} \subseteq \mathrm{N} \times \mathrm{N} \rightarrow$ identified by pair of nodes

Options: 1) Undirected $\mathrm{e}_{\mathrm{ij}}:\left\langle\mathrm{ID}_{\mathrm{i}}, \mathrm{ID}_{\mathrm{j}}\right\rangle \equiv \mathrm{e}_{\mathrm{j} \mathrm{i}}:\left\langle\mathrm{ID}_{\mathrm{j}}, \mathrm{ID}_{\mathrm{i}}\right\rangle$

$$
\text { 2) Directed } \mathrm{e}_{\mathrm{ij}}:\left\langle\mathrm{ID}_{\mathrm{i}}, \mathrm{ID}_{\mathrm{j}}\right\rangle \neq \mathrm{e}_{\mathrm{j} \mathrm{i}}:\left\langle\mathrm{ID}_{\mathrm{j}}, \mathrm{ID}_{\mathrm{i}}\right\rangle
$$

Multigraph: If E can contain duplicates

$$
\mathrm{E}: \mathrm{E} \subseteq \mathbb{N} \times \mathrm{N} \times \mathrm{N} \rightarrow \text { we assign IDs to edges }
$$

The Graph Model: Formalized

$\mathrm{G}:\left\langle\mathrm{N} ; \mathrm{E} ; \mathrm{L} ; \mathrm{f}_{(\mathrm{L})}\right\rangle$

- Nodes N : identified by some ID
- Edges $\mathrm{E}: \mathrm{E} \subseteq \mathrm{N} \times \mathrm{N} \rightarrow$ identified by pair of nodes
- Labels L : special values that describe the type of a node or edge
- Labeling Function $\mathrm{f}_{(\mathrm{L})}: \mathrm{N} \cup \mathrm{E} \rightarrow \mathrm{L}$

The Graph Model: N-partite graphs

Assume the following Graph

- Nodes N : Users + Products + Stores

Bi-partite graph
Tri-partite graph

- Edges E : User Buys Product + Store sells product

N-partite graphs:

(a) Nodes are divided in subsets.
(b) Connections exists only from one subset to another, and never within the same subset

Knowledge Graphs

The Structure

RDF \& Triples

Representing a KG as a Collection of Facts

- Nodes are either:
- Entities (resources identified by IRI)
- Literals (values as strings, integers, dates)
- Blank Nodes (special kind of nodes without IRI)
- Edges are statements (Subject, Predicate, Object)
 are resources

@prefix: http://www.example.kg/. :JoeBiden :label "Joe Biden"@en .
:JoeBiden :type :POTUS .
:JoeBiden :wife :JillBiden .
:JillBiden :husband :JoeBiden .

Statements - example

- We want to express the fact that "Matteo knows Daniele"
- "Matteo", "knows", and "Daniele" are resources and should be identified by URIs Matteo - http://aau.dk/ppl/matteo
Daniele - http://aau.dk/ppl/daniele knows-http://xmlns.com/foaf/0.1/knows

$$
\begin{aligned}
& \text { foaf: -> http://xmlns.com/foaf/0.1/ } \\
& : \quad \text {-> http://aau.dk/ppl/ }
\end{aligned}
$$

RDF Graph Formal Definition

\mathcal{J} : Internationalized Resource Identifiers (IRIs),
\mathcal{L} : typed or un-typed literals (constants),
\mathcal{B} : blank nodes (placeholders for IRIs or literals).
@prefix : http://www.example.kg/ :JoeBiden :label "Joe Biden"@en .
:JoeBiden :type :POTUS .
:JoeBiden :wife :JillBiden .
:JillBiden :husband :JoeBiden .

An RDF graph is a labeled directed graph $G=\langle\mathcal{N}, \mathcal{E}\rangle$ with:

- $\mathcal{N} \subseteq \mathcal{J} \cup \mathcal{B} \cup \mathcal{L}$ is the set of nodes
$\mathcal{N}^{>0}=\mathcal{N} \backslash \mathcal{L}$ nodes in \mathcal{N} allowed to have outgoing edges (literals are never subjects!)
- $\mathcal{E} \subseteq \mathcal{N}^{>0} \times \mathcal{J} \times \mathcal{N}$ is the set of directed edges;
- $\mathcal{P}:\{p \in \mathcal{J} \mid \exists(s, p, o) \in \mathcal{E}\}$ is the set of predicates for G.

The Graph Model Extended: Property Graph

- Both Nodes N \& Edges E : identified by some(internal) ID
- Both Nodes N \& Edges E have labels

Multiple node labels are allowed

- Assign to each node \& edge a dictionary of attributes
- ID $\rightarrow\left\{<\right.$ key $_{1}$, value $\left._{1}>, \ldots\right\}$

VIP IP

properties of each
node/edge is independent

Formalization of Property Graph

Countable sets \mathcal{L} : Labels $\mathcal{K}:$ Keys (property names) and \mathcal{V} : property values. A record is a partial function $o: \mathcal{K} \rightarrow \mathcal{V}$ mapping keys to values.
(\mathcal{R} for the set of all records)
Property Graph: $G=(N, E, \rho, \lambda, \pi)$ where:

It is properly a multigraph!

- $\quad N$ is a finite set of nodes (identified by an ID);
- E is a finite set of edges (identified by an ID) such that $N \cap E=\varnothing_{\text {; }}$
- $\quad \rho: E \rightarrow(N \times N)$ maps edges to pairs of nodes
- $\lambda:(N \cup E) \rightarrow 2^{\mathcal{L}}$ labelling function maps nodes and edges to finite sets of labels (including the empty set)
- $\pi:(N \cup E) \rightarrow \mathcal{R}$ property mapping is a function mapping nodes and edges to records.

A Standard for Property Graphs?

```
CREATE GRAPH TYPE fraudGraphType STRICT {
    (personType: Person {name STRING}),
    (customerType: personType & Customer {id INT32}),
    (creditCardType: CreditCard {num STRING}),
    (transactionType: Transaction {num STRING}),
    (accountType: Account {id INT32}),
    (:customerType)
        -[ownsType: owns]->
    (:accountType),
    (: customerType)
        -[usesType: uses]->
    (:creditCardType),
    (:transactionType)
        -[chargesType: charges {amount DOUBLE}]->
    (:creditCardType),
    (: transactionType)
        -[activityType: deposits|withdraws]->
    (:accountType)
}
```

Fig. 2. PG-Schema of a fraud graph schema.

PG-Schema: Schemas for Property Graphs

RFNTO ANICI-ES, Faculty of Engineering, Universidad de Talca, Chile
IIFATI, Lyon 1 University \& Liris CNRS, France
MBRAVA, ENSIIE \& SAMOVAR - Institut Polyt
CHER, Eindhoven University of Technol EEN, LDBC, UK
, Birkbeck, University of London, UK
ISA
N, University of Edinburgh, UK and RelationalAI \& ENS, PSL University, France
AULT, LIGM, Université Gustave Eiffel, CNRS, France
S, University of Bayreuth, Germany
, University of Warsaw, Poland
IIKOW, Neo4j, Germany
OVIĆ, Free University of Bozen-Bolzano, Italy
MIDT, Amazon Web Services, USA
I, data.world, USA
JRKO, RelationalAI, USA and Univ. Lille, CNRS, UMR 9189 CRIStAL, France
ASZUK, University of Bialystok, Poland
「, Neo4j, Germany
OČ, University of Zagreb, Croatia and PUC Chile, Chile erGraph, USA
'IĆ, Integral Data Solutions, UK
reached a high level of maturity, witnessed by multinlo

Edge Property in RDF: RDF-Star

How can we represent edge property in RDF?

$(S, \quad P, \quad O)$
man :hasSpouse :woman
(S,
P,
O)

Singleton Properties

N -ary Relations

Named Graphs

Types of Graph Databases

Single large graphs

- The web
- Social network
- Knowledge Graph

Distinct Graphs
(a.k.a. database of graphs)

- Protein-Protein interactions
- Molecules
- 3D Objects

Graph-Databases / Databases of Graphs

There is often confusion in how this terminology is used. It depends on the context, pay attention!

Databases vs. DBMS
A collection of related pieces of data vs. Database Management Systems (software)

Outline

1. Graphs are Everywhere

- The Web-Link structure
- The Query-Log graph
- The Social network
- The Knowledge graph

2. The Graph Model

- Undirected/Directed graphs
- Labelled/Unlabelled graphs
- N-partite graphs
- RDF graphs
- Property Graph

- Graph Database vs. Database of Graphs

3. Representing Graphs

- Adjacency matrix
- Adjacency List
- Triples \& Storage for Triplestore
- Property graph storage models

4. Graph Navigation

- Breadth-First Search / Depth-First Search
- Connected Components
- Paths \& Shortest path
- CYPHER
- SPAROQL
- Gremlin

Outline

1. Graphs are Everywhere

- The Web-Link structure
- The Query-Log graph
- The Social network
- The Knowledge graph

2. The Graph Model

- Undirected/Directed graphs
- Labelled/Unlabelled graphs
- N-partite graphs
- RDF graphs
- Property Graph
- Graph Database vs. Database of Graphs

3. Representing Graphs

- Adjacency matrix
- Adjacency List
- Triples \& Storage for Triplestore
- Property graph storage models

4. Graph Navigation

- Breadth-First Search / Depth-First Search
- Connected Components
- Paths \& Shortest path
- CYPHER
- SPAROQL
- Gremlin

Graph Navigation

What operations we do on a graph? Given a node obtain:

- Neighbors: obtain the list of all nodes connected to it
- Degree: number of nodes connected (when undirected)
- When directed: In-degree /out-degree
- Graph Traversal
- Start from a node, obtain the list of all reachable nodes

Neighbors(1): $\{2,3\}$
InDegree (2) $=2 \quad$ OutDegree $(2)=3$
Reachable $(4)=\{2,3,1,6,5\} \quad$ Reachable $(1)=\{2,3,5\}$

Graph Traversal: BFS vs. DFS

- Graph Traversal: start from a node, obtain the list of all reachable nodes, in which order?
- Breadth-First Search (BFS): visit first all the neighbors of a node before visiting the other $\operatorname{BFS}(4)=[2,3,6,1,5]$

```
Q = queue()
Q.enqueue(startNode)
mark startNode as visited
while Q is not empty do
    v := Q.dequeue()
    // do something with v here //
    for all w in neighbors(v) do
        if w is not visited then
            mark w as visited
        Q.enqueue(w)
```


Graph Traversal: BFS vs. DFS

- Graph Traversal: start from a node, obtain the list of all reachable

Graph Traversal from a single node is used to find all reachable nodes

 nodes, in which order?- Breadth-First Search (BFS): visit first all the neighbors of a node before visiting the other

$$
\operatorname{BFS}(4)=[2,3,6,1,5]
$$

- Depth-First Search (DFS): visit a neighbor of the last visited node $\operatorname{DFS}(4)=[2,1,3,5,6]$

```
Q = queue()
Q.enqueue(startNode)
mark startNode as visited
while Q is not empty do
    v := Q.dequeue()
    // do something with v here //
    for all w in neighbors(v) do
        if w is not visited then
            mark w as visited
        .enqueue(w)
```

```
Q = stack()
Q.push(startNode)
mark startNode as visited
while Q is not empty do
    v := Q.pop()
    // do something with v here //
    for all w in neighbors(v) do
        if w is not visited then
            mark w as visited
        Q.push(w)
```


Reachability: Connected components

- A connected component is a portion of the graph where each node can reach all other nodes: pairwise reachable.

In a directed graph we can have connected components, but if we follow directions, then it may happen that we cannot reach all nodes.

UNDIRECTED GRAPH, USE BFS :

1) Start from a node;
2) Obtain all reachable nodes
and mark them;
3) Increment CC counter
4)Take next node not already marked, and start again

- A strongly connected component is a portion of a directed graph where there is a directed path between any two nodes. All nodes are pairwise reachable when following directions.
- A weakly connected component is a portion of a directed graph where there is an undirected path between any two nodes. All nodes are pairwise reachable when ignoring directions.

Graph Traversal: Shortest Path

- Find the "quickest" way to reach nodes (Dijkstra's algorithm):
- Single source: Given 1 source node find the "quickest" way to reach all other nodes

BFS \& SHORTEST PATH

If all edges cost equal, BFS can compute the shortest path from one node to all other nodes

- Single Source-Destination (pair of nodes) shortest path: find the "quickest" way - if exists - between the two nodes
- All-pairs shortest path: find shortest paths between every pair of vertices in the entire graph
- Definition of "quickest":
- All edges cost the same \rightarrow find the smallest number of edges
- Edges have different cost \rightarrow weighted path, find path with minimum sum of edge weights

Found 76 paths with 3 degrees of separation from Modena to Platypus in 1.81 seconds!

Start page
1 degree away
2 degrees away
End page

https://www.sixdegreesofwikipedia.com

Graph Oueries: PGs and Triples

Different Data Models have different Ouery Paradigms

- Property Graphs (PGs): everything is an "object" that can contain data
- Queries can retrieve: (a) nodes, (b) edges, (c) paths
- Query language: CYPHER or GQL (gqlstandards.org) or GREMLIN
- RDF (KGs): everything is a "triple" (a statement)
- Queries can only retrieve triples (matching paths / patterns)
- Query language: SPAROL

OUTPUT:
A Graph query (PG or RDF) does not always (almost never) return a graph, usually they return tuples of variable assignments

Graph Example: PG

neo4j

Graph Ouery Example

MATCH (:Person \{ name:"Dan"\}) -[:KNOWS]-> (who:Person) RETURN who

ALIAS is a variable

Graph Ouery Example (II)

//Find all the movies Tom Hanks directed and order by latest movie MATCH (:Person \{name:"Tom Hanks"\})-[:DIRECTED]->(m:Movie) RETURN m.title, m.released ORDER BY m.released DESC;
//Find all of the co-actors Tom Hanks have worked with MATCH (th:Person\{name:"Tom Hanks"\})-->(:Movie)<-[:ACTED_IN]-(oth:Person) WHERE th <> oth RETURN oth.name;

```
MATCH pattern
WHERE predicate
ORDER BY expression
SKIP . .. LIMIT
RETURN expression AS alias
Path pattern variations:
    (n1) - [r1]-> (n2)<- [r2]- (n3)
    (n1)-[:KNOWS*]-> (n2)
```


Graph Query Example (III)

MATCH (node1:Person)-[:KNOWS]-> (node2:Person)
(node1)-[:LIVES_IN]-> (node3:City)
(node2)-[:LIVES_IN]-> (node3)
WHERE node1.age $=30$
RETURN node1.name, node2.name, node2.age

Graph Ouery Example (IV) : Paths

MATCH (me)-[:KNOWS*1..2]-(other)
WHERE me.name = 'Filipa' RETURN other.name

Results:
"Dilshad"
"Anders"

In Neo4j, all relationships have a direction. However, you can have the notion of undirected relationships at query time.

MATCH (me)-[:KNOWS*0..2]-> (other)
RETURN COUNT(other.name)
MATCH (me)-[:KNOWS*1..2]-> (other)
WHERE me.name $=$ 'Anders' AND other.name > ' F ',
RETURN other.name

Results:
"George"

The SPAROL query language

The idea behind SPARQL as a query language is simple

- Define patterns \& Patterns have variables
- Everything in RDF is a triple \mapsto so we define triple patterns
- Identify portions of the RDF graphs that match the pattern \mapsto exists a valid assignment

Evaluation result:

\{?workplace -> ex:CompSci\}
or

?workplace
ex:CompSci

The SPAROL query language (II)

- match the pattern \mapsto exists a valid assignment?

The SPAROL query language (III)

Evaluation result:

\{?property -> ex:worksAt ; ?object -> ex:CompSci\}, \{?property -> foaf:knows ; ?object -> ex:daniele\}, \{?property -> foaf:knows ; ?object -> ex:katja\}

Query:

Triple patterns and solution mappings

Triple pattern: an RDF triple where one or more nodes are variables
Variables are denoted by ? (or \$) at their beginning

1. ex:matteo ex:worksAt ?workPlace
2. ex:matteo ?property ?object
3. ?person ex:reads ?book

Evaluating a triple pattern over an RDF graph produces a multiset (bag) of solution mappings

1. \{?workplace -> ex:IFI\}
2. \{?property ->ex:worksAt ; ?object-> ex:CompSci\},
\{?property \rightarrow foaf:knows ; ?object -> ex:daniele\},
\{?property -> foaf:knows ; ?object -> ex:katja\}
3. \{\}

Basic graph patterns

Basic graph pattern (BGP): a set of one or more triple patterns
(with optional FILTER clauses)

Evaluation result:

Query:

Basic graph patterns (II)

All the triple patterns in the BGP should match to create a result!

Evaluation result:

Query:

Basic graph pattern - syntax

Basic graph patterns are written in a Turtle-like style:
A set of triple patterns separated by dots (i.e., AND)
ex:matteo ex:worksAt ?dept . ?dept ex:deptOf ?uni .
Shared variables refer to the same node in the graph (like joins)
Turtle abbreviations (using; and,) can be used

```
ex:matteo ex:worksAt ?dept ;
    foaf:knows ?person1 , ?person2 . FILTER(?person1 != ?person2)
```

(evaluation result:
\{?dept -> ex:CompSci ; ?person1-> ex:daniele ; ?person2 -> ex:katja\},
\{?dept -> ex:CompSci ; ?person1-> ex:katja; ?person2 -> ex:daniele \}
)

FILTER

- FILTER denotes selection in relational algebra
FILTER(?person1 != ?person2)
- FILTER allows to specify common unary/binary operators:
- Less than, greater than, equalities for integer, decimals and date/time
- Conditions over strings: Regular expressions
- A list of functions for specific situations: isURI, isIRI, isBlank, isLiteral, isNumeric
- Selection for lang \& datatype

```
FILTER( isLiteral(?age)
    && datatype(?age)= xsd:integer )
    && ?age > 30)
)
```


SPAROL query with BGP - syntax

The query structure is similar to SOL: SELECT[FROM]WHERE

PREFIX ex: [http://example.org\#](http://example.org%5C#) Prefixes
SELECT ?uni \leftarrow Variable(s) of interest (projection)
WHERE\{
ex:matteo ex:worksAt?dept .
?dept ex:deptOf ?uni.
\leftarrow BGP (join)
\}

Property path: Sequence and alternative paths

Property path allows to define routes between nodes

- Sequence path /
PREFIX ex: [http://example.org\#](http://example.org%5C#)
SELECT ?uni
WHERE \{
ex:matteo ex:worksAt/ex:deptOf ?uni .
$\}$

PREFIX ex: [http://example.org\#](http://example.org%5C#) SELECT ?uni
WHERE \{
ex:matteo ex:worksAt ?loc .
?loc ex:deptOf ?uni .
\}

- Alternative path|

PREFIX ex:
PREFIX ex:
[http://example.org\#](http://example.org%5C#)
SELECT ?x ?addr
WHERE \{
?x ex:zip|ex:address ?addr.
\}

UNION
\{ ?x ex:address ?addr . \}

Property path: Arbitrary length path

- Specify path of variable length
- One or more path +
\{ ex:matteo foaf:knows+ ?person . \}
\{?person -> ex:daniele\}, \{?person -> ex:katja\}, \{?person -> ex:alice\}, \{?person -> ex:bob\}
- Zero or one path?
\{ ex:matteo foaf:knows? ?person.\}
\{?person -> ex:matteo\}, \{?person -> ex:daniele\} \{?person -> ex:katja\}
- Zero or more path *
\{ ex:matteo foaf:knows* ?person .\} \{?person -> ex:alice\}, \{?person -> ex:bob\}, \{?person -> ex:matteo\}

Property Graph Ouery Language: Gremlin

Imperative Graph Traversal

g.V().has('name', 'Tom Hanks').out() .values("name");
g.V().has('name', 'Tom Hanks').out().out().out(). values("name");

Declarative Graph Traversal

```
g.V().match(
    as("a").has("name", "Tom Hanks"), as("a").out("directed").as("b"),
    as("b").in("acted_in").as("c"), where("a",neq("c"))
).values("name")
```


Let's model this as a graph (1)

You are helping organize a conference and want to model the data about its participants.

You have the citation network of all the people at the conference.

There are papers, authors, and universities.

You know which author works in which university, which author wrote which paper, and which paper cited which paper.

Let's model this as a graph (2)

You are tracking users on a complex website.
They visit many pages of the website to complete their work, when done they close the website.

For each user you know on which page they start, what action they take, on which page they end.

Then from that page they can take another action and go to another page. They can never go to random pages.

They can also go back to the previous page and do an additionalactions and thus may end up in a different page from there.

Graph Data Analysis \& Exploration

- Network Analysis -

Matteo Lissandrini - Aalborg University

Outline

1. Graph Properties

- Scale Free Networks
- Preferential Attachment
- Small world property
- Erdös Number
- Density/Diameter/Eccentricity
- Clustering Coefficient/ Wiener Index

2. Centrality Measures

- Degree/Closeness
- Betweenness Centrality
- Katz Centrality
- Prestige / H-index

3. Page Rank

- Random Walk \& Transition Probability
- Markov Model
- Algebraic representation
- Power Iteration
- Personalized Page Rank
- Particle Filtering
- SimRank

Degree Distribution

- Node Degree: number of nodes connected
- What is the Degree Distribution in a Graph?

Plot the ratio of nodes having a specific Node-Degree

Scale Free Network/Graph

- Node Degree: number of nodes connected
- What is the Degree Distribution in a Graph?

Plot Number of nodes having a specific Node-Degree

$P(k)$ proportion of nodes with degree $=\boldsymbol{k}$

A scale-free network is a network whose degree distribution follows a power law.

The fraction $\mathrm{P}(\mathrm{k})$ of nodes in the network having k connections to other nodes follows approximately

$$
P(k) \sim k^{-\gamma}
$$

Typically $2<\gamma<3$

Scale Free Network/Graph

(a) Random network

(b) Scale-free network Few highly connected hubs

Power Law: meaning

Power law degree distribution: large events are rare, but small ones are quite common.

The probability of finding a highly connected node

 decreases exponentially with k(degree of node, inversely proportional to k):

Degree distribution in random \& scale-free networks

```
P(K) = K K.1
K=1 P(K)=1.0 K= 2 P(K)=0.233258
K=5 P(K)=0.0340536 K= 10 P(K)=0.007943
K=20 P(K)=0.0018528 K=100 P(K)=0.000063
```

The Faloustos-cubed paper
"On Power-Law Relationships of the Internet Topology"
by Faloutsos, Michalis; Petros Faloutsos; and Christos Faloutsos.
https://dl.acm.org/doi/pdf/10.1145/316194.316229

Cause of Scale-free: Preferential attachment

Rich gets Richer

1. New nodes are added to the network one at a time.
2. Each new node is connected to existing nodes with a probability that is proportional to the number of links that the existing nodes already have

- Barabási-Albert model
the probability p_{i} that the new node is connected to node i

$$
p_{i}={\frac{k_{i}}{\sum_{j} k_{j}} \quad \leftarrow \text { Sum of all degrees }=2^{*}|E|}
$$

where k_{i} is the degree of node i
Random Graphs instead follow
https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Barab\�\�si\�\�\�Albert_model
The Erdos-Renyi model

Small World Property

Shortest path: the path with the smallest number of links (edges) between 2 selected nodes.

Small world networks:
the average shortest path length between any two nodes in the network is relatively small.
Any node can be reached within a small number of edges, e.g., $4 \sim 5$ hops.

7 degrees of separation: in a social network there are at most 7 "handshakes" between you and any other person in the world

Found $\mathbf{2 2 2}$ paths with $\mathbf{3}$ degrees of separation from Tyrannosaurus to Coca-Cola in 5.70 seconds!

https://www.sixdegreesofwikipedia.com

Erdös Number

the "collaborative distance" between mathematician Paul Erdős and another person

Erdös number, the number of steps in the shortest path between a mathematician and Erdős in terms of co-authorships.

Co-author/Collaboration Network: An undirected graph representing authors as nodes, an edge exists between A and B if it exist a publication where A and B are co-authors

Citation Network: a directed graph representing scientific publications as nodes, an edge goes from A to B if A has a reference to B. This is a directed acyclic graph(DAG)

[^0]https://en.wikipedia.org/wiki/Paul_Erd\�\�s

Paul Erdős in 1992
authored~1,500 mathematical papers
https://oakland.edu/enp/compute/ https://www.csauthors.net/distance/

How Compact is a Graph? (I)

- Eccentricity of node: the greatest distance between a node N_{i} and any other vertex

These measures ignore directions of edges (except for density)
$\operatorname{Eccentricity}(1)=3$

- Radius of a graph: the minimum eccentricity of any node

$$
\text { Radius }=2
$$

- The diameter of a graph: the maximum eccentricity of any vertex in the graph. (the maximum distance between any 2 nodes)

Diameter $=4$

- Density of a graph: fraction between number of edges and maximal number of edges

$$
\text { Density }=2^{*} 11 / 56=0.39
$$

$$
D=\frac{|E|}{\binom{|V|}{2}}=\frac{2|E|}{|V|(|V|-1)}
$$

Undirected
$D=\frac{|E|}{2\binom{|V|}{2}}=\frac{|E|}{|V|(|V|-1)}$
Directed

Wiener Index: Closeness of a graph

How tightly connected is a graph?

Wiener Index:

the sum of pairwise shortest-path-distances between nodes in the graph G

$$
\sum_{(u, v) \in G} d(u, v)
$$

How Compact is a Graph? (II)

Characterize the structure of a graph:

1. Average Diameter L: average length of the shortest paths connecting any two nodes
2. Effective Diameter: $90^{\text {th }}$ Percentile of shortest path length
3. Clustering coefficient C : the average local density (see next slide).

Small World Graphs have relatively small L \& a relatively large C.

Clustering Coefficient: Local Density

How dense is the neighborhood of a node:
The fraction pairs of neighbors of the node that
are themselves connected

Density of a graph: fraction between number of existing edges and maximal number of edges
The clustering coefficient is Equivalent to the density of the subgraph when considering ONLY the neighbors of n (ignoring n)
Given node \mathbf{n}

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}}=\frac{\# \text { edges between the neighbors of } \mathbf{n}}{\text { degree }(\mathbf{n})^{*}(\text { degree }(\mathbf{n})-1)} \\
& \mathrm{C}_{\mathrm{n}}=\frac{2^{*}(\# \text { edges between the neighbors of } \mathbf{n})}{\text { degree }(\mathbf{n})^{*}(\text { degree }(\mathbf{n})-1)} \text { Directed } D=\frac{|E|}{2\binom{|V|}{2}}=\frac{|E|}{|V|(|V|-1)}
\end{aligned}
$$

Clustering Coefficient: Average Local Density

How dense is the neighborhood of a node:
The fraction pairs of neighbors of the node that
are themselves connected

Density of a graph: fraction between number of edges and maximal number of edges

Given node n

$\operatorname{Degree}(\mathrm{n})=6$
$\underset{\substack{\text { as average of the } \\ \text { entire graph }}}{\text { Clustering Coefficient }} \quad C=\frac{1}{|N|} \sum_{n \in N} C_{n}$

Max connections $=(6 * 5)=30$
Existing links $=6$
$C_{n}=2 * 6 / 30=0.4$

Clustering Coefficient: Average Local Density

How dense is the neighborhood of a node:

The fraction pairs of neighbors of the node that are themselves connected

Density of a graph: fraction between number of edges and maximal number of edges

Given node n

$$
2^{*} \# \text { edges between neighbors of } \boldsymbol{n}
$$

$\mathrm{C}_{\mathrm{n}}=\frac{2^{*} \# \text { edges between neighbors of } \mathbf{n}}{\text { degree }(\mathbf{n})^{*}(\text { degree }(\mathbf{n})-1)}$
$\begin{gathered}\text { Clustering Coefficient } \\ \text { as vivergge of the } \\ \text { entire graph }\end{gathered} \quad C=\frac{1}{|N|} \sum_{n \in N} C_{n}$

Consider Undirected
Degree(n) = 6
Subgraph considering only the neighbors of n

Max connections $=(6 * 5)=30$
Existing links $=6$
$C_{n}=2 * 6 / 30=0.4$

Compute the Clustering Coefficient

Outline

1. Graph Properties

- Scale Free Networks
- Preferential Attachment
- Small world property
- Erdös Number
- Density/Diameter/Eccentricity
- Clustering Coefficient/ Wiener Index

2. Centrality Measures

- Degree/Closeness
- Betweenness Centrality
- Katz Centrality
- Prestige / H-index

3. Page Rank

- Random Walk \& Transition Probability
- Markov Model
- Algebraic representation
- Power Iteration
- Personalized Page Rank
- Particle Filtering
- SimRank

Outline

1. Graph Properties

- Scale Free Networks
- Preferential Attachment
- Small world property
- Erdös Number
- Density/Diameter/Eccentricity
- Clustering Coefficient/ Wiener Index

2. Centrality Measures

- Degree/Closeness
- Betweenness Centrality
- Katz Centrality
- Prestige / H-index

3. Page Rank

- Random Walk \& Transition Probability
- Markov Model
- Algebraic representation
- Power Iteration
- Personalized Page Rank
- Particle Filtering
- SimRank

Importance of a Node

How important is a node in a graph?

Centrality intuition:

The importance of a node depends on its role in "keeping the graph connected"

Basic Centrality measures

How important is a node in a graph?

Directed Degree:
In a directed graph we can differentiated in-degree vs. out-degree.

1. Degree centrality: number of neighbors of node v
2. Closeness centrality: reciprocal of the total distance from a node v to all the other nodes in a network
3. Betweenness centrality: ratio of the number of shortest paths passing through a node v out of all shortest paths between all node pairs in a network

Connected graphs:
These measure have meaning only when referring to a connected graphs

Outline

1. Graph Properties

- Scale Free Networks
- Preferential Attachment
- Small world property
- Erdös Number
- Density/Diameter/Eccentricity
- Clustering Coefficient/ Wiener Index

2. Centrality Measures

- Degree/Closeness
- Betweenness Centrality
- Katz Centrality
- Prestige / H-index

3. Page Rank

- Random Walk \& Transition Probability
- Markov Model
- Algebraic representation
- Power Iteration
- Personalized Page Rank
- Particle Filtering
- SimRank

Outline

1. Graph Properties

- Scale Free Networks
- Preferential Attachment
- Small world property
- Erdös Number
- Density/Diameter/Eccentricity
- Clustering Coefficient/ Wiener Index

2. Centrality Measures

- Degree/Closeness
- Betweenness Centrality
- Katz Centrality
- Prestige / H-index

3. Page Rank

- Random Walk \& Transition Probability
- Markov Model
- Algebraic representation
- Power Iteration
- Personalized Page Rank
- Particle Filtering
- SimRank

The Random Walk

1. Pick a node

2. Select a neighbour at random: take a step
3. Keep making steps until we are "tired"
4. Take note of the node where we stop and how often we visit each node

Random Walk: traversal of the graph by selecting neighbours at random. It is possible to visit the same edge/node multiple times. We keep note of the "frequency" with which each node is visited

The Random Walk Gamble

Let's play a game

1. I pick a random node (not telling which one)

? ? ?
?
2. I perform a random walk (not telling how many steps, let's say >3)
3. Your guess: where am I on the graph? Group A or Group B

Algebraic Representation via the Markov model

Given the Transition probability matrix T \& the initial vector of probabilities \boldsymbol{v} of each node We can account for the teleport probability α so that

- 1 step of the process from time t_{i} to time $\mathrm{t}_{\mathrm{i}+1}$ corresponds to the multiplication: $(1-\alpha) \mathrm{T}^{\mathrm{T}} \times \boldsymbol{v}_{i}+\alpha \times v_{0}$

$$
\alpha=0.1
$$

$(1-\alpha)$

	1	2	3	4
1	0	0	0	1
2	$1 / 2$	0	$1 / 2$	0
3	$1 / 2$	0	0	0
4	0	1	$1 / 2$	0

\mathbf{T}^{T}

\boldsymbol{v}_{0}

\boldsymbol{v}_{0}

During iteration the vector for the teleport stays the same we update only the vector multiplying the matrix

Page Rank: Importance Flow

Intuition:

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages

Define a "rank" r_{j} for page j

$$
r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}} \quad d_{i} \ldots \text { out-degree of node } i
$$

Rank "Flow" equations:

$$
\begin{aligned}
& \mathbf{r}_{\mathrm{C}}=\mathbf{r}_{\mathrm{C}} / \mathbf{2}+\mathbf{r}_{\mathrm{A}} / 2 \\
& \mathbf{r}_{\mathrm{A}}=\mathbf{r}_{\mathrm{C}} / \mathbf{2}+\mathbf{r}_{\mathrm{B}} \\
& \mathbf{r}_{\mathbf{B}}=\mathbf{r}_{\mathbf{A}} / \mathbf{2}
\end{aligned}
$$

Page Rank: Rearranging the Equation

- $r=A \cdot r \quad$ - where $A_{j i}=\beta M_{j i}+\frac{1-\beta}{N}$
- $r_{j}=\sum_{\mathrm{i}=1}^{N} A_{j i} \cdot r_{i}$
- $r_{j}=\sum_{i=1}^{N}\left[\beta M_{j i}+\frac{1-\beta}{N}\right] \cdot r_{i}$
- $\quad=\sum_{i=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \sum_{i=1}^{N} r_{i}$
- $\quad=\sum_{i=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \quad$ since $\sum r_{i}=1$
- So we get: $\boldsymbol{r}=\boldsymbol{\beta} \boldsymbol{M} \cdot \boldsymbol{r}+\left[\frac{1-\boldsymbol{\beta}}{N}\right]_{N} \quad[x]_{N} \ldots$ a vector of length N with all entries x
- Compare to: $(1-\alpha) \cdot\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right]^{T}\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]_{t_{i}}+\alpha \cdot\left[\begin{array}{c}\frac{1}{n} \\ \vdots \\ \frac{1}{n}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]_{t_{i+1}}$

Personalized Page Rank: Topic-Specific PageRank

- Page Rank measures a "generic" popularity of a page, is no specific for a search query or a topic
- Instead of generic popularity, can we measure popularity within a topic?
- Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g., "sports" or "history", defined as a specific subset of pages
- Allows search queries to be answered based on interests of the user
- Example: A programmer looking for "library for graph traversal" wants different pages depending on the programming language they use the most

Assume there is a special subset of
pages S that we care about

Personalized Page Rank: Topic-Specific PageRank

Global Page Rank

Starting from a random node, traversing randomly, random restart point anywhere in the graph

The role of the teleport: To avoid dead-end and spider-trap problems

Standard PageRank: Any page with equal probability

Topic Specific PageRank: A topicspecific set of "relevant" pages (teleport set)

Personalized Page Rank

Starting from a limited set of nodes,
traversing randomly,
restart point is one in the initial set.
Bound not to travel too far

Personalized Page Rank: Topic-Specific PageRank

Idea: Bias the random walk

1. When walker teleports, she pick a page from a set \boldsymbol{S}
2. The set \boldsymbol{S} contains only pages that are relevant to the topic
E.g., pages with documentation of python libraries
3. For each teleport set \mathbf{S}, we get a different vector $\boldsymbol{r}_{\mathbf{s}}$

$$
\begin{aligned}
& (1-\alpha) \cdot\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]^{T}\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]_{t_{i}}+\alpha \cdot\left[\begin{array}{c}
0 \\
\vdots \\
\frac{1}{|S|} \\
0 \\
\vdots \\
\frac{1}{|S|} \\
\vdots \\
0
\end{array}\right] \leftarrow \begin{array}{l}
\text { We change } \\
\text { the teleport } \\
\text { Vector! }
\end{array} \\
& \text { When we teleport back to a single node is } \\
& \text { called: Random Walk with Restart }
\end{aligned}
$$

Personalized Page Rank

Starting from a limited set of nodes,
traversing randomly,
restart point is one in the initial set.
Bound not to travel too far

Particle Filtering Approach

Speed up PPR computation

Simulate a set of particles navigating the graphs
 Particle spread not-uniformly following edge importance

Edge Importance: Director > Genre > Actor > Country

Particles start from the query nodes

Edges are traversed based on priority

Particles are split non-uniformly + dissipation

```
Require: Graph \(G\); Query nodes \(\mathbf{Q}\)
Require: Restart probability \(c \in[0,1]\); Threshold \(\tau \in\)
    \([0,1]\)
Require: Query value \(k\)
Ensure: Ranked Top-K nodes
    1: \(\mathbf{p} \leftarrow\}\)
    2: for each \(q_{i} \in \mathbf{Q}\) do
        \(\mathbf{p}\left[q_{i}\right] \leftarrow 1 / \tau \quad \triangleright\) Initialize Particles
    while \(\exists n_{i} \in \mathbf{p} \mid \mathbf{p}\left[n_{i}\right] \neq 0\) do
        temp \(\leftarrow\}\)
        for each \(n_{i} \in \mathbf{p} \mid \mathbf{p}\left[n_{i}\right] \neq 0\) do
            particles \(\leftarrow \mathbf{p}\left[n_{i}\right] \times(1-c)\)
            for each \(e:\left(n_{i} \rightarrow n_{j}\right) \in G\) do \(\triangleright\) Sorted by
    Weight
            if particles \(\leq \tau\) then
                break
                    passing \(\leftarrow \operatorname{MAX}(\) particles \(\times e\).weight ()\(, \tau)\)
            \(\operatorname{temp}\left[n_{j}\right] \leftarrow \operatorname{temp}\left[n_{j}\right]+\) passing
            particles \(\leftarrow\) particles - passing
    \(\mathbf{p} \leftarrow\) temp
    for each \(n_{i} \in \mathbf{p}\) do
        \(\mathbf{v}\left[n_{i}\right] \leftarrow \mathbf{v}\left[n_{i}\right]+\mathbf{p}\left[n_{i}\right] \times c \quad \triangleright\) Update score
    return top- \(\mathrm{k}(\mathrm{v})\)
```


Personalized Page Rank as a Proximity Measure

What is the probability to reach node B given that we start from node A?
Compared to C?

What are the most "relevant" nodes for A ranked by "closeness"
a.k.a.: Relevance, 'Relatedness'...

- Multiple connections
- Quality of connection
- Direct \& Indirect connections
- Length \& "quantity"

Another Measure: hitting time

$\mathbf{h}(\mathbf{A} \rightarrow \mathbf{B})$ is the average number of steps to walk from node \mathbf{A} to node \mathbf{B}. Hitting time is asymmetric $\mathbf{h}(\mathbf{A} \rightarrow \mathbf{B})$ is not always the same as $\mathbf{h}(\mathbf{A} \rightarrow \mathbf{B})$
http://www.cs.cornell.edu/courses/cs4850/2009sp/Scribe\ Notes/ Lecture\%2024\%20Friday\%20March\%2013.pdf

SimRank: A recursive definition of similarity

Measure the similarity of two objects:

Intuition: Two objects are similar if they are related to similar objects

A recursive definition of similarity based on graph structure:

$$
s(a, b)=\frac{C}{|I(a)||I(b)|} \sum_{i=1}^{|I(a)|} \sum_{j=1}^{|I(b)|} s\left(I_{i}(a), I_{j}(b)\right)
$$

$I(a) \leftarrow$ Incoming nodes to a $\quad I_{i}(a) \leftarrow$ the i-th incoming node of a
Where \mathbf{C} is a constant between 0 and $1 \quad$ When $I(a)=\emptyset$ or $I(b)=\emptyset$ then $s(a, b)=0$

How similar is the "role" of A and B in this graph?

Further References

```
DAVIS SHURBERT, AN INTRODUCTION TO GRAPH HOMOMORPHISMS
http://buzzard.ups.edu/courses/2013spring/projects/davis-homomorphism-ups-434-2013.pdf
ANDREAS SCHMIDT, IZTOK SAVNIK, CONFERENCE ON ADVANCES IN DATABASES, KNOWLEDGE, AND DATA ApPLICATIONS, OVERVIEW OF REGULAR
PATH OUERIES IN GRAPHS
https://www.iaria.org/conferences2015/filesDBKDA15/graphsm_overview_of_regular_path_queries_in_graphs.pdf
JURE LESKOVEC, CS224W: MACHINE LEARNING WITH GRAPHS|2019|
LECTURE 3-MOTIFS AND STRUCTURAL ROLES IN NETWORKS
http://snap.stanford.edu/class/cs224w-2019/slides/03-motifs.pdf
DAVIDE Mottin and EmmanuEL MÜLLER, GRAPH EXPLORATION:
LET ME SHOW WHAT IS RELEVANT IN YOUR GRAPH, KDD TUTORIAL
https://mott.in/slides/KDD2018-Tutorial-Compressed.pdf
KolacZyk, E.D., Statistical Analysis of Network Data, Chapter 5: Sampling and Estimation in Network Graphs.
HTTPS://LINK.SPRINGER.COM/CHAPTER/10.1007/978-0-387-88146-1_5
JURE LESKOVEC, CHRISTOS FALOUTSOS, SAMPLING FROM LARGE GRAPHS
HTTPS://DL.ACM.ORG/DOI/PDF/10.1145/1150402.1150479
```


[^0]: Similar Concept: Bacon Number
 https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
 Fun Fact: Natalie Portman has both Erdős Number and Bacon Number!

