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I. What is Prescriptive Analytics (PA) ?

Descriptive Analytics - “What 

happened?”

Predictive Analytics - “What will 

happen?”

Prescriptive Analytics - “How to 

make it happen?”
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II.  Motivation

Gartner Hype Cycle for Data Science [1]

➢ Lack of PA knowledge among data 

scientists

➢ Lack of unified PA framework

➢ Difficulties while switching between 

different types of PA tasks - system 

modeling, simulation, optimization

➢ The existing FMI-compliant simulation

and optimization tools are designed

for domain experts, and not

traditional data analysts

➢ Additional skills are required from 

data analyst to perform the whole 

cycle of solving PA task 4



III. Background
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IV. State-of-the-art 
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● PA term is characterized by:

○ hybrid data,

○ integrated predictions and prescriptions

○ prescriptions and side effects

○ adaptive algorithms

○ feedback mechanisms

● PA application domains:

○ InSciTe advisory (Song et al. [9]) - a PA system to facilitate the research process and

provide an advice for the future

○ rBPO (Gröger et al. [10]) - recommendation-based business process optimization

○ distribution of salesforces within the company, the opportunities to increase company’s

profit by incorporating PA techniques into company’s decision-making process (Kawas

et al. [11])



IV. State-of-the-art 
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● No widely spread unified framework for PA applications; Soltanpoor et al. [12] suggests the 

prescriptive conceptual model, yet, no precise suggestions about the logical order to perform 

the decision-making. 

● The comprehensive survey of  PA software tools and frameworks was made by Frazzetto et al. 

[VLDBJ].

● Simulation of physical systems models - one of the most important PA tasks. Functional

Mock-up Interface (FMI) [14] - a standard model representation for physical systems models

simulation. Supported by Matlab [15], JModelica [16], EnergyPlus [17] and over 100 other

physical systems models simulation tools.



IV. State-of-the-art 
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● The unified PA tool does not exist yet .

○ PostgreSQL [19] and Hadoop [18] can be used for data consolidation,

○ Matlab - for predictions,

○ JModelica - for system modeling,

○ Gurobi [20] - for optimization solutions.

● Tools to merge PA stages and support in-DBMS analytics:

○ LogicBlox [20] (consolidates predictions and optimizations),

○ Tiresias [21],

○ SolveDB [2].

These tools handle linear programming/mixed integer programming problems;

models simulation and models dynamic optimization problems are still not supported.



V. Typical PA workflow
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Input Data Storage and 

Processing

Physical 

System 

Modeling

Prediction
Analysis/Visual

ization
Optimization

JModelica

PostgreSQL
R

CPLEX

WolframAlpha

An example of PA task is how to control a heat pump power input to maintain the room temperature 

within a user-defined comfort band inside a house equipped with a heating device (e.g. a heat pump 

or a boiler). 

Dynamic Optimization (DO) - an intertemporal optimization

problem, where a user is to choose a sequence of actions

needed to minimize/maximize the desired objective function

based on a number of constraints

Descriptive Analytics 

tasks
Predictive Analytics 

tasks

Prescriptive Analytics 

tasks

Limitations: no unified tool to perform all the workflow steps.



VI. Ph.D. Project Objectives

1. To find effective and efficient ways to store, simulate and calibrate standardized

dynamic systems models within an SQL environment suitable for non-domain data

analysts

1. To incorporate DO algorithms and techniques into a PA-oriented DBMS

1. To create a “wizard” that helps the inexperienced users to deal with PA tasks

1. To experimentally validate the objectives 1) - 3) based on the use cases from the

energy domain, and to compare with the traditional setup
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VII. Project Plan

Table 1. Gantt chart for the Ph.D. project
11



VIII. Teaching, ECTS, Papers

● 25,75 ECTS completed (86 % out of mandatory 30 ECTS)

● 772 teaching hours completed (finished teaching)

● Paper 1 “pgFMU: Integrating Data Management with Physical System

Modeling” to be resubmitted to TKDE (July 2019). The next slides will

present the results of this paper.
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IX. pgFMU Running Example

Running example workflow
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The aim is to predict indoor temperatures

inside a house heated by an electrical heat-

pump (HP).

Parameters estimation - the operation of fitting 

model parameters to actual measurements

Model simulation - the operation of calculating model 

outputs and states based on model inputs



IX. pgFMU Running Example

Linear time-invariant (LTI) state-space model of the 

heat pump heated room
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A
B C

E

Heat pump model:



IX. pgFMU Running Example

Running example operations and steps
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X. pgFMU Functionality
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X. pgFMU Functionality

● fmu_variables (model_id)↦ (id, name, type, value,

...)
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● fmu_get (model_id, name) ↦

value

● fmu_set (model_id, name, value)

Auxiliary functions:



X. pgFMU Functionality

● fmu_param_est (model_id_in, input_sql,

[pars], [model_id2]) ↦ model_id_out

● A particular feature of the estimation of 100

heat pump model instances parameters:
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X. pgFMU Functionality

● fmu_simulate (model_id, input_sql, [time_from],

[time_to]) ↦ (time, var_name, sim_value,

real_value)

● A particular feature of the simulation of 100

heat pump model instances:

19



XI. pgFMU Experimental Evaluation
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Model HP0 - modification of the running example, heat pump model with 

no inputs (heat pump power is kept at a constant rate)

Model HP1 - running 

example

Model Classroom - a thermal network model [23] 

represented by a  classroom  (139  m2)  in  a  8500  m2  

teaching  university building OU44 at the SDU Campus 

Odense (Odense, DK)

FMU models to test pgFMU functionality upon



XI. pgFMU Experimental Evaluation

1. Configurations:

a. C_Python - using Python IDE and Python packages functionality.

b. C_pgFMU - using pgFMU functionality with no multi-model

optimization features activated.

c. C_pgFMU+ - using pgFMU functionality with multi-model

optimization features activated.

2. Scenarios:

a. Single model scenario - C_Python, C_pgFMU, and C_pgFMU+.

b. Multi-model scenario - C_Python, C_pgFMU, and C_pgFMU+.

3. Assessment: Model Quality, Performance, Usability. 21



XI pgFMU Experimental Evaluation

pgFMU+ optimization: for estimating

parameters of the model, reduce the search

space by using “initial guess” technique.

This technique is applicable for multiple model

instances.

Main idea: after running Global Search + Local

Search algorithms for one model instance,

reuse the results for the remaining model

instances, assuming the model instances are

of the same structure and input time series

have the same distribution. 22
Global Search space

Local Search

space

Model instance 1 optimum
Model instance 2 optimum

Model instance 3 optimum



XI. pgFMU Experimental Evaluation

Model Quality, single model scenario
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Model Quality comparison within Python and pgFMU, pgFMU+ configurations



XI. pgFMU Experimental Evaluation

Model Quality, multi model scenario
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RMSE comparison, 100 model 

instances

HP0

HP1

Classroom



XI. pgFMU Experimental Evaluation

Performance, single model scenario
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Configurations comparison, 1 model instance



XI. pgFMU Experimental Evaluation

Performance, multi model scenario

26

Workflow execution time comparison, 

100 model instances

HP0

HP1 Classroom



XI. pgFMU Experimental Evaluation

Usability
User testing session with 24 master students from Poznan University of Technology (PUT).

Pre-assessment questionnaire  (1 - very little, 5 - very much):

Q1. How can you estimate your knowledge in energy systems and physical systems modeling?

Q2. How familiar are you with model simulation and model calibration process?

Q3. How familiar are you with model simulation software(s)?

Q4. How comfortable are you with using Python IDE? 

Q5. How comfortable are you with using SQL?

27
Pre-assessment questionnaire results



XI. pgFMU Experimental Evaluation

Usability

Student time per workflow, min (excluding UDFs runtime)
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Post-assessment questionnaire:

Q1. How was it to retrieve information about 

model variables?

Q2. How was it to set model parameters?

Q3. How was it to calibrate the model?

Q4. How was it to simulate the model ? 

Q5. Overall satisfaction with configuration 

functionality.

Post-assessment questionnaire results

1 - very difficult/unsatisfactory,  5 - very easy/satisfactory



XI. pgFMU Experimental Evaluation

Usability
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Participants opinion about both configurations



XII. pgFMU Conclusions and Future Work

● pgFMU - the first DBMS extension to support simulation, calibration and

validation of physical systems dynamic models within a single DBMS

environment.

● pgFMU provides time-efficient functionality to store, simulate, calibrate and

analyze an arbitrary number of FMU models.

● On average 2.9 times execution time gain in comparison to the traditional

workflow, and 22 times less code lines.

● pgFMU is up to 12.5 times faster in terms of development time for the 

arbitrary user-defined workflow.
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XIII. Selected PA-supporting Tools Comparison

Input Data Storage 

and Processing

Physical 

System 

Modeling

Predic-

tion

Analysis/

Visualization

Optimiza-

tion

Typical PA Workflow

31

SolveDB + + +/- +/-

pgFMU + + +/- +/-

Matlab +/- + + +

JModelica + +/- + +/-



XIV. Next Steps towards Unified PA Tool Creation

- SolveDB [2] - a Postgres-based DBMS with the native support for in-DBMS

optimization, constraint satisfaction and domain-specific problems;

- Provides a set of built-in solvers for Linear Programming (LP)/Mixed Integer

Programming (MIP), Global Optimization (GO);

- Integrates solver into DBMS backend, therefore, making database-based

problem solutions more easy and user-friendly.

Query example
Example of a simple 

linear optimization problem

32

A view solver produces a solution based on the model

instance descriptor and parameter-value pairs



XIV. Next Steps towards Unified PA Tool Creation

Extended SolveDB+ Architecture

33

solver_do (model_id)

Composite view solver

Interpreter (e.g. Optimica 

language for DO problems)

Non-linear physical solver 

(e.g. IPopt)



XIV. Next Steps towards Unified PA Tool Creation
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Paper 2 “Bringing Model Dynamic Optimization into Prescriptive Analytics DBMSes”

(ICDE, October 2019)

● To continue the integration of the DO techniques into DBMS.

● To enable automatic DO solver generation.

● To build model optimization on top of the upgraded pgFMu extension from Paper

1.

● To provide a native support for the DO solvers.

● Focus mainly on enabling the in-DBMS optimal control methods and techniques.



XIV. Next Steps towards Unified PA Tool Creation
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Paper 3 “Data-Driven State-Based Simulation and Calibration of Residential Heat Pump

Models” (e-energy, January 2020)

● The real-world example of physical system modelling located in Switzerland to be

considered.

● A number of houses are equipped with the heat pump and boiler physical devices.

● The real-time data from sensors (heat pump power meter, boiler power meter, boiler

temperature sensor, room temperature sensor) to be fetched into the model.

● The boiler and heat pump model simulation, state and parameters estimation, and

model optimization will be done via the usage of pgFMU DBMS extension from Paper

1 and 2.

● The system predicts the state of the residential heat pump and boiler, its future energy

demand and the room temperature.



XIV. Next Steps towards Unified PA Tool Creation
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Paper 4 “A Unified Prescriptive Analytics Tool” (TODS/VLDB, August 2020)

● A journal paper

● DO-DBMS platform is enhanced by “wizard” integration.

● “Wizard” will guide users through the PA task solution process by bringing the step-

by-step guidance:

○ helping the user to choose the appropriate solver/function for a specific type of

PA task, and

○ navigating through the PA stages (processing the measurements for the system

modeling, model prediction, model simulation, state and parameters estimation

of the model, and model optimization).

● Running example - Swiss case (Paper 3) and thermal energy consumption prediction

(collaboration with PUT).



XV. Intended Project Contribution/ 

Improvement over the State-of-the-art

● Improving the way of non-domain data analysts interaction with PA tasks by

designing a framework for in-DBMS cyber-physical models storage, simulation,

and calibration.

● Addressing the issue of poor direct database inputs support from the existing

simulation and optimization software;

● Enabling in-DBMS model optimization functionality for different types of PA tasks;

● Providing user support by creation of a “wizard” - a step-by-step guidance tool to

smooth the process of PA task solving;

● Refining the practises of residential heat pumps models storage, simulation,

calibration and optimization.
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