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|. What is Prescriptive Analytics (PA) ?

“ltnﬂlm

1||.JilI|“| s g ;' "“Ii

Predictive Analytics - “What will

Prescriptive Analytics - “How to
make it happen?”

happen?” I

1]

Descriptive Analytics - “What ﬁ ((‘

happened?”
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[I. Motivation
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Expectations >

time
Plateau will be reached in:
obsolete
Oless than2years O2toSyears @ Sto10years A more than 10 years @ before plateau

Gartner Hype Cycle for Data Science [1]
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Lack of PA knowledge among data
scientists

Lack of unified PA framework

Difficulties while switching between
different types of PA tasks - system
modeling, simulation, optimization

The existing FMI-compliant simulation
and optimization tools are designed
for domain experts, and not
traditional data analysts

Additional skills are required from
data analyst to perform the whole
cycle of solving PA task 4
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Ill. Background
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__ V. State-of-the-art
o P

A term is characterized by:

O hybrid data,

O integrated predictions and prescriptions
O prescriptions and side effects
O
O

A

adaptive algorithms
feedback mechanisms

e PA application domains:
O InSciTe advisory (Song et al. [9]) - a PA system to facilitate the research process and
provide an advice for the future
O rBPO (Groger et al. [10]) - recommendation-based business process optimization
O distribution of salesforces within the company, the opportunities to increase company’s
profit by incorporating PA techniques into company’s decision-making process (Kawas

et al. [11])
«
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|\/. State-of-the-art

No widely spread unified framework for PA applications; Soltanpoor et al. [12] suggests the
prescriptive conceptual model, yet, no precise suggestions about the logical order to perform
the decision-making.

The comprehensive survey of PA software tools and frameworks was made by Frazzetto et al.
[VLDBJ].

Simulation of physical systems models - one of the most important PA tasks. Functional
Mock-up Interface (FMI) [14] - a standard model representation for physical systems models
simulation. Supported by Matlab [15], JModelica [16], EnergyPlus [17] and over 100 other
physical systems models simulation tools.

«
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|\/. State-of-the-art

e The unified PA tool does not exist yet .
O PostgreSQL [19] and Hadoop [18] can be used for data consolidation,
O Matlab - for predictions,
O JModelica - for system modeling,
O Gurobi [20] - for optimization solutions.

e Tools to merge PA stages and support in-DBMS analytics:
O LogicBlox [20] (consolidates predictions and optimizations),
O Tiresias [21],
O SolveDB [2].
These tools handle linear programming/mixed integer programming problems;
models simulation and models dynamic optimization problems are still not supported.

«
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CE) e
Ly D'C
V TyplCal PA WOFkﬂOW Dynamic Optimization (DO) - an intertemporal opt?mlzation

problem, where a user is to choose a sequence of actions
needed to minimize/maximize the desired objective function
based on a number of constraints

A\

An example of PA task is how to control a heat pump power input to maintain thg room temperature
within a user-defined comfort band inside a house equipped with a heating device (e.g. a heat pump
or a boiler).

Limitations: no unified tool to perform all the workflow steps.

Input Data Storage and Physical Analysis/Visual

Processing System Prediction Optimization T
: ization
Modeling
JModelica CPLEX
R
PostgreSQL
L : ((‘ . _ WolframAlpha
Descriptive Analytics Predictive Analytics Prescriptive Analytics 9
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VI.

Ph.D. Project Objectives

To find effective and efficient ways to store, simulate and calibrate standardized
dynamic systems models within an SQL environment suitable for non-domain data
analysts

To incorporate DO algorithms and techniques into a PA-oriented DBMS

To create a “wizard” that helps the inexperienced users to deal with PA tasks

To experimentally validate the objectives 1) - 3) based on the use cases from the
energy domain, and to compare with the traditional setup

«
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VII. Project Plan

Year

2017

2018 2019

2020

Quarter

Comprehensive literature search

Preparation of 2-months Ph.D. study plan

Analysis of the existing modelling systems

Winter

Summer| Winter | Summer

Winter | Summer

Preparation of 11-months Ph.D. study plan

Integration of the model simulation into DBMS

Year 2017 2018 2019 2020
Quarter Winter . Summer
User guide(*wizard") prototype development and Milestones
testing Submission of the Paper 4
Faper 4 preparation and writing - .
FhD thesis preparation and writing PhD thesis submission
Milestones MS1 MS2 |ms3 |msa MS5 MS6
Milestones MS1 Ms2 MS3 MS4 MS5 MS6

r'dl.lh‘l ] plEPHJEILIUll Al \\rllLlIlg |

User guide(“wizard”) prototype development

and testing

Paper 4 preparation and writing

PhD thesis preparation and writing

Milestiones MSI | MS2 | Mss | Ms4 | Mss | MS6

Activities finished | Activities being performed | Planned activities |

Table 1. Gantt chart for the Ph.D. project
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VIII. Teaching, ECTS, Papers

e 25,75 ECTS completed (86 % out of mandatory 30 ECTS)

e 772 teaching hours completed (finished teaching)

e Paper 1 “pgFMU: Integrating Data Management with Physical System
Modeling” to be resubmitted to TKDE (July 2019). The next slides will

present the results of this paper.
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__ IX. pgFMU Running Example

%
=
% The aim is to predict indoor temperatures Parameters estimation - the operation of fitting
~~. inside a house heated by an electrical heat- model parameters to actual measurements
pump (HP). %
.i z 5
& ( Step 2. Read Y Step3. ) Step 4. Validate
Step 1. Load/build |—» historical —» Recalibrate the and update the
EMU model file measurements and

mode] ). FMU model

\_ controlinputs |

By
———————

Step 7. Perform
further analysis

Running example workflow

) . ( step5. Simulate |
Step 6. Export the recalibrated

predicted values model to pr'leCt
to a database temperatures

Model simulation - the operation of calculating model
((‘ outputs and states based on model inputs

AALBORG UNIVERSITY 13
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IX. pgFMU Running Example

Cp = 1.5kWh/°C is the thermal capacitance (the amount of energy
needed to heat up by 1 °C within 1 hour);
R = 1.5°C/kW is the thermal resistance;

);

P = 7.8kW is the rated electrical power of the heat pump;
n = 2.65 is the performance coefficient (the ratio between energy

Heat pump model:
x(0) = xp; B C
Fork =1..n: ,/A / /
Ll — Y oxte—1 4 (B wiry 4 (La
o L= g e {5 o (2
y(k) =P - u(k);
E

Linear time-invariant (LTI) state-space model of the
heat pump heated room

usage of the heat pump and the output heat energy);

0q = —10°C is the ambient temperature;

xp = 21°C is the initial temperature;

u(1), ..., u(n) are input variables — heat pump power rating setting
in the range [0 ... 1], corresponding to [0 .. 100%] of HP power
operation;

k = 1..n; x(0), ..., x(n) are state variables — inside temperatures at
k = 0..n; and

y(1), ..., y(n) are output variables — power consumed by a heat pump
at the time intervals k = 1..n.

«
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IX. pgFMU Running Example

) . Code
No| Operation Step Package lines
Download/compile . .
1 EMU model An FMU model needs to be loaded PyFMI 4
> iiiciureme};tzmr;i]l Map the information from the sensors stored in Measurements table | psycopg2, 12
S ‘ to the input, output and state variables of the FMU model PyFMI, pandas
control inputs
3 Recalibrate the | Estimate and update model parameters to ensure better fit with the | ModestPy, pan- 15
model data das
Validate and update | Calculate the CVRMSE in order to validate the fit with the current .
4 the FMU model data PyEML, pandas | 7
Simulate the recali- Using the updated FMU model, predict the indoor temperatures PyEML,
5 | brated model to pre- . Assimulo, 24
. based on the known inputs
dict temperatures numpy
6 Export  predicted | Insert the predicted values to the table to be updated later with the | psycopg2, pan- A
values to a database | real values das
7 Perform further E.g. simulate and calibrate multiple number of FMU models psy?ong, 22
analysis PyFMI
Total 88

Running example operations and steps

«
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X. pgFMU Functionality

1 | SELECT fmu_create( ' /home/fmus/model.fmu"’,

Algorithm 1: fmu_create()
Input:
model_id, fmu_file
Output:
fmu_model

1: Retrieve a model identifier model_id specified by a user;

2: Retrieve path to the model;

3: Retrieve model variable names, types and values by means of
internal functions get (), get_model_variables() of
PyFMI package;

4: Based on Step 3 create an instance of fmu_model ;

5: Store the FMU file in a volatile memory ;

«
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Step 1. \ historical
Download/build ‘ measurements and |
FMU model file control inputs

(" Step s Export )
Step 7. Perform | Eéﬁﬁ:i% dE\.Te%gs
further analysis | p
|_ to adatabase |

—» Recalibrate th E.'

. model J

Step 2. Read Step 3. Step 4. Validate

and update the
FMU model

Step 5. Simulate

the recalibrated

model to predict
temperatures
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e fmu_variables (model_id)~ (id, name, type, value,

Auxiliary functions:

X. pgFMU Functionality

SELECT « FROM fmu_variables ( "hpl1') AS f WHERE

fmu_set (model_id, name, value)

1 SELECT - FROM fmu_set( 'hpl', 'A', 0.56);

2| f.type = "parameter’ |
modelid modelname varname vartype R — modelid modelname varname |vartype varvalue

text text text text numeric text text text text numeric

1 |hpl Models.SISOLinearSystem A parameter 8 1 |hpl Models.SISOLinearSystem B parameter ]
2 |hp1 Models.SISOLinearSystem B parameter 8 2z |hpl Models.SISOLinearSystem E parameter ¢}
3 |hpl Models.SISOLinearSystem E parameter 8 3 |hpl Models.SISOLinearSystem C parameter ]
4 |hp1 Models.SISOLinearSystem|C parameter 8 4 |hpl Models.SISOLinearSystem A parameter 8.56

e fmu_get (model_id, name) & (((
value 17
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X. pgFMU Functionality

AN

fmu_param_est  (model_id_in,
[pars], [model_id2]) » model_id_ou

input

1 ‘ SELECT fmu_param_est( "hpl ', 'SELECT time, var_name, value
FROM measurements ', 'A, B, C, E', "hpl ')
L
ID| Model Name Variable| Variable | Initial | Estimated |,
name | Type Value | value
1 | hpt A parameter| 0.56 027 /
2 | hpt B parameter | 13.78 | 0.57
3 | hpt C parameter| 7.8 178
4 | hpt E parameter | -4.44 | -5.6¢/
7

e A particular feature of the estimation/éf 100

heat pump model instances parameters:

yA

SELECT + FROM generate_series(1, 100) AS id, /'
LATERAL fmu_param_est( 'hp' || id::text,
'SELECT + FROM measurements ', ‘A, B', 'hp' ||

woora

id :: text)

o 1
e e z i A
. | ~| [ sStep2 Read 1} SEp3 ) Step 4 Validate
Sl N historical —» Recalibrate the and update the
Download/build measurements and - FIMU model
L FMU model file \__ controlinputs ) e \

Step 6. Export
predicted values
to a database

2 N1
v

further analysis 1

\. Sk

. ( Step5. Simulate )
the recalibrated
model to predict

/| temperatures |

Algorithm 3: fmu_param_est()

’ Input:
’ {mocdel_1id}, {inputoutput_sqgql}, {pars}
Output:
{model_id_out}

~

/ 1: Retrieve model_id[0] from the list of model

identifiers specified by a user;

2: Based on the inputoutput_sqgl [0], retrieve the

measurements table;

3: Retrieve the input variables values from the

measurements table ;

4: Retrieve the parameters to be estimated from pars;

5: For model_1id[0], run Global Search and Local

Search estimation algorithms;

6: Store estimation results to Parameters table;

7: Update all model instances from {model_id} with

the new parameter values;

8: For all remaining models (model_id[1], ...
model_id[n], n = length({model_id})) run only
Local Search algorithm, using estimation results from
Step 6 as initial guess;

. Store estimation results for model_id[1], ..

9:
((‘ model_id[n] to Parameters table;
10:

Store the new model instances as {model_id_out}

AALBORG UNIVERSITY

DENMARK

18



—

NN

1
2
3

Step 1.
Download/build
FMU model file

[ Step 2. Read

Step 3.
—> RECBlIDi'atE the
model A

\__ controlinputs |

measurements and

historical

\____model

pgFMU Functionality e .
[ P
1 1 | Step6. Export )

Step 7. Perform t
| further analysis [1 || pgedlcted el
H 1 | to acatabase

fmu_simulate (model_id, input_sql, [time_from],

. . . !
[time_to]) +~ (time, var_name, sim_value,
real_value)
1 .SELECT time, var_name, sim_value, real_value ,
2z FROM fmu_simulate( "hpl', SELECT time, var_name, value 1
3  FROM measurements WHERE var_name IN ('"'u'"'')') AS f \ /I
Time| Model Name State| State var | State var I'I
var | real simulated K
0 hpl 20.7507 20.188 I’
1 hpl X 23.6231 19.998 ,’
2 hp1 20.543 19.808 )
I
1

A particular feature of the simulation’ of 100

heat pump model instances: /
SELECT « FROM generate_series(1, 100) AS id, !
LATERAL fmu_simulate( "hp" || id::text ,

'SELECT + FROM measurements ') AS f

«
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Step 5. Simulate )

the recalibrated
model to predict

temperatures
G i

m 2: fmu_simulate()

Wa L RO e

w

Input:

model_id, SQL query

Output:

ModelSimulation table.

model instance ;

initial time t( to initial time + ¢ (given ¢ is a linear
interpolation between time values fp and t);
: Perform model _simulation using PyFMI Python package with

simulate() function;

: Retrieve a model identifier model_id specified by a user;

. Retrieve the FMU model instance based on model_id ;

. Retrieve the Measurements table;

: Map the input (u), output (y) and state (x) variables values in
the measurements table to the input (HP_range), output
(HP_power) and state (Indoor_Temp) variables of the FMU

: Perform model initialization by simulating a model from the

. Store simulation results in ModelSimulation table;

19



XI. pgFMU Experimental Evaluation

=
% Model HPO - modification of the running example, heat pump model with
% no inputs (heat pump power is kept at a constant rate)
=
Model Measurements dataset Inputs Outputs Parameters
ID
HP(O | NIST Enoineerino | No innuts . hant numn nowar can. | tharmal canacitanca |
HP1 f"f:r o Engir;eering — heat pump power rat- |— heat pump power con- |- thermal capacitance Cp,
Class-| Data from one of the class- |- solar radiation solrad, |- indoor temperature f |- solar heat gain coefficient
room | rooms in the test facility |- outdoor temperature | (state variable) shge,
[35] tout, — zone thermal mass factor
— number of occupants imass,
occ, — external wall thermal resis-
— damper position dpos, tance REXxt,
— radiation valve posi- — occupant heat generation ef-
tion vpos. fectiveness occheff.
/ FMU models to test pgFMU functionality upon \
_ Model Classroom - a thermal network model [23]
Model HP1 - running (( represented by a classroom (139 m2) in a 8500 m2
example ( teaching university building OU44 at the SDU Campus

aasore universiry  Odense (Odense, DK) 20
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Xl. pgFMU Experimental Evaluation

1. Configurations:
a. C_Python - using Python IDE and Python packages functionality.
b. C_pgFMU - using pgFMU functionality with no multi-model
optimization features activated.
c. C_pgFMU+ - using pgFMU functionality with multi-model
optimization features activated.
2. Scenarios:
a. Single model scenario - C_Python, C_pgFMU, and C_pgFMU+.
b. Multi-model scenario - C_Python, C_pgFMU, and C_pgFMU+.

3. Assessment: Model Quality, Performance, Usability.

«
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Xl pgFMU Experimental Evaluation

A\

pgFMU+  optimization:  for  estimating

= Dataset 1 (model instance 1) == Dataset 3 (mode| instance 3)
parameters of the model, reduce the search Dataset 2 (model instance 2)
space by using “initial guess” technique. |
This technique is applicable for multiple model N

7

Instances. :

Main idea: after running Global Search + Local ~ AN v

Search algorithms for one model instance, SN&dgipstancelgptimuméz\ i
1N 10 odel Instance 2 optimum _—

reuse the results for the remaining model Model instance 3 optimum ™ [ ocet Search

instances, assuming the model instances are space
of the same structure and input time series % 3
have the same distribution.

AALBORG UNIVERSITY
DENMARK
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—XI|. pgFMU Experimental Evaluation

Model Quality, single model scenario
C_Python C_pgFMU((+)

Param. values RMSE Param. values RMSE

Cp: 84 Cp: 84 -

HPO R 0017 0.7701 R 00017 0.7702

Cp: 86 Cp: 86 ?

HP1 R 0.000 0.5445 R- 0.000 0.5445
RExt: 4 RExt: 4

- occheft: 1.478 . occheff: 1.478 "

Classroom shoc: 3.246 1.6445 shoc: 3.246 1.6442
tmass: 50 tmass: 50

Model Quality comparison within Python and pgFMU, pgFMU+ configurations

«
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XI. pgFMU Experimental Evaluation

Model Quality, multi model scenario RMSE comparison, 100 model
instances
C_pgFMU = C_Python ® C_pgFMU+
1.25
C paFMU ®m C Pvthon ® C paFMU+
! 4 C_pgFMU ® C_Python ® C_pgFMU+
0.75 2.5
W 3
E 0.5 2
& 2
0.25 = 1.5

\
o
1
5
= =
RMSE

0.5
-
1]

Ll - o T BT - o T e el I - 2] f~=w o m = oM~

Model instances \
HP1

((‘ Classroom

AALBORG UNIVERSITY
DENMARK
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XI. pgFMU Experimental Evaluation

Performance, single model scenario

execution time, s lines of code
ID | Operation HPO HP1 Classroom - -
s X X
= = - =
£ |E |2 B |2 |E |2)\E
@) o @) &) @) @) O @)
1 Load FMU 0.02 0.025 0.02 0.021 0.03 0.03 4 1
2 Read historical measurements & control inputs | 0.02 0.021 0.03 0.031 0.04 0.041 12 | -
3 Calibrate the model 1262.99| 1264.18| 1972.68| 1970.88| 1682.2 | 1680.16| 15 | 1
4 Validate and update FMU model 0.01 - 0.01 - 0.01 - 7 -
5 Simulate FMU model 0.16 0.214 0.2 0.22 0.35 0.44 24 |1
6 Export predicted values to a DBMS 0.06 - 0.06 - 0.05 - 4 -
Total 1263.26| 1264.44| 1973 1971.15| 1682.68| 1680.66| 66 | 3

Configurations comparison, 1 model instance

«
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XI. pgFMU Experimental Evaluation

Performance, multi model scenari ion ti i
erformance, mult odel scenario Workflow execution time comparison,
c o L R L 100 model instances
2700 C_pgFMU ¢ C_Python ¢ C_pgFMU+
2362.5 2700
g 2025 23625 C_pgFMU ¢ C_Python ¢ C_pgFMU+
g 1687.5 E 2025 3500
£ 130 [ 16875 3062.5
£ 10123 £ a0 c 2625
§ 678 £ 10125 £ ,g0c
Y378 § 675 E 1780
¢ 7 3375 5 3155
/ o g 875
Y 4375

HPO / ° 0 25 50 75 100 \

Number of model instances
HP1 Classroom

«
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XI. pgFMU Experimental Evaluation
Usability

User testing session with 24 master students from Poznan University of Technology (PUT).

Pre-assessment questionnaire (1 - very little, 5 - very much):

Q1. How can you estimate your knowledge in energy systems and physical systems modeling?
Q2. How familiar are you with model simulation and model calibration process?

Q3. How familiar are you with model simulation software(s)?

Q4. How comfortable are you with using Python IDE?

Q5. How comfortable are you with using SQL?

a1 Q2

a3 o4 as

5
LK 2(8.3%)
.3

2 &(25.0%)

1 B{33.3%) 5 (20.8%)

11 (45 8%)
A [16.T%) T(20.2%) 9 (37.5%)

Pre-assessment questionnaire results ((

AALBORG UNIVERSITY 27
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XI. pgFMU Experimental Evaluation

Usability

Time, min

180
160
140
120
100
80
60
40
20

m C_Python = C_pgFMU

Post-assessment questionnaire:

Q1. How was it to retrieve information about
model variables?

Q2. How was it to set model parameters?
Q3. How was it to calibrate the model?

Q4. How was it to simulate the model ?

Q5. Overall satisfaction with configuration
functionality.

chbhhbhhllibhbhbhbhbhbhbhbhbbbhhbbhhh = C_Python = C_pgFMU (#)

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 5

Student time per workflow, min (excluding UDFs runtime)

Participant number

Average score (from 1to 5)

3
2
1
o o o ok o

((( 1 - very difficult/unsatisfactory, 5 - very easy/satisfactory

AALBORG UNIVERSITY

DENMARK Post-assessment questionnaire results



XI. pgFMU Experimental Evaluation

Usability

Strong points of Python configuration

Strong points of pgFMU configuration

_ .&\\\M

“Better to debug, analyze”
“More functionality™
“Control over program flow™
“Data visualization option™

« "Data and model in one place”

« "Easy to run and understand”

« "Simplicity, no need to use or import external
tools"

» "Familiar SQL syntax"

Weak points of Python configuration

Weak points of pgFMU configuration

" & & & ®

"A lot of unknown new modules and packages"
"No one ready package to do everything"

"A lot of code to set up configuration, some functions not intuitive"

"You need practise[sic] to understand"

"Too much control makes it harder"

« "Not so much configuring available"

« "I don’t see any significant besides maybe in-
stallation of the package on postgres[sic]”

« "Specific database implementation”

Participants opinion about both configurations

«
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Xll. pgFMU Conclusions and Future Work

e pgFMU - the first DBMS extension to support simulation, calibration and
validation of physical systems dynamic models within a single DBMS
environment.

e pgFMU provides time-efficient functionality to store, simulate, calibrate and
analyze an arbitrary number of FMU models.

e On average 2.9 times execution time gain in comparison to the traditional
workflow, and 22 times less code lines.

e pgFMU is up to 12.5 times faster in terms of development time for the
arbitrary user-defined workflow.

AAAAAAAAAAAAAAAAA
DDDDDDD
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% Xlll. Selected PA-supporting Tools Comparison
z
_
Typical PA Workflow
Input Data Storage zhytsical Predic- Optimiza- I EWSIN
and Processing M%)Sdgmg tion tion Visualization
SolveDB + + +/- +/-
pgFMU + + +/- +/-
Matlab +/- + + +
JModelica + +/- + +/-

«
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XIV. Next Steps towards Unified PA Tool Creation

- SolveDB [2] - a Postgres-based DBMS with the native support for in-DBMS
optimization, constraint satisfaction and domain-specific problems;

- Provides a set of built-in solvers for Linear Programming (LP)/Mixed Integer
Programming (MIP), Global Optimization (GO);

- Integrates solver into DBMS backend, therefore, making database-based

problem solutions more easy and user-friendly.
A view solver produces a solution based on the model
instance descriptor and parameter-value pairs

SOLVESELECT /x1, x2 IN (SELECT x1, x2 FROM data) AS u
MAXIMIZE (SELECT ©.6%x1 + ©.5%x2 FROM u)

Subject To r1 +2r2 <1 SUBJECTTO [(SELECT x1+2%x2 <= 1 FROM u),

(SELECT 3*x1+x2 <= 2 FROM u)

Example of a simple

linear optimization problem ((‘ Query example

AALBORG UNIVERSITY 32
DENMARK
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XIV. Next Steps towards Unified PA Tool Creation

Composite view solver

Data Visualizations Data Analysis

SOLVES

Model Validation

Model Simulation

| Mode! Storage I \LI Parameters Estimation l

L I Mode! Optimization
\V’[::::;:::::

|1 -
7

v V v

External Level

[ | Composite View Solver (eg. state_estmation) |

. Conceptual Level
Atomic Soiver (eg. estimationpy-ka)

| |

[

Internal Level

[ [ Relational Soiver (eg. EstimationPy-KA_relationsi) |

[

I

Physical Soiver (eg. EstimationPy-KA) |

SolveDB DBMS

MAXIMIZE
SUBJECTTO (

ECT x1, x2 IN (SELECT x1, x2 FROM data) AS u
(SELECT ©.6*x1 + ©.5*%x2 FROM u)

LECT x1+2*x2 <= 1 FROM u),

(SECECT 3*x1+x2 <= 2 FROM u)

USING [ solver _do (model id) |

{

Interpreter (e.g. Optimica
language for DO problems)

{4

p—
e

A Prescriptive Analytics "Step-by-Step” User Guidance Wizard

Extended SolveDB+ Architecture

Non-linear physical solver
(e.q. IPopt)

«
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= XIV. Next Steps towards Unified PA Tool Creation

A\

Paper 2 "Bringing Model Dynamic Optimization into Prescriptive Analytics DBMSes”
(ICDE, October 2019)

e To continue the integration of the DO techniques into DBMS.

e To enable automatic DO solver generation.

e To build model optimization on top of the upgraded pgFMu extension from Paper
1.

e To provide a native support for the DO solvers.

e Focus mainly on enabling the in-DBMS optimal control methods and techniques.

«
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XIV. Next Steps towards Unified PA Tool Creation (8

Paper 3 "Data-Driven State-Based Simulation and Calibration of Residential Heat Pump
Models” (e-energy, January 2020)

A\

e The real-world example of physical system modelling located in Switzerland to be
considered.

e A number of houses are equipped with the heat pump and boiler physical devices.

e The real-time data from sensors (heat pump power meter, boiler power meter, boiler
temperature sensor, room temperature sensor) to be fetched into the model.

e The boiler and heat pump model simulation, state and parameters estimation, and
model optimization will be done via the usage of pgFMU DBMS extension from Paper
1 and 2.

e The system predicts the state of the residential heat pump and boiler, its future energy
demand and the room temperature.

«
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XIV. Next Steps towards Unified PA Tool Creation

Paper 4 "A Unified Prescriptive Analytics Tool” (TODS/VLDB, August 2020)

e Ajournal paper
DO-DBMS platform is enhanced by “wizard” integration.
e "Wizard” will guide users through the PA task solution process by bringing the step-
by-step guidance:
O helping the user to choose the appropriate solver/function for a specific type of
PA task, and
O navigating through the PA stages (processing the measurements for the system
modeling, model prediction, model simulation, state and parameters estimation
of the model, and model optimization).
e Running example - Swiss case (Paper 3) and thermal energy consumption prediction

(collaboration with PUT).
«
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XV. Intended Project Contribution/

Improvement over the State-of-the-art

Improving the way of non-domain data analysts interaction with PA tasks by
designing a framework for in-DBMS cyber-physical models storage, simulation,
and calibration.

Addressing the issue of poor direct database inputs support from the existing
simulation and optimization software;

Enabling in-DBMS model optimization functionality for different types of PA tasks;

Providing user support by creation of a “wizard” - a step-by-step guidance tool to
smooth the process of PA task solving;

Refining the practises of residential heat pumps models storage, simulation,
calibration and optimization. (((
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