

Database Operations on top of Complex System Design

Nusrat Jahan Lisa

eBISS 2019, Berlin, Germany, July 5, 2019

Outline

¹Yinan Li and Jignesh M. Patel, BitWeaving: fast scans for main memory data processing. SIGMOD, pp.289-300, 2013. ²D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper., 45:1–29, 2015.

DB Column Scan

Recent Scan Approach for Compressed Columnar Data

- exploits the intra-instruction parallelism at the bit-level of modern processors.
- multiple compressed data are packed horizontally/vertically into processor words.

Advantage

• Evaluate any kind of predicates (Equality, Greater than, etc.) directly on the encoded data.

¹Yinan Li and Jignesh M. Patel, BitWeaving: fast scans for main memory data processing. SIGMOD, pp.289-300, 2013. ³Lamport, L.: Multiple byte processing with full-word instructions. Communications of the ACM 18(8), 471{475 (1975).

Evaluating Predicates

³Lamport, L.: Multiple byte processing with full-word instructions. Communications of the ACM 18(8), 471(475 (1975).

Read Intensive Operations

¹Yinan Li and Jignesh M. Patel, BitWeaving: fast scans for main memory data processing. SIGMOD, pp.289-300, 2013.

Design Configurations

Target CPU-FPGA System: Zynq UltraScale+

Combined Design

TECHNISCHE UNIVERSITÄT DRESDEN

Next Step

Process multiple 128-bit width based data independently by using more than one processing element instead of one.

8

Independent Design

@ADMS'18

Dresden Database

Systems Group

Design Configurations

Target CPU-FPGA System: Zynq UltraScale+

Design Configurations

Target CPU-FPGA System: Zynq UltraScale+

- FPGAs may be extremely useful for off-loading column-scan operations
- "Optimal" design is tradeoff between max performance and system complexity

@Data'18

@CCIS_{Published} by Springer

¹Yinan Li and Jignesh M. Patel, BitWeaving: fast scans for main memory data processing. SIGMOD, pp.289-300, 2013. ³Lamport, L.: Multiple byte processing with full-word instructions. Communications of the ACM 18(8), 471{475 (1975).

FPGA Architecture

A Field Programmble Gate Array (FPGA) is a programmble logic device which is capable to implement any type of user defined logic function/circuit.

@CCIS_{Published} by Springer

- FPGA is best for Naive technique and BitWeaving is perfect for SIMD.
- To improve scan performance through FPGA do not require any fancy scan mechanism as BitWeaving due to its high parallelism criteria and flexibility to configure hardware as per requirements.

¹Yinan Li and Jignesh M. Patel, BitWeaving: fast scans for main memory data processing. SIGMOD, pp.289-300, 2013. ³Lamport, L.: Multiple byte processing with full-word instructions. Communications of the ACM 18(8), 471{475 (1975).

Read Intensive Operations: Summary

Read-Write Intensive Operations

BitPacking (BP) Compression

 BitPacking is one of the most applicable compression scheme in this domain showing a very good---not always optimal---behavior for different data properties

Pipeline-based BP Implementation

BitPacking Static Design

BitPacking Dynamic Design

Read-Write Intensive Operations: Summary

Summary

¹Yinan Li and Jignesh M. Patel, BitWeaving: fast scans for main memory data processing. SIGMOD, pp.289-300, 2013. ²D. Lemire and L. Boytsov. Decoding billions of integers per second through vectorization. Softw., Pract. Exper., 45:1–29, 2015.

TimeLine

Publishing of papers

Papers	Conference	Workshop	Journal	Status
C1 : Column scan optimization by increasing intra-instruction parallelism.	DATA			
W1: Column Scan Acceleration in Hybrid CPU-FPGA Systems		ADMS		\checkmark
J1: FPGA vs. SIMD: Comparison for Main Memory-based Fast Column Scan.			CCIS published by Springer	
C2: High-Throughput BitPacking Compression	DSD			\checkmark
C3: Hardware-Software Co-Design Architecture for Lightweight Compression Algorithms.	VLDB			•
J2: An Overview of Hardware-Software Co-Design Architecture for Lightweight Compression Algorithms.			VLDBJ	٠
			Planned 🗕 Ad	ccepted 🗸

Doctoral Courses Plan

Courses	Place/Organized by	ECTS	General/ Project course	Status		
Foreign Language (German-1)	TUD	2.5	General	\checkmark		
Transactional Information System	TUD	6	General	$\overline{\checkmark}$		
Writing and Reviewing of Scientific Papers	TUD	1	General	V		
Introduction to the PhD Study	AAU	1	General			
Foreign Language (German-2)	Foreign Language (German-2) TUD		General	\odot		
Big Data Management on Modern Hardware	AAU	2	Project	\checkmark		
Deep Memory Technology for Modern Database Systems	AAU	2	Project	V		
eBISS 2017 (Participate as a Presenter)	senter) IT4BI-DC, Brussels, Belgium		Project	\checkmark		
eBISS 2018 (Participate as a External Presenter)	IT4BI-DC, Netherland	1	Project	V		
eBISS 2019: IT4BI-DC Doctoral Colloquium	IT4BI-DC, Berlin, Germany	3	Project	\checkmark		
VLDB Conference, 2017 (Participate)	Munich, Germany	1	Project	\checkmark		
SPP PhD Workshop, 2018	Ilmenau, Germany	1	Project	\checkmark		
DATA Conference, 2018 (Participate as a Paper Presenter)	Porto, Portugal	1	Project			
ADMS Workshop, 2018	Brazil	1	Project	\checkmark		
DB Retreat, TUD, 2018 (Participate as a Presenter)	Meissen, Germany	1	Project			
DSD Conference, 2019 (Participate as a Presenter)	Greece	1	Project	V		
Conference/Journal/Workshop/Seminer	TBD	2	Project	\odot		
Total ECTS for General Courses = 12. Total ECTS for Project Courses = 18. Grand Total = 30						

	Completed/ Attended	Planned	Total
General	10.5	1.5	12
Project	16	2	18

Completed/Attended

Planned 💽

Published Works

Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Tuan D. A. Nguyen, Akash Kumar. Column Scan Acceleration in Hybrid CPU-FPGA Systems. ADMS@VLDB 2018: 22-33.

Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Tuan D. A. Nguyen, Akash Kumar, Wolfgang Lehner. Column Scan Optimization by Increasing Intra-Instruction Parallelism. DATA 2018: 344-353.

Nusrat Jahan Lisa, Annett Ungethüm, Dirk Habich, Wolfgang Lehner, Tuan D. A. Nguyen, Akash Kumar. FPGA vs. SIMD: Comparison for Main Memory-based Fast Column Scan. CCIS 2019, published by Springer (Accepted and on Process).

Nusrat Jahan Lisa, Tuan D. A. Nguyen, Dirk Habich, Akash Kumar, Wolfgang Lehner. High-Throughput BitPacking Compression. DSD 2019 (Accepted).

