
Bitmap Indexing of Big Data

EBISS 2019 - Berlin (Germany) - July 5, 2019
Lawan Subba

Supervisors: Christian Thomsen and Torben Bach Pedersen

Aalborg University, Denmark

External Supervisor: Alberto Abello
Polytechnic University of Catalonia, Spain

1/46

Outline

1. Introduction
A. Bitmap Index
B. Distributed Bitmap Indexing Frameworks

2. Papers
P1 - Efficient Indexing of Hashtags using Bitmap Indices - Conference Paper (Published)
P2 - Bitmap indexing with Storage Structure Considerations - Conference Paper (In Progress)
P3 - An Adaptive Bitmap Indexing Scheme for Distributed Environments - Conference Paper
P4 - Multidimensional Online Analytical Processing on Cell Stores - Conference Paper
P5 - Bitmap Indexing on Distributed Environments - Journal Paper
P6 - DBIF: A demonstration of DBIF on Big Data - Demo Paper

3. Other activities
A. PhD Courses
B. Knowledge Dissemination

2/46

1(A): Bitmap Index - Background

Bitmap Index Example

3/46

1. Logical operations (AND/OR) are fast
2. Bitmaps are compressible

1(A): Bitmap Index - Roaring Bitmap

1. Divides data into chunks of 216 [65,536]
2. Each chunk can be stored as one of 3

containers
a. Array container
b. Bitset container
c. Run container

3. Wasteful to store [1, 50000, 90000] as
Bitset

4. Fast random access, RLE must begin
from the start always

5. Cache friendly

4/46

Roaring Bitmap

1(B): Distributed Bitmap Indexing Frameworks

1. Bitmap Index for Database Service (BIDS)
a. An efficient and compact indexing scheme for large-scale data store. ICDE(2013) [3]

- Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan
b. Uses RLE based compression, bit-sliced encoding or partial indexing depending on the

data characteristics.
c. The compute nodes are organized according to the Chord protocol, and the indexes are

distributed across the nodes.

2. Pilosa
a. Open source (https://www.pilosa.com/)
b. Slightly modified version of Roaring bitmap for compression.
c. Bitmaps are sharded using their own data model and distributed
d. Aggregate values are stored (Min, Max, Count)

5/46

1(B): Distributed Bitmap Indexing Frameworks

1. Bitmap Index for Database Service (BIDS)
a. An efficient and compact indexing scheme for large-scale data store. ICDE(2013) [3]

- Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan
b. Uses RLE based compression, bit-sliced encoding or partial indexing depending on the

data characteristics.
c. The compute nodes are organized according to the Chord protocol, and the indexes are

distributed across the nodes.

2. Pilosa
a. Open source (https://www.pilosa.com/)
b. Slightly modified version of Roaring bitmap for compression.
c. Bitmaps are sharded using their own data model and distributed
d. Aggregate values are stored (Min, Max, Count)

6/46

Existing Work
a. Fixed compression algorithm
b. Lock users to their specific implementation to store, distribute and retrieve bitmap indices.

P1: Contributions

1. An open source, lightweight and flexible distributed bitmap indexing framework
for big data which integrates with commonly used tools incl. Apache Hive and
Orc.

2. The bitmap compression algorithm to use and key-value store to store indices
are easily swappable.

3. Demonstrate that search for substrings like hashtags in tweets can be greatly
accelerated by using our bitmap indexing framework.

4. Published at DOLAP 2019

7/46

● A keyword containing numbers and
letters preceded by a hash sign(#)

● Simplicity and lack of formal syntax

P1: Hashtags

Distribution of Hashtags used in 8.9 million instagram
posts in 2018 [1]

8/46

P1: Hashtags

● A keyword containing numbers and
letters preceded by a hash sign(#)

● Simplicity and lack of formal syntax
● Challenge

○ SELECT COUNT(*) FROM table
WHERE (tweet LIKE “%#tag1%”)

○ SELECT COUNT(*) FROM table
WHERE (tweet LIKE “%#tag1%” OR …)

○ SELECT COUNT(*) FROM table
WHERE (tweet LIKE “%#tag1%” AND …)

Distribution of Hashtags used in 8.9 million instagram
posts in 2018 [1]

9/46

P1: Apache Orc

1. Storing data in a columnar format lets the
reader read, decompress, and process only the
values that are required by the current query.

2. Stripes=64MB and rowgroups = 10,000 rows
3. Min-max based Indices are created at

rowgroup, stripe and file level.

Orc File Format [2] 10/46

P1: Apache Orc

1. Min-max based indices

11/46

P1: Apache Orc

1. Min-max based indices

12/46

P1: Apache Orc

1. Min-max based indices

13/46

P1: Apache Orc

1. Min-max based indices
a. Possibility of false positives
b. No way to index substrings

14/46

P1: Apache Orc

1. Min-max based indices
a. Possibility of false positives
b. No way to index substrings

2. Queries that are optimized
a. SELECT tweet FROM table WHERE col like “%#tag1%”
b. SELECT tweet FROM table WHERE col like “%#tag1%” AND/OR “%#tag2%” 15/46

P1: Background
Apache Hive
1. Data warehouse solution running on Hadoop.
2. Allows users to use the query language HiveQL to write, read and

manage datasets in distributed storage structures.
3. Allows creation of Orc based tables.

Apache HBase
1. Column oriented key-value store.
2. The major operations that define a key-value database are put(key, value),

get(key) and delete(key).
3. High throughput and low input/output latency

16/46

P1: Lightweight Bitmap Indexing Framework

● The Orc reader/writer are
modified to use our indexing
framework.

● The key-value store and bitmap
compression algorithm to use
are easily replaceable.

17/46

P1: Framework Interface

● Current implementation uses function to find hashtags, HBase for storage and
Roaring bitmap for compression, users are free to use their own implementations

○ bitmap compression method
○ key-value store
○ method to find keys

Listing 1: Interface for Indexing framework

18/46

P1: Framework Use in Hive

Listing 2: HiveQL for Bitmap Index creation/use

19/46

P1: Index Creation

1. Orc File
a. Stripe (64 MB)
b. Rowgroup (10,000 rows)
c. Row (Rownumber)

2. To determine stripe number and rowgroup number from row number the
number of rowgroups must be made consistent across stripes in a file.

3. Ghost rowgroups are added to stripes than contain less rowgroups than the
maximum rowgroups per stripe.

20/46

P1: Index Creation

(a) Sample dataset (b) Sample dataset
stored in Orc

21/46

P1: Index Creation

(a) Sample dataset (b) Sample dataset
stored in Orc

(c) Sample dataset
stored in Orc with
ghost rowgroups 22/46

P1: Index Creation

(a) Sample dataset (b) Sample dataset
stored in Orc

(c) Sample dataset
stored in Orc with
ghost rowgroups

(d) Bitmap representation

23/46

P1: Index Creation

(a) Sample dataset (b) Sample dataset
stored in Orc

(c) Sample dataset
stored in Orc including
ghost rowgroups

(d) Sample dataset
stored in Orc with
ghost rowgroups

(e) Key and bitmaps

24/46

P1: Query processing using Bitmap Indices

25/46

P1: Experiments

1. Distributed cluster on Microsoft Azure
a. 1 master and 7 nodes as slaves.
b. Ubuntu OS with 4 VCPUS, 8 GB memory, 192 GB SSD
c. Hive 2.2.0, HDFS 2.7.4 and HBase 1.3.1

2. Datasets
a. Three datasets: 55GB, 110GB and 220GB. Pattern in results were similar
b. Schema for the datasets contains 13 attributes

[tweetYear, tweetNr, userIdNr, username, userId, latitude, longitude, tweetSource, reTweetUserIdNr,
reTweetUserId, reTweetNr, tweetTimeStamp, tweet]

26/46

P1: Queries Used

27/46

(a) Execution times for LIKE queries on Tweets220

(b) Stripes/Rowgroups accessed by LIKE queries on Tweets220

P1: LIKE Queries

28/46

P1: LIKE and OR-LIKE Queries

(a) Execution times for LIKE and OR-LIKE queries on Tweets 220

(b) Stripes/Rowgroups accessed by OR-LIKE queries on Tweets220
29/46

P1: JOIN Queries

(a) Execution times for JOIN queries on Tweets220 (b) Stripes/Rowgroups accessed by JOIN queries on Tweets220

30/46

P1: Index Creation Times and Sizes

(a) Tweets datasets and their Index sizes (b) Index creation times for Tweets datasets

● Size of bitmap indices and the
the Hbase table where they are
stored are substantially smaller
their Orc based tables.

● Runtime overhead due to the
index creation process.

31/46

P2: Bitmap Indexing with Storage Structure Considerations

32/46

● Issues with Roaring Bitmap
1) Loss of Storage structure information

P2: Bitmap Indexing with Storage Structure Considerations

33/46

● Issues with Roaring Bitmap
1) Loss of Storage structure information
- Expensive to map from row number to block number
- [1, 5, 500, 9999, 11000, 15000] -> [Rg0, Rg1]

P2: Bitmap Indexing with Storage Structure Considerations

34/46

● Issues with Roaring Bitmap
- Possibility of false positives

P2: Explored Solutions

35/46

● Containers set to use Storage structure information
● However, more containers than Roaring bitmaps

P2: Datasets

36/46

● Publicly available dataset provide by [3]

P2: Preliminary Results (AND)

37/46

1. Experiments
a. Performed on my laptop
b. Throughput

2. AND
a. AND operation between 200 bitmaps

3. AND + RG
a. Calculate operation between 200 bitmap + mapping from rownumber to rowgroups

38/46

P2: Preliminary Results (OR)

1. OR
a. OR operation between 200 bitmaps

2. OR + RG Calculate
a. OR operation between 200 bitmap + mapping from rownumber to rowgroups

39/46

1. Mapping from rownumber to rowgroup
a. [1, 5, 500, 9999, 11000, 15000] -> [Rg0, Rg1]
b. Is there a better approach?

2. Comparison of Memory consumption Roaring vs RoaringRG
a. RoaringRG uses more containers

P2: Ongoing Work

Remaining Publications:

40/46

P3: An Adaptive Bitmap Indexing Scheme for Distributed Environments
a. Index creation is expensive
b. What do you index
c. Index might be only be used a fraction of the time
d. Adaptively build the index

P5: Bitmap Indexing on Distributed Environments
a. Work from paper 1, 2 and 3
b. Efficient updates of bitmap indices

P6: DBIF: A demonstration of DBIF on Big Data
a. Demonstration of our indexing framework

P4: Multidimensional Online Analytical Processing
on Cell Stores

41/46

1. Cell Stores
a. Disclaimer: Concept paper on ArXiv [Not peer-reviewed]
b. Cells viewed as atom of data
c. Cells can be converted into cubes or spreadsheets

2. Support Cell Stores on our framework.

P4:

42/46

a) Cells

b) Hypercube

c) Materialized Hypercube

....

General

Course Organizer ECTS Status

Danish Language AAU 2 Fall 16/ Compete

Introduction to the PhD Study AAU 1 Spring 16/ Complete

Writing and Reviewing Scientific Papers AAU 3.75 Spring 16/ Complete

Professional Communication Skills AAU 2.75 Fall 16/ Complete

Library Information Management AAU 1 Spring 17/ Complete

Spanish Language UPC 2 To be decided

To be decided UPC 2 To be decided

Project Management and Interpersonal skills AAU 2 Fall 19/ Planned

Total 16.5

PhD Courses

43/46

Project Related

Course Organizer ECTS Status

Business Intelligence Study Group AAU 2 Fall 16/ Compete

Integrated Analytics on Big Data AAU 2 Fall 16/ Complete

Scalable Tools for Linked Data Analytics AAU 2 Fall 16/ Complete

EBISS summer school (Attendance) AAU 2 Fall 16/ Complete

Big Data management on Modern Hardware AAU 2 Spring 17/ Complete

EBISS Summer School (Participation) AAU 2 In progress

Conference attendance tbd 2 To be decided

Total 14

PhD Courses

44/46

1. Project group supervision
a. 12 groups (42 Students)

2. Teaching assistant for 2 semesters
a. Database Development course

3. DOLAP 2019
a. Lisbon, Portugal

Semester Hours

Spring 2016 185

Fall 2016 165

Spring 2017 230

Fall 2018 105

Spring 2019 90

Total 775

45/46

Knowledge Dissemination

References

[1] https://www.quintly.com/blog/instagram-study

[2] https://www.slideshare.net/Hadoop_Summit/orc-file-optimizing-your-big-data

[3] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices with efficient
compression. ACM Transactions on Database Systems (TODS) 31, 1 (2006), 1–38.

[4] Lemire, D., Ssi‐Yan‐Kai, G., & Kaser, O. (2016). Consistently faster and smaller compressed
bitmaps with roaring. Software: Practice and Experience, 46(11), 1547-1569.

46/46

Orc Index Processing

47

Stripe and Rowgroup Calculation

mrgps = maximum rowgroups per stripe ()

rprg = rows per rowgroup () and

rn = row number for a particular tuple (rn) can

str = stripe number

rg = rowgroup number

48

