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Outline 

1. Introduction
A. Bitmap Index
B. Distributed Bitmap Indexing Frameworks

2. Papers
P1 - Efficient Indexing of Hashtags using Bitmap Indices - Conference Paper (Published)
P2 - Bitmap indexing with Storage Structure Considerations - Conference Paper (In Progress)
P3 - An Adaptive Bitmap Indexing Scheme for Distributed Environments - Conference Paper 
P4 - Multidimensional Online Analytical Processing on Cell Stores - Conference Paper
P5 - Bitmap Indexing on Distributed Environments - Journal Paper
P6 - DBIF: A demonstration of DBIF on Big Data - Demo Paper

3. Other activities
A. PhD Courses
B. Knowledge Dissemination
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1(A): Bitmap Index - Background

Bitmap Index Example
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1. Logical operations (AND/OR) are fast
2. Bitmaps are compressible



1(A): Bitmap Index - Roaring Bitmap

1. Divides data into chunks of 216 [65,536] 
2. Each chunk can be stored as one of 3 

containers
a. Array container
b. Bitset container
c. Run container

3. Wasteful to store [1, 50000, 90000] as 
Bitset

4. Fast random access, RLE must begin 
from the start always

5. Cache friendly 
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Roaring Bitmap



1(B): Distributed Bitmap Indexing Frameworks

1. Bitmap Index for Database Service (BIDS)
a. An efficient and compact indexing scheme for large-scale data store. ICDE(2013) [3]

- Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan 
b. Uses RLE based compression, bit-sliced encoding or partial indexing depending on the 

data characteristics.
c. The compute nodes are organized according to the Chord protocol, and the indexes are 

distributed across the nodes.

2. Pilosa
a. Open source (https://www.pilosa.com/)
b. Slightly modified version of Roaring bitmap for compression.
c. Bitmaps are sharded using their own data model and distributed
d. Aggregate values are stored (Min, Max, Count)
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Existing Work
a. Fixed compression algorithm 
b. Lock users to their specific implementation to store, distribute and retrieve bitmap indices.



P1: Contributions

1. An open source, lightweight and flexible distributed bitmap indexing framework 
for big data which integrates with commonly used tools incl. Apache Hive and 
Orc.

2. The bitmap compression algorithm to use and key-value store to store indices 
are easily swappable.

3. Demonstrate that search for substrings like hashtags in tweets can be greatly 
accelerated by using our bitmap indexing framework. 

4. Published at DOLAP 2019
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● A keyword containing numbers and 
letters preceded by a hash sign(#)

● Simplicity and lack of formal syntax

P1: Hashtags

Distribution of Hashtags used in 8.9 million instagram 
posts in 2018 [1]
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P1: Hashtags

● A keyword containing numbers and 
letters preceded by a hash sign(#)

● Simplicity and lack of formal syntax
● Challenge

○ SELECT COUNT(*) FROM table         
WHERE (tweet LIKE “%#tag1%”)

○ SELECT COUNT(*) FROM table     
WHERE (tweet LIKE “%#tag1%” OR …)

○ SELECT COUNT(*) FROM table     
WHERE (tweet LIKE “%#tag1%” AND …)

Distribution of Hashtags used in 8.9 million instagram 
posts in 2018 [1]
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P1: Apache Orc

1. Storing data in a columnar format lets the 
reader read, decompress, and process only the 
values that are required by the current query. 

2. Stripes=64MB and rowgroups = 10,000 rows
3. Min-max based Indices are created at 

rowgroup, stripe and file level.

Orc File Format [2] 10/46



P1: Apache Orc

1. Min-max based indices

11/46



P1: Apache Orc

1. Min-max based indices
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P1: Apache Orc

1. Min-max based indices
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P1: Apache Orc

1. Min-max based indices
a. Possibility of false positives
b. No way to index substrings
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P1: Apache Orc

1. Min-max based indices
a. Possibility of false positives
b. No way to index substrings

2. Queries that are optimized
a. SELECT tweet FROM table WHERE col like “%#tag1%”
b. SELECT tweet FROM table WHERE col like “%#tag1%” AND/OR “%#tag2%” 15/46



P1: Background
Apache Hive
1. Data warehouse solution running on Hadoop. 
2. Allows users to use the query language HiveQL to write, read and 

manage datasets in distributed storage structures.
3. Allows creation of Orc based tables.

Apache HBase
1. Column oriented key-value store.
2. The major operations that define a key-value database are put(key, value), 

get(key) and delete(key).
3. High throughput and low input/output latency
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P1: Lightweight Bitmap Indexing Framework

● The Orc reader/writer are 
modified to use our indexing 
framework.

● The key-value store and bitmap 
compression algorithm to use 
are easily replaceable.

17/46



P1: Framework Interface

● Current implementation uses function to find hashtags, HBase for storage and 
Roaring bitmap for compression, users are free to use their own implementations

○ bitmap compression method
○ key-value store 
○ method to find keys

Listing 1: Interface for Indexing framework
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P1: Framework Use in Hive

Listing 2: HiveQL for Bitmap Index creation/use
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P1: Index Creation

1. Orc File 
a. Stripe (64 MB) 
b. Rowgroup (10,000 rows)
c. Row (Rownumber)

2. To determine stripe number and rowgroup number from row number the 
number of rowgroups must be made consistent across stripes in a file.

3. Ghost rowgroups are added to stripes than contain less rowgroups than the 
maximum rowgroups per stripe.
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P1: Index Creation 

(a) Sample dataset (b) Sample dataset 
stored in Orc
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P1: Index Creation 

(a) Sample dataset (b) Sample dataset 
stored in Orc

(c) Sample dataset 
stored in Orc with 
ghost rowgroups 22/46



P1: Index Creation 

(a) Sample dataset (b) Sample dataset 
stored in Orc

(c) Sample dataset 
stored in Orc with 
ghost rowgroups

(d) Bitmap representation
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P1: Index Creation 

(a) Sample dataset (b) Sample dataset 
stored in Orc

(c) Sample dataset 
stored in Orc including 
ghost rowgroups

(d) Sample dataset 
stored in Orc with 
ghost rowgroups

(e) Key and bitmaps
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P1: Query processing using Bitmap Indices
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P1: Experiments

1. Distributed cluster on Microsoft Azure 
a. 1 master and 7 nodes as slaves. 
b. Ubuntu OS with 4 VCPUS, 8 GB memory, 192 GB SSD
c. Hive 2.2.0, HDFS 2.7.4 and HBase 1.3.1

2. Datasets
a. Three datasets: 55GB, 110GB and 220GB. Pattern in results were similar
b. Schema for the datasets contains 13 attributes 

[tweetYear, tweetNr, userIdNr, username, userId, latitude, longitude, tweetSource, reTweetUserIdNr, 
reTweetUserId, reTweetNr, tweetTimeStamp, tweet]
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P1: Queries Used
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(a) Execution times for LIKE queries on Tweets220

(b) Stripes/Rowgroups accessed by LIKE queries on Tweets220

P1: LIKE Queries
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P1: LIKE and OR-LIKE Queries

(a) Execution times for LIKE and OR-LIKE queries on Tweets 220

(b) Stripes/Rowgroups accessed by OR-LIKE queries on Tweets220
29/46



P1: JOIN Queries

(a) Execution times for JOIN queries on Tweets220 (b) Stripes/Rowgroups accessed by JOIN queries on Tweets220
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P1: Index Creation Times and Sizes

(a) Tweets datasets and their Index sizes (b) Index creation times for Tweets datasets

● Size of bitmap indices and the 
the Hbase table where they are 
stored are substantially smaller 
their Orc based tables.

● Runtime overhead due to the 
index creation process.
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P2: Bitmap Indexing with Storage Structure Considerations
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● Issues with Roaring Bitmap
1) Loss of Storage structure information



P2: Bitmap Indexing with Storage Structure Considerations
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● Issues with Roaring Bitmap
1) Loss of Storage structure information
- Expensive to map from row number to block number
- [1, 5, 500, 9999, 11000, 15000] -> [Rg0, Rg1]



P2: Bitmap Indexing with Storage Structure Considerations
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● Issues with Roaring Bitmap
- Possibility of false positives



P2: Explored Solutions

35/46

● Containers set to use Storage structure information
● However, more containers than Roaring bitmaps



P2: Datasets
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● Publicly available dataset provide by [3]



P2: Preliminary Results (AND) 
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1. Experiments
a. Performed on my laptop
b. Throughput

2. AND 
a.  AND operation between 200 bitmaps

3. AND + RG 
a. Calculate operation between 200 bitmap + mapping from rownumber to rowgroups
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P2: Preliminary Results (OR)

1. OR
a. OR operation between 200 bitmaps

2. OR + RG Calculate
a. OR operation between 200 bitmap + mapping from rownumber to rowgroups
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1. Mapping from rownumber to rowgroup
a. [1, 5, 500, 9999, 11000, 15000] -> [Rg0, Rg1]
b. Is there a better approach?

2. Comparison of Memory consumption Roaring vs RoaringRG 
a. RoaringRG uses more containers

P2: Ongoing Work 



Remaining Publications:

40/46

P3: An Adaptive Bitmap Indexing Scheme for Distributed Environments
a. Index creation is expensive
b. What do you index
c. Index might be only be used a fraction of the time
d. Adaptively build the index

P5: Bitmap Indexing on Distributed Environments 
a. Work from paper 1, 2 and 3
b. Efficient updates of bitmap indices

P6: DBIF: A demonstration of DBIF on Big Data
a. Demonstration of our indexing framework



P4: Multidimensional Online Analytical Processing 
on Cell Stores
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1. Cell Stores
a. Disclaimer: Concept paper on ArXiv [Not peer-reviewed]
b. Cells viewed as atom of data
c. Cells can be converted into cubes or spreadsheets

2. Support Cell Stores on our framework.



P4: 
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a) Cells

b)  Hypercube

c) Materialized Hypercube

....



General

Course Organizer ECTS Status

Danish Language AAU 2 Fall 16/ Compete

Introduction to the PhD Study AAU 1 Spring 16/ Complete

Writing and Reviewing Scientific Papers AAU 3.75 Spring 16/ Complete

Professional Communication Skills AAU 2.75 Fall 16/ Complete

Library Information Management AAU 1 Spring 17/ Complete

Spanish Language UPC 2 To be decided

To be decided UPC 2 To be decided

Project Management and Interpersonal skills AAU 2 Fall 19/ Planned

Total 16.5

PhD Courses
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Project Related

Course Organizer ECTS Status

Business Intelligence Study Group AAU 2 Fall 16/ Compete

Integrated Analytics on Big Data AAU 2 Fall 16/ Complete

Scalable Tools for Linked Data Analytics AAU 2 Fall 16/ Complete

EBISS summer school (Attendance) AAU 2 Fall 16/ Complete

Big Data management on Modern Hardware AAU 2 Spring 17/ Complete

EBISS Summer School (Participation) AAU 2 In progress

Conference attendance tbd 2 To be decided

Total 14

PhD Courses
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1. Project group supervision 
a. 12 groups (42 Students)

2. Teaching assistant for 2 semesters
a. Database Development course

3. DOLAP 2019
a. Lisbon, Portugal

Semester Hours

Spring 2016 185

Fall 2016 165

Spring 2017 230

Fall 2018 105

Spring 2019 90

Total 775
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Knowledge Dissemination
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Orc Index Processing
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Stripe and Rowgroup Calculation

mrgps = maximum rowgroups per stripe ()

rprg = rows per rowgroup () and 

rn = row number for a particular tuple (rn) can

str = stripe number 

rg = rowgroup number 
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