Bitmap Indexing of Big Data

EBISS 2019 - Berlin (Germany) - July 5, 2019 Lawan Subba

Supervisors: Christian Thomsen and Torben Bach Pedersen Aalborg University, Denmark

> External Supervisor: Alberto Abello Polytechnic University of Catalonia, Spain

Outline

1. Introduction

A. Bitmap Index

B. Distributed Bitmap Indexing Frameworks

2. Papers

- P1 Efficient Indexing of Hashtags using Bitmap Indices
- P2 Bitmap indexing with Storage Structure Considerations
- P3 An Adaptive Bitmap Indexing Scheme for Distributed Environments
- P4 Multidimensional Online Analytical Processing on Cell Stores
- P5 Bitmap Indexing on Distributed Environments
- P6 DBIF: A demonstration of DBIF on Big Data

3. Other activities

- A. PhD Courses
- B. Knowledge Dissemination

- Conference Paper (Published)
- Conference Paper (In Progress)
- Conference Paper
- Conference Paper
- Journal Paper
- Demo Paper

1(A): Bitmap Index - Background

Rowld Name Married Age 0 1 Alice Y 20-30 0 2 Bob N 20-30 1 3 Carol N 30-40 1 4 Dave N 30-40 Ru 5 Ed Y 40-50 Mar		В	itmap	Index		_						
						Ma	rried		Age			
						Y	N	20-30	30-40	40-50		
						1	0	1	0	0]	
						0	1	1	0	0		Marr
	Rowld	Name	Married	Age		0	1	0	1	0		Iviari
	1	Alice	Y	20-30		0	1	0	1	0		
	2	Bob	N	20-30		1	0	0	0	1		
	3	Carol	N	30-40	5			Л	,			
	4	Dave	N	30-40		R	un Le	engthE	Encodir	ng		
	5	Ed	Y	40-50		Mai	ried		Age			
						Υ	N	20-30	30-40	40-50		
						1* 1	1*0	2* 1	2*0	4*0		

Married="Y"	Married="Y" AND Age="40-50"								
1 0 0 0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1000	2002 - 20	_							

Bitmap Index Example

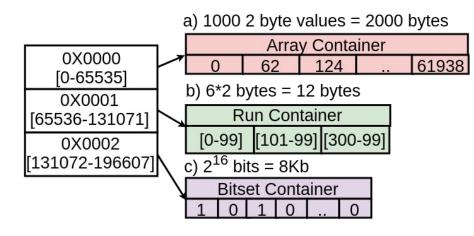
3*0

2*1

1*0

1***1**

3*0 1***3**


1*1 1*0

Ritmon Indox

- 1. Logical operations (AND/OR) are fast
- 2. Bitmaps are compressible

1(A): Bitmap Index - Roaring Bitmap

- 1. Divides data into chunks of 2¹⁶ [65,536]
- 2. Each chunk can be stored as one of 3 containers
 - a. Array container
 - b. Bitset container
 - c. Run container
- 3. Wasteful to store [1, 50000, 90000] as Bitset
- 4. Fast random access, RLE must begin from the start always
- 5. Cache friendly

Roaring Bitmap

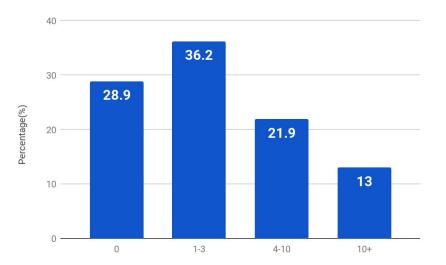
1(B): Distributed Bitmap Indexing Frameworks

- 1. Bitmap Index for Database Service (BIDS)
 - *a.* An efficient and compact indexing scheme for large-scale data store. ICDE(2013) [3]
 Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan
 - b. Uses RLE based compression, bit-sliced encoding or partial indexing depending on the data characteristics.
 - c. The compute nodes are organized according to the Chord protocol, and the indexes are distributed across the nodes.
- 2. Pilosa
 - a. Open source (https://www.pilosa.com/)
 - b. Slightly modified version of Roaring bitmap for compression.
 - c. Bitmaps are sharded using their own data model and distributed
 - d. Aggregate values are stored (Min, Max, Count)

1(B): Distributed Bitmap Indexing Frameworks

- 1. Bitmap Index for Database Service (BIDS)
 - *a.* An efficient and compact indexing scheme for large-scale data store. ICDE(2013) [3]
 Peng Lu, Sai Wu, Lidan Shou, and Kian-Lee Tan
 - b. Uses RLE based compression, bit-sliced encoding or partial indexing depending on the data characteristics.
 - c. The compute nodes are organized according to the Chord protocol, and the indexes are distributed across the nodes.
- 2. Pilosa
 - a. Open source (https://www.pilosa.com/)
 - b. Slightly modified version of Roaring bitmap for compression.
 - c. Bitmaps are sharded using their own data model and distributed
 - d. Aggregate values are stored (Min, Max, Count)

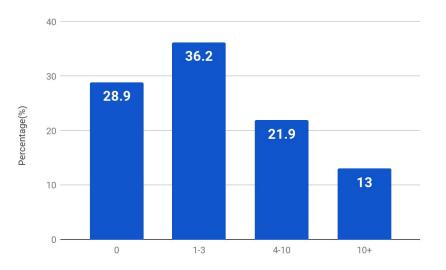
Existing Work


- a. Fixed compression algorithm
- b. Lock users to their specific implementation to store, distribute and retrieve bitmap indices.

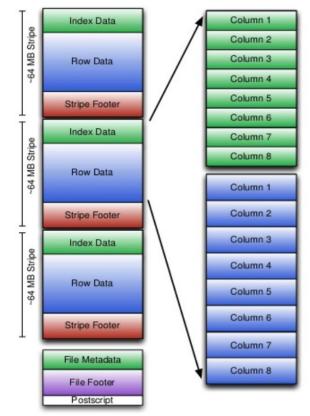
P1: Contributions

- 1. An open source, lightweight and flexible distributed bitmap indexing framework for big data which integrates with commonly used tools incl. Apache Hive and Orc.
- 2. The bitmap compression algorithm to use and key-value store to store indices are easily swappable.
- 3. Demonstrate that search for substrings like hashtags in tweets can be greatly accelerated by using our bitmap indexing framework.
- 4. Published at DOLAP 2019

P1: Hashtags

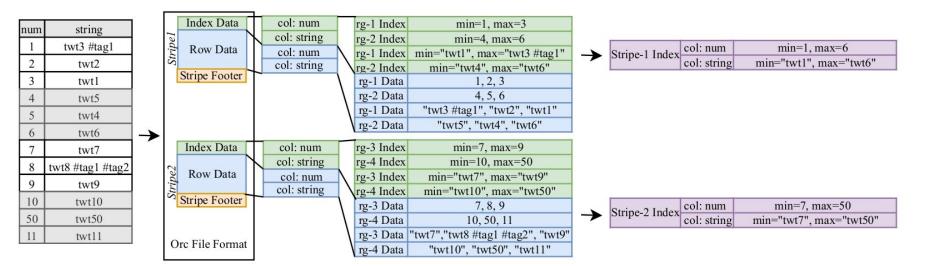

- A keyword containing numbers and letters preceded by a hash sign(#)
- Simplicity and lack of formal syntax

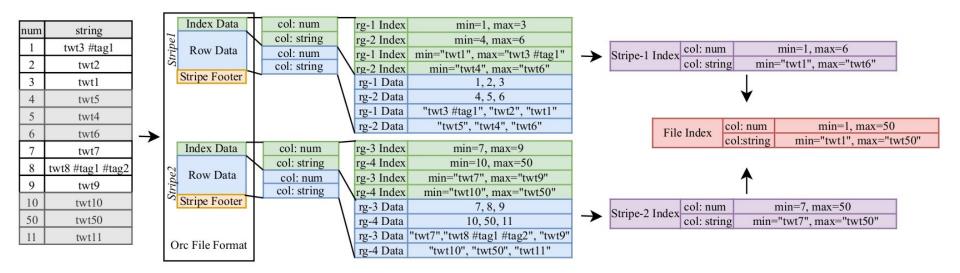
Distribution of Hashtags used in 8.9 million instagram posts in 2018 [1]


P1: Hashtags

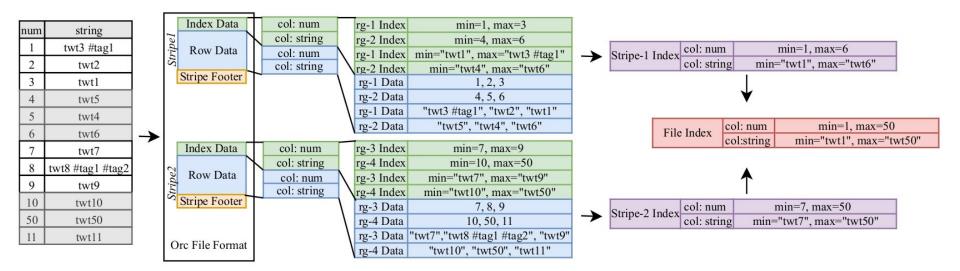
- A keyword containing numbers and letters preceded by a hash sign(#)
- Simplicity and lack of formal syntax
- Challenge
 - SELECT COUNT(*) FROM table
 WHERE (tweet LIKE "%#tag1%")
 - SELECT COUNT(*) FROM table
 WHERE (tweet LIKE "%#tag1%" OR ...)
 - SELECT COUNT(*) FROM table
 WHERE (tweet LIKE "%#tag1%" AND ...)

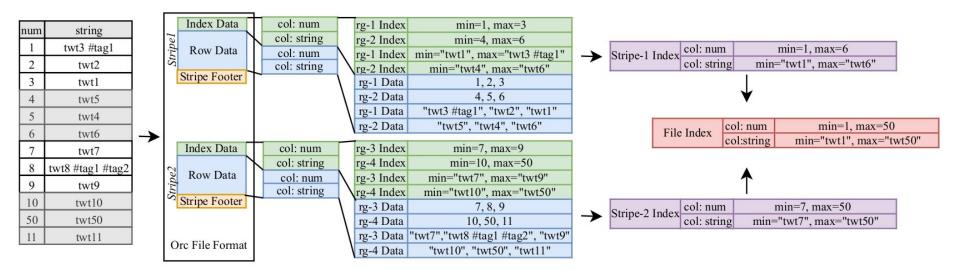
Distribution of Hashtags used in 8.9 million instagram posts in 2018 [1]


- 1. Storing data in a columnar format lets the reader read, decompress, and process only the values that are required by the current query.
- 2. Stripes=64MB and rowgroups = 10,000 rows
- 3. Min-max based Indices are created at rowgroup, stripe and file level.


Orc File Format [2]

		2		Index Data	7		col: num	-	ng 1 Inday	min=1 mov=2
num	string		-	Index Data	J				rg-1 Index	
1	twt3 #tag1		Stripel	Row Data	ľ		col: string		rg-2 Index	
	Ű		Stri	Kow Data	I		col: num	1	rg-1 Index	
2	twt2			Stripe Footer	╀		col: string		rg-2 Index	min="twt4", max="twt6"
3	twt1			Surpe rooter	I			1	rg-1 Data	1, 2, 3
4	twt5				I			1	rg-2 Data	4, 5, 6
5	twt4				I				rg-1 Data	"twt3 #tag1", "twt2", "twt1"
					I				rg-2 Data	"twt5", "twt4", "twt6"
6	twt6	\rightarrow	Ι,		1	_		-		
7	twt7			Index Data	l		col: num		rg-3 Index	min=7, max=9
8	twt8 #tag1 #tag2		~		N		col: string		rg-4 Index	min=10, max=50
9	<u> </u>		pe	Row Data	I		col: num	Ν	rg-3 Index	min="twt7", max="twt9"
-	twt9		Stripe2	G. 1. P	1		col: string		rg-4 Index	min="twt10", max="twt50"
10	twt10			Stripe Footer	I				rg-3 Data	7, 8, 9
50	twt50				I			1	rg-4 Data	10, 50, 11
11	twt11				1				rg-3 Data	"twt7","twt8 #tag1 #tag2", "twt9"
			Orc File Format						rg-4 Data	"twt10", "twt50", "twt11"

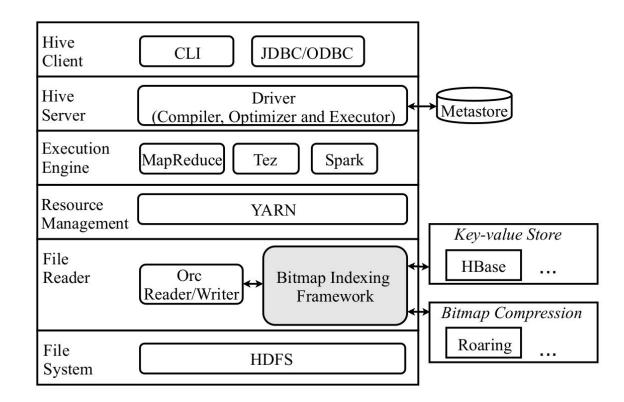

1. Min-max based indices


1. Min-max based indices

1. Min-max based indices

- 1. Min-max based indices
 - a. Possibility of false positives
 - b. No way to index substrings

- 1. Min-max based indices
 - a. Possibility of false positives
 - b. No way to index substrings
- 2. Queries that are optimized
 - a. SELECT tweet FROM table WHERE col like "%#tag1%"
 - b. SELECT tweet FROM table WHERE col like "%#tag1%" AND/OR "%#tag2%"


P1: Background Apache Hive

- 1. Data warehouse solution running on Hadoop.
- 2. Allows users to use the query language HiveQL to write, read and manage datasets in distributed storage structures.
- 3. Allows creation of Orc based tables.

Apache HBase

- 1. Column oriented key-value store.
- The major operations that define a key-value database are put(key, value), get(key) and delete(key).
- 3. High throughput and low input/output latency

P1: Lightweight Bitmap Indexing Framework

- The Orc reader/writer are modified to use our indexing framework.
- The key-value store and bitmap compression algorithm to use are easily replaceable.

P1: Framework Interface

Listing 1: Interface for Indexing framework

```
1 public interface IBitmapIndexingFramework {
       /* find indexable keys in column fields */
 2
 3
       String[] findKeys(String column);
4
       /* determine if search predicate is usable by framework */
 5
       boolean isProcessable (String ast);
6
7
8
       /* create bitmap index from rownumber and column */
9
       boolean createBitmap(int rowNr, String column);
10
       /* store all key-bitmap pairs in key-value store */
11
12
       boolean storeKeyBitmap(String[] args);
13
14
       /* get bitmap index for a single key */
15
       byte[] getKeyBitmap(String[] args);
16 }
```

- Current implementation uses function to find hashtags, HBase for storage and Roaring bitmap for compression, users are free to use their own implementations
 - bitmap compression method
 - key-value store
 - method to find keys

P1: Framework Use in Hive

Listing 2: HiveQL for Bitmap Index creation/use

```
1 /* bitmap index creation */
2
  CREATE TABLE tblorc(id INT, tweet VARCHAR) STORED AS ORC;
  SET hive.optimize.bitmapindex=true;
3
   SET hive.optimize.bitmapindex.format=tbl0rc/tweet/;
4
  SET hive.optimize.bitmapindex.framework='com.BIFramework';
5
  INSERT INTO tblorc SELECT id, tweet FROM tblCSV;
6
  /* bitmap index usage */
7
  SET hive.optimize.ppd=true;
8
   SET hive.optimize.index.filter=true;
9
  SET hive.optimize.bitmapindex=true;
10
  SELECT * FROM tblorc WHERE tweet LIKE '%#tag%';
11
```

1. Orc File

- a. Stripe (64 MB)
- b. Rowgroup (10,000 rows)
- c. Row (Rownumber)
- 2. To determine stripe number and rowgroup number from row number the number of rowgroups must be made consistent across stripes in a file.
- 3. Ghost rowgroups are added to stripes than contain less rowgroups than the maximum rowgroups per stripe.

rownr	tweet				0	twt0 #tag1
0	twt0 #tag1			rg0	1	twt1
1	twt1		str0	1	2	twt2
2	twt2			rgl	3	twt3
3	twt3			0	4	twt4
4	twt4			rg0	5	twt5
5	twt5		str1		6	twt6
6	twt6			rgl	7	twt7 #tag2
7	twt7 #tag2				8	twt8
8	twt8	$ \rightarrow$	2	rg0	9	twt9
9	twt9				10	twt10
10	twt10		str2	rgl	11	twt11
11	twt11				12	twt12
12	twt12			rg2	13	twt12
13	twt13				14	twt14
14	twt14			rg0		
15	twt15		str3		15	twt15
16	twt16 #tag1#tag2			rgl	16	twt16 #tag1 #ta
17	twt17			161	17	twt17

(a) Sample dataset

(b) Sample dataset stored in Orc

1 #tag2

rg0 •

rg1

rg0 5

rg1

rg0

rg2 12

rg0 15

str2 rg1

str0

str1

0

2

3

6

7

9 10

11

12

14

twt0 #tag1

twt1

twt2

twt3 twt4

twt5

twt6

twt7 #tag2

twt8

twt9

twt10

twt11 twt12

twt13 twt14

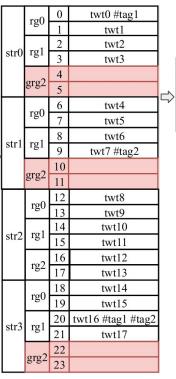
twt15

rownr	tweet	
0	twt0 #tag1	
1	twt1	
2	twt2	
3	twt3	
4	twt4	
5	twt5	
6	twt6	
7	twt7 #tag2	
8	twt8	\square
9	twt9	
10	twt10	
11	twt11	
12	twt12	
13	twt13	
14	twt14	
15	twt15	
16	twt16 #tag1#tag2	
17	twt17	

(a) Sample	dataset
(u) campio	aalaool

 $\frac{\text{str3}}{\text{rg1}} \frac{10}{17} \frac{\text{tw11} \text{fm1}}{\text{tw11} \text{fm1}}$ (b) Sample dataset stored in Orc

-				
I		rg0	0	twt0 #tag1
		igo	1	twt1
		n a1	2	twt2
	str0	rgl	3	twt3
		2	4	
I		grg2	5	
Ī			6	twt4
		rg0	7	twt5
I	-4-1		8	twt6
	str1	rg1	9	twt7 #tag2
1		2	10	
l		grg2	11	
I			12	twt8
I		rg0	13	twt9
I		ro1	14	twt10
I	str2	rg1	15	twt11
I			16	twt12
l		rg2	17	twt13
I			18	twt14
I		rg0	19	twt15
	at = 2		20	twt16 #tag1 #tag2
I	str3	rg1	21	twt17
I			22	
		grg2	23	


(c) Sample dataset stored in Orc with ghost rowgroups

rownr	tweet	
0	twt0 #tag1	
1	twt1	
2	twt2	
3	twt3	
4	twt4	
5	twt5	
6	twt6	
7	twt7 #tag2	
8	twt8	$ \square $
9	twt9	
10	twt10	
11	twt11	
12	twt12	
13	twt13	
14	twt14	
15	twt15	
16	twt16 #tag1#tag2	
17	twt17	

16	twt16 #tag1#tag2	
17	twt17	
(a) S	ample datase	t

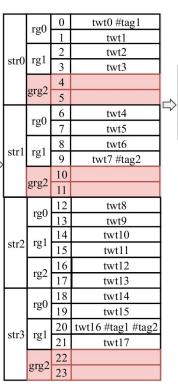
		0	twt0 #tag1	
	rg0	1	twt1	
str0	<i>n</i> ~1	2	twt2	
	rgl	3	twt3	
		4	twt4	
atu 1	rg0	5	twt5	
str1		6	twt6	
	rg1	7	twt7 #tag2	
	rg0	8	twt8	
	Igo	9	twt9	<u>ل</u>
atal	ra1	10	twt10	
str2	rg1	11	twt11	
		12	twt12	
	rg2	13	twt13	
		14	twt14	
- + - 2	rg0	15	twt15	
str3		16	twt16 #tag1 #tag2	
	rgl	17	twt17	

(b) Sample dataset stored in Orc

(c) Sample dataset stored in Orc with ghost rowgroups

_										_						_					_	_	_		_
I	stripe	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3
I	rowgroup	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2
۶Ľ	rownr	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Γ	#tag1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
ſ	#tag2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0

(d) Bitmap representation


rownr	tweet	L
0	twt0 #tag1	
1	twt1	
2	twt2	
3	twt3	
4	twt4	
5	twt5	
6	twt6	
7	twt7 #tag2	
8	twt8	c
9	twt9	
10	twt10	
11	twt11	
12	twt12	
13	twt13	
14	twt14	
15	twt15	
16	twt16 #tag1#tag2	
17	twt17	

(a) Sample	dataset
------------	---------

twt0 #tag1 0 rg0 twt1 str0 twt2 rgl 3 twt3 twt4 rg0 5 twt5 str1 twt6 6 rg1 7 twt7 #tag2 twt8 8 \Rightarrow rg0 9 twt9 10 twt10 str2 rg1 twt11 twt12 rg2 twt13 13 twt14 rg0 15 twt15 str3 16 twt16 #tag1 #tag2 rgl 17 twt17

(b) Sample dataset

stored in Orc

(c) Sample dataset stored in Orc including ghost rowgroups

stripe	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3
rowgroup	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2
rownr	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
#tag1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
#tag2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0

(d) Sample dataset stored in Orc with ghost rowgroups

Key	Value						
	WorkerNode-OrcFilename						
mrgps	3						
#tag1	Roaring(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0						
#tag2	Roaring(0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0						

(e) Key and bitmaps

P1: Query processing using Bitmap Indices

- SELECT tweet FROM tweets WHERE tweet like "%#tag1%" OR tweet like "%#tag2%"
 - **Predicate:** tweet like "%#tag1%" OR tweet like "%#tag2%"
 - #tag1 = RoaringBitmap(Stripe0, Stripe1,...,StripeN)
 - #tag2 = RoaringBitmap(Stripe0, Stripe1,...,StripeN)
 - maxRowgroupsPerStripe = value
 - rowsPerRowGroup = 10000
 - Stripes: (Stripe0, Stripe1,...)
 - **Slice:** Slice(bitmap, StartStripe, EndStripe)
 - Slice(#tag1, 0, 1) and Slice(#tag2, 0, 1)
 - #tag1 = RoaringBitmap(Stripe0, Stripe1)
 - #tag2 = RoaringBitmap(Stripe0, Stripe1)
 - resultBitmap = #tag1 OR #tag2
 - Calculate Stripes and Rowgroups
 - Calc(resultBitmap, maxRowgroupsPerStripe, rowsPerRowgroup)

P1: Experiments

- 1. Distributed cluster on Microsoft Azure
 - a. 1 master and 7 nodes as slaves.
 - b. Ubuntu OS with 4 VCPUS, 8 GB memory, 192 GB SSD
 - c. Hive 2.2.0, HDFS 2.7.4 and HBase 1.3.1

2. Datasets

- a. Three datasets: 55GB, 110GB and 220GB. Pattern in results were similar
- Schema for the datasets contains 13 attributes
 [tweetYear, tweetNr, userIdNr, username, userId, latitude, longitude, tweetSource, reTweetUserIdNr,
 reTweetUserId, reTweetNr, tweetTimeStamp, tweet]

Dataset	Tuples	Total HashTags	Unique Hastags	Orc Files	Stripes	Rowgroups
Tweets55	192,665,259	32,534,370	5,363,727	66	285	19,360
Tweets110	381,478,160	62,281,496	9,063,962	128	624	38,351
Tweets220	765,196,395	126,603,736	16,149,621	224	1342	76,918

P1: Queries Used

LIKE:

SELECT tweetSource, COUNT(*) as Cnt FROM TableName WHERE tweet LIKE '%hashtag1%'

GROUP BY tweetSource;

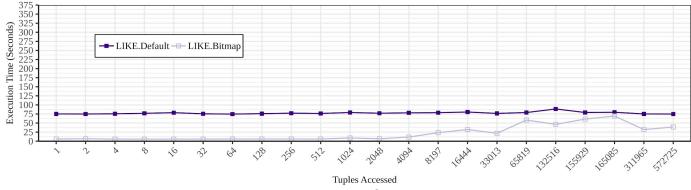
OR-LIKE:

SELECT tweetSource, COUNT(*) as Cnt

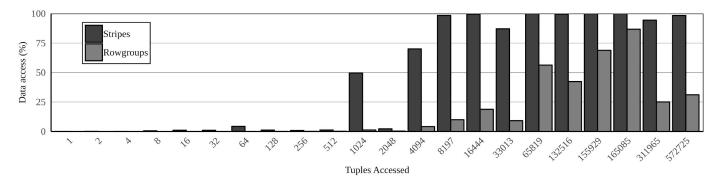
FROM TableName

WHERE (tweet LIKE '%hashtag1%' OR tweet LIKE '%hashtag2%',...)

GROUP BY tweetSource;

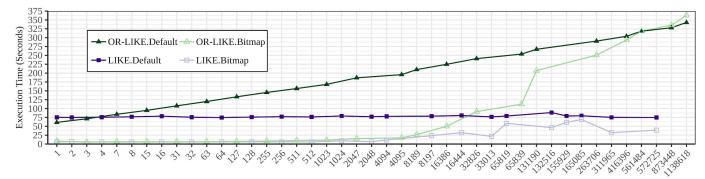

JOIN:

SELECT t1.tweetSource, COUNT(*) as Cnt FROM TableName AS t1 JOIN TableName AS t2 JOIN (t1.tweetNr = t2.reTweetNr) WHERE t1.tweetNr != -1 <u>AND (t1.tweet LIKE '%hashtag1%')</u>

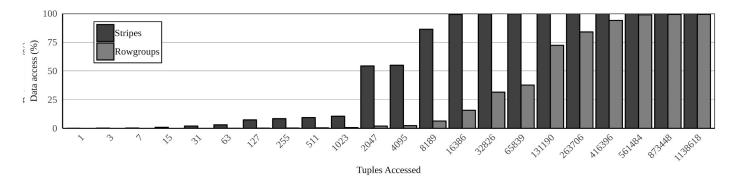

AND (t2.tweet LIKE '%hashtag1%')

GROUP BY t1.tweetSource;

P1: LIKE Queries

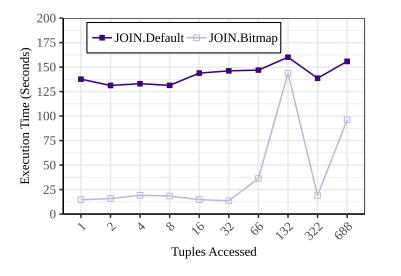


(a) Execution times for LIKE queries on Tweets220

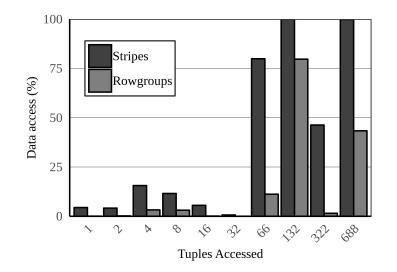


(b) Stripes/Rowgroups accessed by LIKE queries on Tweets220

P1: LIKE and OR-LIKE Queries

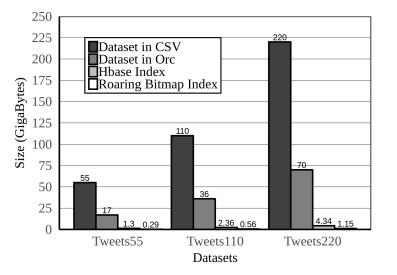


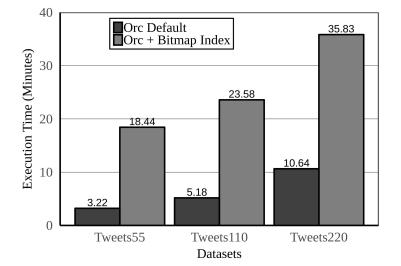
(a) Execution times for LIKE and OR-LIKE queries on Tweets 220



(b) Stripes/Rowgroups accessed by OR-LIKE queries on Tweets220

P1: JOIN Queries

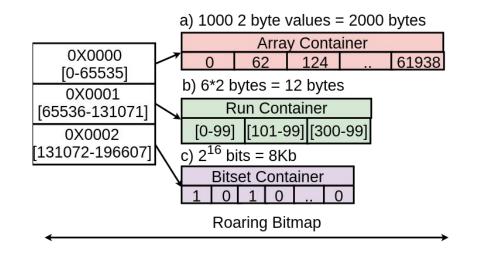



(a) Execution times for JOIN queries on Tweets220

(b) Stripes/Rowgroups accessed by JOIN queries on Tweets220

P1: Index Creation Times and Sizes

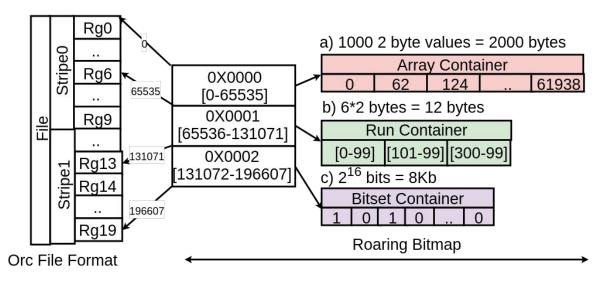
(a) Tweets datasets and their Index sizes


• Size of bitmap indices and the the Hbase table where they are stored are substantially smaller their Orc based tables.

(b) Index creation times for Tweets datasets

• Runtime overhead due to the index creation process.

P2: Bitmap Indexing with Storage Structure Considerations


Issues with Roaring Bitmap
 1) Loss of Storage structure information

P2: Bitmap Indexing with Storage Structure Considerations

• Issues with Roaring Bitmap

- 1) Loss of Storage structure information
- Expensive to map from row number to block number
- [1, 5, 500, 9999, 11000, 15000] -> [Rg0, Rg1]

P2: Bitmap Indexing with Storage Structure Considerations

- Issues with Roaring Bitmap
 - Possibility of false positives

RoaringBitmap1

020000	L	Bitset	Rg0	Rg1	Rg2	Rg3	Rg4	Rg5	Rg6		
0X0000	_	Container	10	00	10	00	10	00	00		
0X0001	k –	Container	1 0	00	1 0	00	1 0	00	00		
	\mathbf{N}	Dum	Rg7	Ra8	Ra9	Ra10	Ra11	Ra12	Rg13		
0X0002	X	Run	ку/	куо	куэ	RYIU	куш	RYIZ	кутэ		
	'\	Container		[0-39	9999]						
		Ż	Ż	Array	Rg14	Rg15	Rg16	Rg17	Rg18	Rg19	Rg20
		Container	1,3,5,								

RoaringBitmap2

_	5 1									
Γ	0X0000	$ \vdash $	Bitset	Rg0	Rg1	Rg2	Rg3	Rg4	Rg5	Rg6
	0X0001	k	Container	00	1 0	00	1 0	00	1 0	00
	0X0002	\backslash	Run	Rg7	Rg8	Rg9	Rg10	Rg11	Rg12	Rg13
			Container					[40	000-699	99]
		Ĵ	Run	Rg14	Rg15	Rg16	Rg17	Rg18	Rg19	Rg20
			Container			[20	000-499	99]		

P2: Explored Solutions

- Containers set to use Storage structure information
- However, more containers than Roaring bitmaps

RoaringBitmap1

rtoanngBhinapi								
	Bitset	Rg0	Rg1	Rg2	Rg3	Rg4	Rg5	Rg6
0X0000 0X0001	Container	1 0	00	1 0	00	1 0	00	00
0X0001	Run	Rg7	Rg8	Rg9	Rg10	Rg11	Rg12	Rg13
	Container		[0-39	9999]				
Ż	Array	Rg14	Rg15	Rg16	Rg17	Rg18	Rg19	Rg20
	Container	1,3,5,						

RoaringBitmap2

0X0000	4	Bitset	Rg0	Rg1	Rg2	Rg3	Rg4	Rg5	Rg6
0X0001	k	Container	00	1 0	00	1 0	00	1 0	00
0X0002	\backslash	Run	Rg7	Rg8	Rg9	Rg10	Rg11	Rg12	Rg13
		Container					[40	000-699	99]
	1	Run	Rg14	Rg15	Rg16	Rg17	Rg18	Rg19	Rg20
		Container			[20	000-499	99]]	

RoaringBitmapRG1

Rg0	Bitset Container
Rg2	Bitset Container
Rg4	Bitset Container
Rg7	Run Container
Rg8	Run Container
Rg9	Run Container
Rg10	Run Container
Rg14	Array Container

Roa	rina	Bitm	anR	G2

Rg1	Bitset Container
Rg3	Bitset Container
Rg5	Bitset Container
Rg11	Run Container
Rg12	Run Container
Rg13	Run Container
Rg16	Run Container
Rg17	Run Container
Rg18	Run Container

P2: Datasets

• Publicly available dataset provide by [3]

	Number of Bitmaps	Universe Size	Average count per bitmap
CENSUS_INCOME	200	199,523	34,610.1
CENSUS_INCOME_SRT	200	199,523	30,464.3
CENSUS1881	200	4,277,806	5019.3
CENSUS1881_SRT	200	4,277,735	3404.0
WEATHER_SEPT_85	200	1,015,367	64,353.1
WEATHER_SEPT_85_SRT	200	1,015,367	80,540.5
WIKILEAKS_NOQUOTES	200	1,353,179	1376.8
WIKILEAKS_NOQUOTES_SRT	200	1,353,133	1440.1

P2: Preliminary Results (AND)

- 1. Experiments
 - a. Performed on my laptop
 - b. Throughput
- 2. AND
 - a. AND operation between 200 bitmaps
- 3. AND + RG
 - a. Calculate operation between 200 bitmap + mapping from rownumber to rowgroups

AND		AND + RG Calculate	
Roaring	RoaringRG	Roaring	RoaringRG
858.174 ±6 ops/s	581.037 ±53 ops/s	82.845 ±2 ops/s	612.398 ±13 ops/s
2176.746 ±8 ops/s	2584.645 ±32 ops/s	143.931 ±6 ops/s	2538.521 ±26 ops/s
25523.716 ±185 ops/s	27693.969 ±378 ops/s	26380.113 ±264 ops/s	28524.012 ±371 ops/s
148118.962 ±1177 ops/s	211173.6 4 ±6790 ops/s	135202.337 ±1168 ops/s	213418.927 ±2989 ops/s
195.189 ±2 ops/s	151.188 ±3 ops/s	31.240 ±0.2 ops/s	155.313 ±2 ops/s
1873.571 ±14 ops/s	1646.546 ±90 ops/s	97.263 ±4 ops/s	1652.788 ±8 ops/s
11604.997 ±84 ops/s	9504.886 ±541 ops/s	3328.400±62ops/s	8683.909 ±11 ops/s
$71065.61 \pm 1507 \text{ ops/s}$	72055.737 ±1046 ops/s	64263.370 ±1143 ops/s	63226.929 ±876 ops/s
	Roaring 858.174 ±6 ops/s 2176.746 ±8 ops/s 25523.716 ±185 ops/s 148118.962 ±1177 ops/s 195.189 ±2 ops/s 1873.571 ±14 ops/s 11604.997 ±84 ops/s	RoaringRoaringRG858.174 ±6 ops/s581.037 ±53 ops/s2176.746 ±8 ops/s2584.645 ±32 ops/s25523.716 ±185 ops/s27693.969 ±378 ops/s148118.962 ±1177 ops/s211173.6 4 ±6790 ops/s195.189 ±2 ops/s151.188 ±3 ops/s1873.571 ±14 ops/s1646.546 ±90 ops/s11604.997 ±84 ops/s9504.886 ±541 ops/s	RoaringRoaringRGRoaring858.174 ±6 ops/s581.037 ±53 ops/s82.845 ±2 ops/s2176.746 ±8 ops/s2584.645 ±32 ops/s143.931 ±6 ops/s25523.716 ±185 ops/s27693.969 ±378 ops/s26380.113 ±264 ops/s148118.962 ±1177 ops/s211173.6 4 ±6790 ops/s135202.337 ±1168 ops/s195.189 ±2 ops/s151.188 ±3 ops/s31.240 ±0.2 ops/s1873.571 ±14 ops/s1646.546 ±90 ops/s97.263 ±4 ops/s11604.997 ±84 ops/s9504.886 ±541 ops/s3328.400±62ops/s

P2: Preliminary Results (OR)

- 1. OR
 - a. OR operation between 200 bitmaps
- 2. OR + RG Calculate
 - a. OR operation between 200 bitmap + mapping from rownumber to rowgroups

	OR		OR + R	G Calculate
	Roaring	RoaringRG	Roaring	RoaringRG
CENSUS_INCOME	621.432 ±3.09 ops/s	327.162 ±3.412 ops/s	9.555 ±0.2 ops/s	342.015 ±2 ops/s
CENSUS_INCOME_SRT	1049.444 ±12.317 ops/s	1313.316 ±5.363 ops/s	9.854 ±0.3 ops/s	1291.065 ±16 ops/s
CENSUS1881	1748.733 ±145.411 ops/s	1743.181 ±18.263 ops/s	4.773 ±0.02 ops/s	1589.701 ±66 ops/s
CENSUS1881_SRT	11178.567 ±50.238 ops/s	11816.204 ±47.35 ops/s	$31.154 \pm 0.4 \text{ ops/s}$	8486.935 ±42 ops/s
WEATHER_SEPT_85	147.944 ±1.4 ops/s	84.647 ±1.603 ops/s	$1.360 \pm 0.1 \text{ ops/s}$	83.673 ±0.3 ops/s
WEATHER_SEPT_85_SRT	874.785 ±1.209 ops/s	840.423 ±4.253 ops/s	$1.300 \pm 0.1 \text{ ops/s}$	813.437 ±6 ops/s
WIKILEAKS_NOQUOTES	3810.786 ±52.963 ops/s	3541.734 ±27.676 ops/s	52.897 ±0.2 ops/s	2493.273 ±21 ops/s
WIKILEAKS_NOQUOTES_SRT	15858.955 ±67.97 ops/s	10791.506 ±138.839 ops/s	$146.613 \pm 2 \text{ ops/s}$	7903.992 ±29 ops/s

P2: Ongoing Work

- 1. Mapping from rownumber to rowgroup
 - a. [1, 5, 500, 9999, 11000, 15000] -> [Rg0, Rg1]
 - b. Is there a better approach?
- 2. Comparison of Memory consumption Roaring vs RoaringRG
 - a. RoaringRG uses more containers

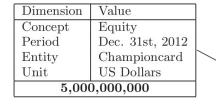
Remaining Publications:

P3: An Adaptive Bitmap Indexing Scheme for Distributed Environments

- a. Index creation is expensive
- b. What do you index
- c. Index might be only be used a fraction of the time
- d. Adaptively build the index

P5: Bitmap Indexing on Distributed Environments

- a. Work from paper 1, 2 and 3
- b. Efficient updates of bitmap indices


P6: DBIF: A demonstration of DBIF on Big Data

a. Demonstration of our indexing framework

P4: Multidimensional Online Analytical Processing on Cell Stores

- 1. Cell Stores
 - a. Disclaimer: Concept paper on ArXiv [Not peer-reviewed]
 - b. Cells viewed as atom of data
 - c. Cells can be converted into cubes or spreadsheets
- 2. Support Cell Stores on our framework.

Dimension	Value	
Concept	Equity	
Period	Dec. 31st, 2012	
Entity Championcard		
Unit US Dollars		
5,000,000,000		

Dimension	Value	
Concept	Liabilities	
Period	Dec. 31st, 2012	
Entity	American Rapid	
Unit US Dollars		
3,000,000,000		

a) Cells

Dimension	Value
Concept	Assets, Equity, Liabilities
Period	Sept. 30th, 2012, Dec. 31st, 2012
Entity	Visto, Championcard, American Rapid
Unit	US Dollars

b) Hypercube

Concept	Period	Entity	Unit	Region	Value
Assets	Sept. 30th, 2012	Visto	USD	United States	3,000,000,000
Assets	Sept. 30th, 2012	Visto	USD	[World]	4,000,000,000
Assets	Sept. 30th, 2012	Championcard	USD	United States	6,000,000,000
Assets	Sept. 30th, 2012	Championcard	USD	[World]	8,000,000,000
Assets	Sept. 30th, 2012	American Rapid	USD	United States	5,000,000,000
Assets	Sept. 30th, 2012	American Rapid	USD	[World]	9,000,000,000
Equity	Sept. 30th, 2012	Visto	USD	United States	2,000,000,000
Equity	Sept. 30th, 2012	Visto	USD	[World]	3,000,000,000
Equity	Sept. 30th, 2012	Championcard	USD	United States	4,000,000,000
Equity	Sept. 30th, 2012	Championcard	USD	[World]	5,000,000,000
Equity	Sept. 30th, 2012	American Rapid	USD	United States	3,000,000,000
Equity	Sept. 30th, 2012	American Rapid	USD	[World]	6,000,000,000
Liabilities	Sept. 30th, 2012	Visto	USD	United States	1,000,000,000
Liabilities	Sept. 30th, 2012	Visto	USD	[World]	1,000,000,000
Liabilities	Sept. 30th, 2012	Championcard	USD	United States	2,000,000,000
Liabilities	Sept. 30th, 2012	Championcard	USD	[World]	3,000,000,000
Liabilities	Sept. 30th, 2012	American Rapid	USD	United States	2,000,000,000
Liabilities	Sept. 30th, 2012	American Rapid	USD	[World]	3,000,000,000

c) Materialized Hypercube

PhD Courses

General

Course	Organizer	ECTS	Status
Danish Language	AAU	2	Fall 16/ Compete
Introduction to the PhD Study	AAU	1	Spring 16/ Complete
Writing and Reviewing Scientific Papers	AAU	3.75	Spring 16/ Complete
Professional Communication Skills	AAU	2.75	Fall 16/ Complete
Library Information Management	AAU	1	Spring 17/ Complete
Spanish Language	UPC	2	To be decided
To be decided	UPC	2	To be decided
Project Management and Interpersonal skills	AAU	2	Fall 19/ Planned
Total		16.5	

PhD Courses

Project Related

Course	Organizer	ECTS	Status
Business Intelligence Study Group	AAU	2	Fall 16/ Compete
Integrated Analytics on Big Data	AAU	2	Fall 16/ Complete
Scalable Tools for Linked Data Analytics	AAU	2	Fall 16/ Complete
EBISS summer school (Attendance)	AAU	2	Fall 16/ Complete
Big Data management on Modern Hardware	AAU	2	Spring 17/ Complete
EBISS Summer School (Participation)	AAU	2	In progress
Conference attendance	tbd	2	To be decided
Total		14	

Knowledge Dissemination

- 1. Project group supervision
 - a. 12 groups (42 Students)
- 2. Teaching assistant for 2 semesters
 - a. Database Development course
- 3. DOLAP 2019
 - a. Lisbon, Portugal

Semester	Hours
Spring 2016	185
Fall 2016	165
Spring 2017	230
Fall 2018	105
Spring 2019	90
Total	775

References

[1] https://www.quintly.com/blog/instagram-study

[2] https://www.slideshare.net/Hadoop_Summit/orc-file-optimizing-your-big-data

[3] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. 2006. Optimizing bitmap indices with efficient compression. ACM Transactions on Database Systems (TODS) 31, 1 (2006), 1–38.

[4] Lemire, D., Ssi-Yan-Kai, G., & Kaser, O. (2016). Consistently faster and smaller compressed bitmaps with roaring. Software: Practice and Experience, 46(11), 1547-1569.

Orc Index Processing

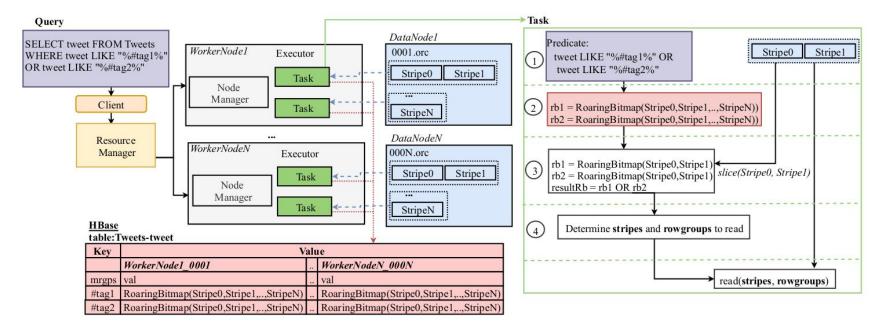


Figure 4: Orc Index Processing.

```
mrgps = maximum rowgroups per stripe ()
```

```
rprg = rows per rowgroup () and
```

```
rn = row number for a particular tuple (rn) can
```

48

rg = rowgroup number

str = stripe number