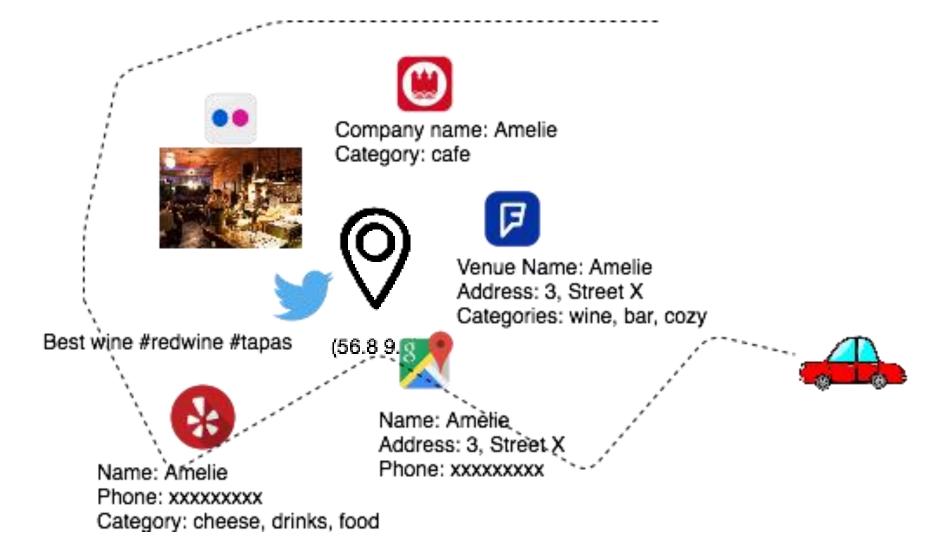
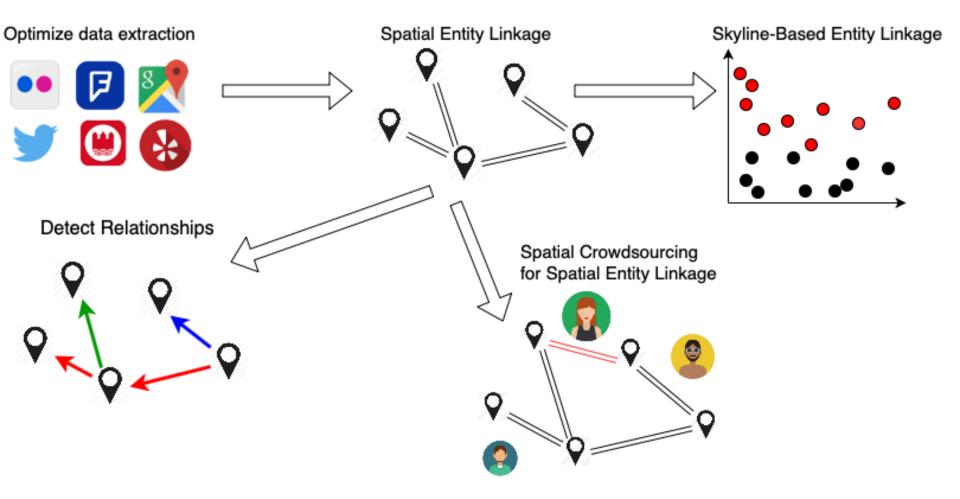


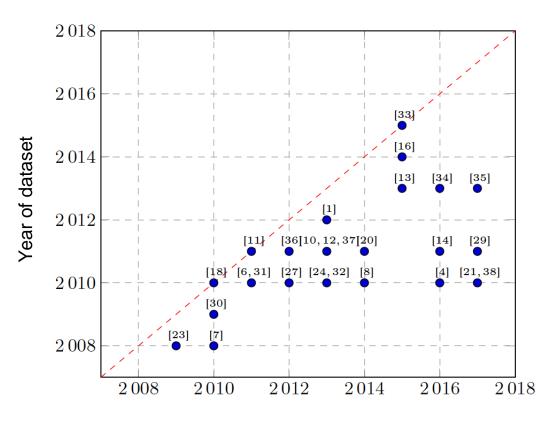
Multi-Source Spatial Entity Linkage Suela Isaj


Supervisor: Torben Bach Pedersen (AAU) Co-supervisor: Esteban Zimányi (ULB)

Center for Data-intensive Systems


Multi-Source Spatial Entities

Overall PhD study



Geo-social related work

- Old datasets
- Non-operational social networks
- Limited locations
- Missing reference to current systems
- Simulated user activity instead of real data

Year of published article

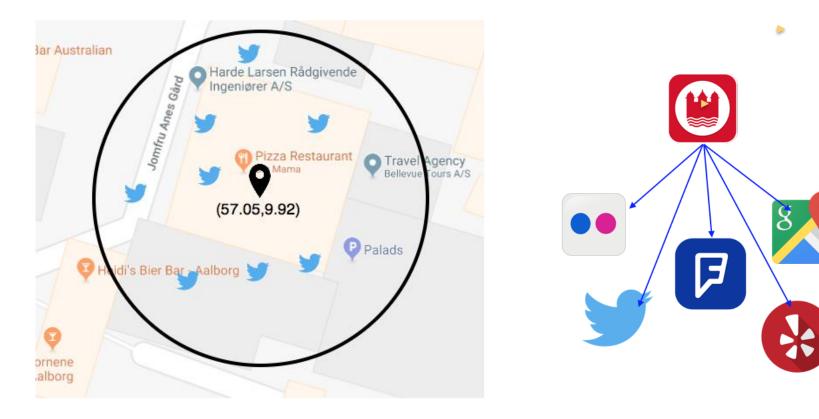
API limitations

Bandwidth

Number of requests within a time frame

- Result size
 - Number of locations/data for a single request
- Historical access
 Is the API able to retrieve
 old data?

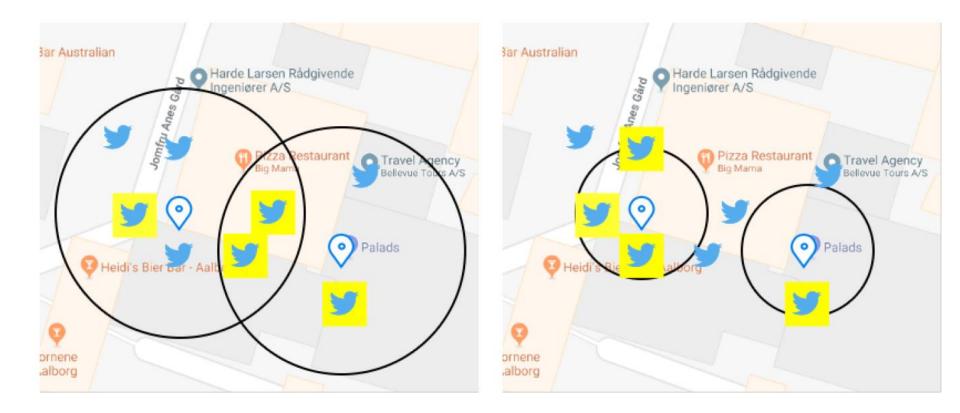
- Supplemental results Does the API give data outside Circle (p,r)?
- Costs
 - Premium services / Pay as you go
- Access to the complete dataset


Sample vs whole access

API limitations	Krak	Yelp	Google Places	Foursquare	Twitter	Flickr
Bandwidth	10K/month	5K/day	1/day (from 6/2018)	550/hour	180/15 min	3.6K/hour
Max Res. Size	100	50	20	50	100	500
Hist. Access	N/A	N/A	N/A	Full	2 weeks	Full
Supp Results	4.3%	17.3%	0.5%	0.0%	0.0%	0.0%
Complete access	yes	yes	yes	yes	1%	yes
Cost	not stated	negotiable	from 200\$/month	from 599\$/month	149\$ - 2499\$/month	not stated

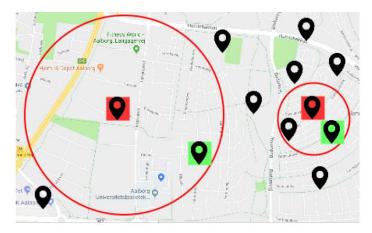
Data extraction

- Location-based queries API call (p,r)
- Well-selected points
- Use the points of one source (seed) to query the others



Radius selection

Limited by maximal result size!

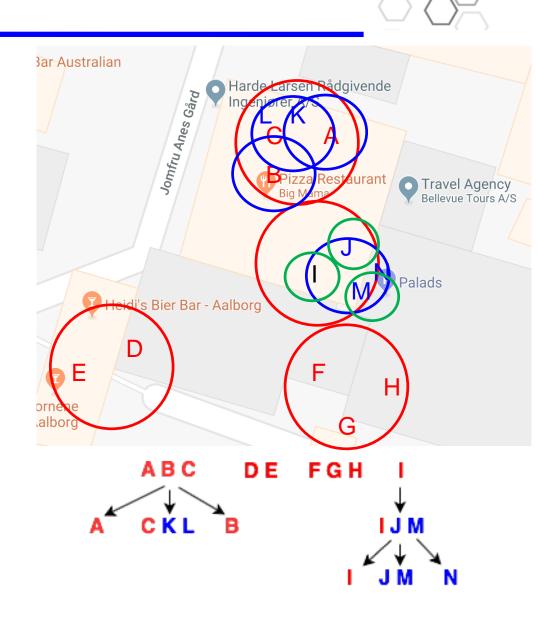

Multi-Source Seed-Driven Algorithms

- MSSD F Fixed 2 km
- *MSSD D* Seed density-based

(a) MSSD-D radius

- *MSSD N* Seed nearest neighbor
- MSSD R Recursively adapted to the source

(b) MSSD-N radius



(c) MSSD-R radius

MSSD*

- Red seed locations
- Blue source locations

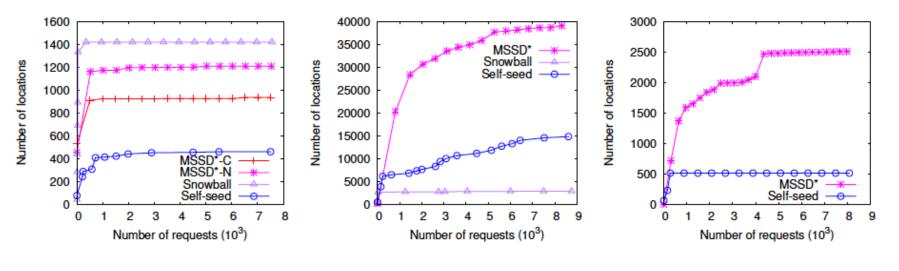
- Cluster points with DBSCAN
- Query with the centroid
- If the maximal result size is reached, split the cluster and query with smaller radius

Experiments

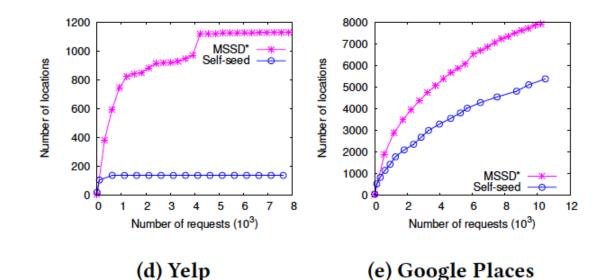
- Requests versus number of locations
- MSSD N the best from the fixed request versions
- MSSD R the best for number of locations but expensive

MSSD *

- 90% of the locations of MSSD R
- with 25% of the requests of MSSD F, MSSD D, MSSD N
- 12%-15% of MSSD R requests for Flickr, Yelp and Foursquare, 8.5% for Google Places and 2.7% for Twitter.


Comparison to other methods

- Snowball (Scellato et al in WOSN'10, Gao et al in AAAI'15)
 - Only applicable to social networks, not directories
 - Proved to be biased
 - Does not guarantee that the activity is within the searched area
- Linked accounts (Armenatzoglou et al in PVLDB'13, Preotiuc-Pietro et al in WebSci'13, Hristova et al in WWW'16)
 - Only applicable to social networks, not directories
 - Does not guarantee that the activity is within the searched area
 - Rare to find:
 - 0.27 % of users in Flickr with linked accounts to Twitter
 - 0.003 % of users in Twitter with linked accounts to Foursquare.
- Self-seed (Lee at al in GIS-LBSN'10)
 - Similar to ours
 - Limited within a social network


Comparison to other approaches

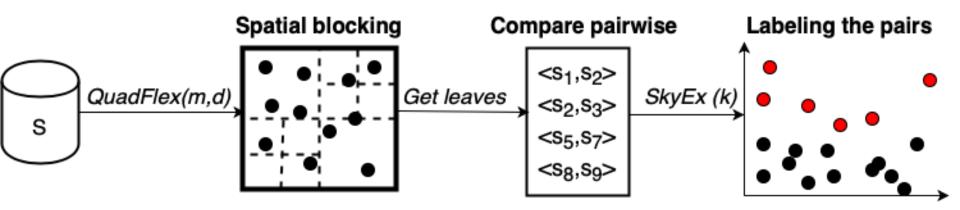
(a) Twitter

(b) Flickr

(c) Foursquare

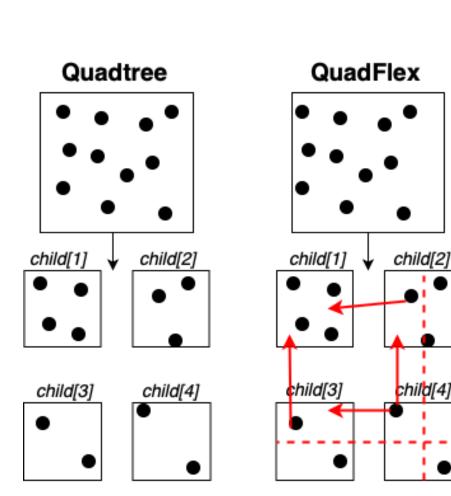
Spatial Entity Linkage

Name: Amélie Library Address: 15, Boulevard Y Categories: books, postcards



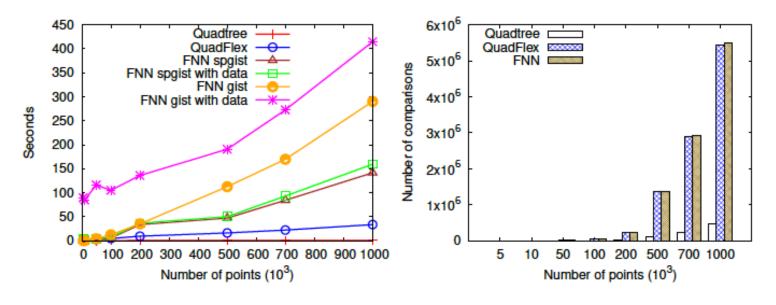
Name: Amélie Address: 12, Boulevard X Categories: french, coffee, sweets

QuadSky solution

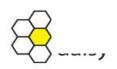

- Spatial Blocking (QuadFlex) + Labelling the pairs (SkyEx)
- Input: A set of spatial entities
- Output: Labelled pairs (Yes/No)

Spatial Blocking

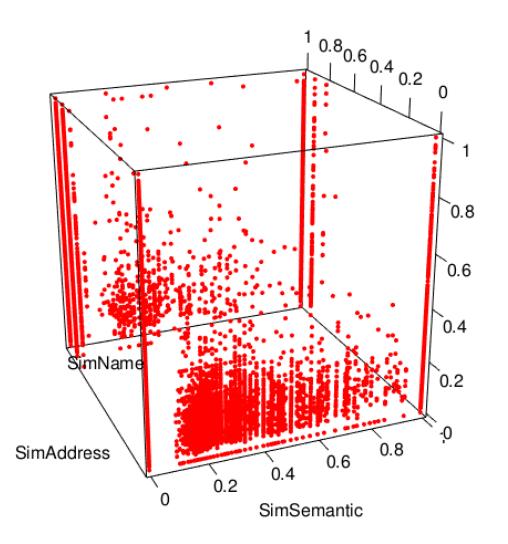
- Avoid exhaustive comparisons
- QuadFlex solution
 - Diagonal and Density instead of Capacity
 - Allow point assignment in multiple children



Spatial Blocking (QuadFlex)


- Runtime of QuadTree, Comparisons as FNN
- GiST and SP-GiST(postgres)
- QuadFlex has 99.99% of the comparisons of FNN, Quadtree only 10%

(a) Execution time


(b) Number of comparisons

Comparing quadtree, QuadFlex and FNN

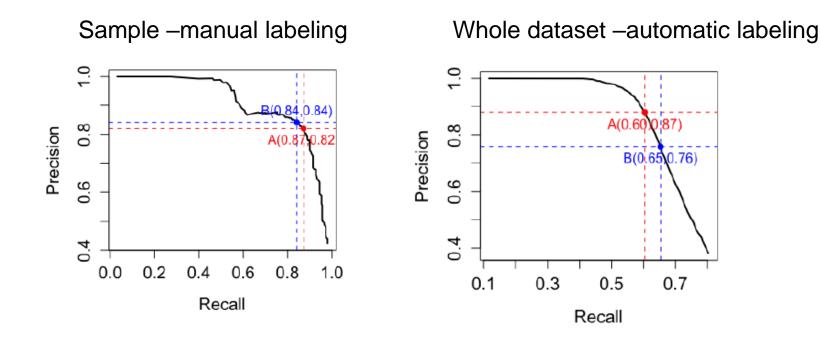
Pairwise Comparison

- Comparing the attributes
- Name: Levenshtein
- Address: Custom
- Categories: Wu&Palmer Wordnet

SkyEx (Skyline Explore)

- No training set, no overfitting, no extensive experiments
- Pareto Optimality abstraction of a similarity function (utility)
- The best candidates are in the first skylines

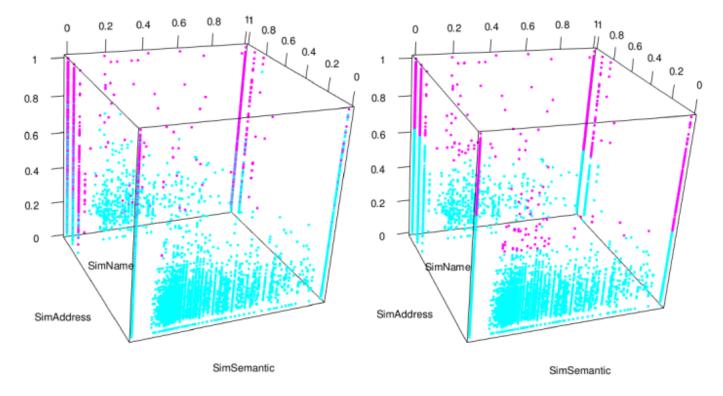
Algorithm 2 Skyline Explore (SkyEx)


Input: A set of pairs $P = \{\langle s_i, s_j \rangle\}$, a number of skyline levels kOutput: A set of positive pairs P^+ , a set of negative pairs P^- ; 1: $P^+ \leftarrow \emptyset$ 2: for m in [1, k] do 3: Filter $Skyline(m) = \{\langle s_i, s_j \rangle\} | \forall \langle s', s'' \rangle \in P - \{\langle s_i, s_j \rangle\}, u(\langle s_i, s_j \rangle) > u \langle s', s'' \rangle\}$ // Find the Skyline4: Add Skyline(m) to P^+ // Label the skyline pairs as positive 5: P = P - Skyline(m)6: end for 7: $P^- \leftarrow P$ // Label the rest as negative return P^+ , P^-

SkyEx results

- Precision / Recall/ F-measure
- Automatic labeling (Phone or Website) 777,452 pairs
 - F-measure = 0.72
- Manual labeling 1,500 pairs
 - F-measure = 0.85

aisy


Comparison to other approaches

- Berjawi et al. 50 m apart
 - Euclidean for geo, Levenshtein for name & address
 - Name + address + geo (V1)
 - Name + geo (V2)
- Morana et al blocks of same category or name
 - Euclidean for geo, Levenshtein for address and name, Resnik (Wordnet) for categories
 - 2/3 (name + geo + categories) + 1/3 address
- Karam et al 5m apart
 - Levenshtein for name, Euclidean for geo, Keywords semantically
 - Belief theory

	D_{full}			D_{sample}		
Approach	Precision	Recall	F1	Precision	Recall	F1
Berjawi et al.(V1)[4] Berjawi et al.(V2)[4]	0.93 0.73	0.26 0.56	0.41 0.63	1.00 0.97	0.27 0.60	0.43 0.74
Morana et al.[21]	0.39	0.60	0.47	0.33	0.60	0.43
Karam et al.[16]	0.23	0.73	0.35	0.54	0.68	0.60
QuadSky	0.87	0.60	0.72	0.87	0.82	0.85

SkyEx labeling

(a) Actual classes

(b) SkyEx classes

Next steps

- Data extraction
 - "Seed-Driven Geo-Social Data Extraction" S.Isaj, T.B. Perdersen– Accepted in SSTD 2019
- Spatial entity linkage
 - "Multi-Source Spatial Entity Linkage" S.Isaj, E. Zimanyi, T.B. Perdersen – Accepted in SSTD 2019
 - "Spatial Entity Linkage with the aid of Spatial Crowdsourcing" S.Gummidi, S.Isaj, T.B. Perdersen, E. Zimanyi – Expected submission in WWW, November 2019
 - "Discovering relationships between multi-source spatial entities" – Expected submission VLDB-J or Geoinformatica (February 2020)
- Skyline-based approach
 - "Skyline-based approach for Entity Resolution" Expected submission ICDE, October 2019
 - "SkyEx Skyline Exploration for Classifying Pairs"- Demo paper (R package) Expected Submission CIKM (May 2020)

Work and Time plans

- Teaching hours (completed 700 hours):
 - Fall 2017
 - 294 group supervision of 2 SW3 + 1 DAT5 + censoring in Web Intelligence course
 - 50 hours as Social Media Manager of Daisy group
 - Spring 2018
 - 205 group supervision of 2 BAIT4 + 1 ITVEST master project
 - 50 hours as Social Media Manager of Daisy group
 - Fall 2018
 - 50 hours as Social Media Manager of Daisy group
 - Spring 2019
 - 50 hours as Social Media Manager of Daisy group
 - 50 hours left Social Media Manager of Daisy group

ECTS (completed 30,25 ECTS)

- 14,25 ECTS on General Courses and 16 ECTS on Project courses = 23,75 ECTS
 - Conference presentations

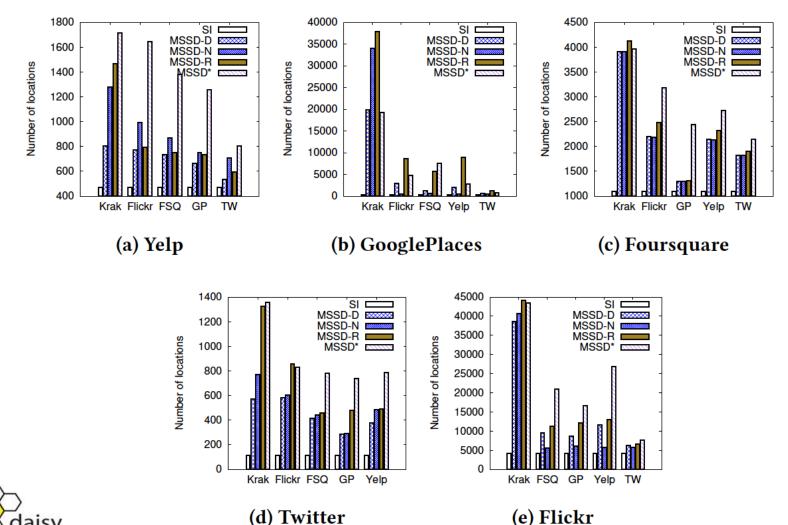
Thank you

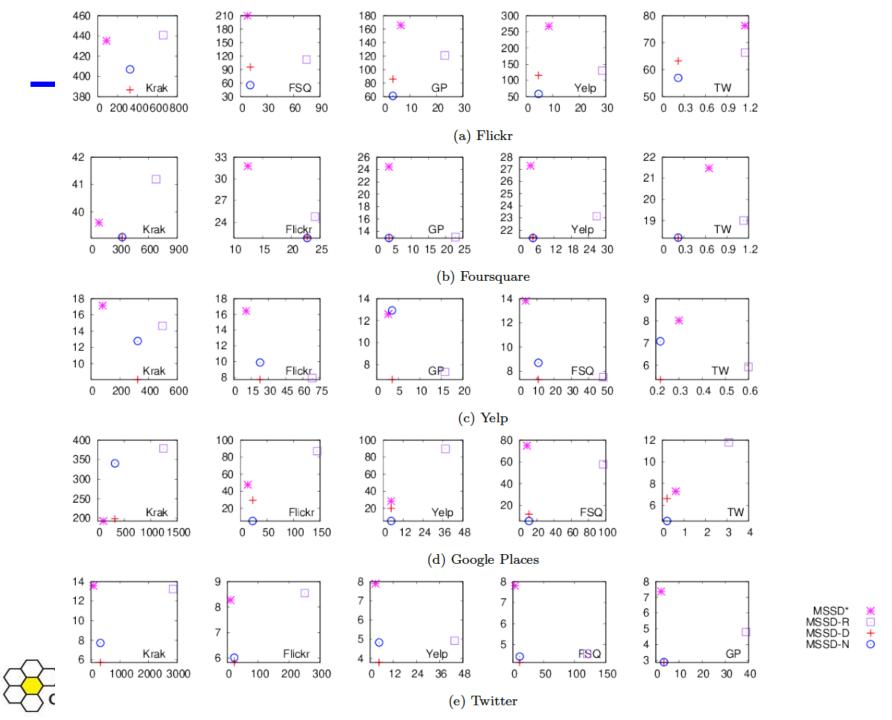
MUNDUS

Center for Data-intensive Systems

Next steps

- Data extraction
 - "Seed-Driven Geo-Social Data Extraction" S.Isaj, T.B. Perdersen— Accepted in SSTD 2019
- Spatial entity linkage
 - "Multi-Source Spatial Entity Linkage" S.Isaj, E. Zimanyi, T.B. Perdersen – Accepted in SSTD 2019
 - "Spatial Entity Linkage with the aid of Spatial Crowdsourcing" S.Gummidi, S.Isaj, T.B. Perdersen, E. Zimanyi – Expected submission in WWW, November 2019
 - "Discovering relationships between multi-source spatial entities" – Expected submission VLDB-J or Geoinformatica (February 2020)
- Skyline-based approach
 - "Skyline-based approach for Entity Resolution" Expected submission ICDE, October 2019
 - "SkyEx Skyline Exploration for Classifying Pairs"- Demo paper (R package) Expected Submission CIKM (May 2020)




Multi-Seed

daisy

- Krak performs the best for Flickr, Yelp, and Foursquare.
- MSSD* sometimes performs better than MSSD-R ۲

Keyword-based querying

Query with "Brussels" and getting "brussels sprouts"

- Names of cities and towns in North Denmark as keywords
- Flickr precision 31.6% recall 5%
- Twitter precision 0.85% recall 3%
- Foursquare query by location: precision 93% recall 17%
- Yelp query by location: precision 85% recall 19%
- Google Places precision 100% recall 0.07%

Multi-Source Heterogeneous Locations

- Various scopes -> more locations (all)
- Richer context behind locations (directories)
- Crowd-sourced context (social networks)
- Maps / Yellow pages
- User preferences
- Influential locations

