
Physical Design for Document

Stores
Moditha Hewasinghage

Nineth European Eighth European Business Intelligence & Big Data

Summer School (eBISS 2019) Berlin, Germany1

Advisors : Alberto Abelló , Jovan Varga (UPC)

Esteban Zimányi (ULB)

22

What is the optimal data design for a given dataset and

a query load?

W h i c h da ta s to re0 1

W h i c h des i gn0 2

3

The decision is not trivial

The design affects

performance

[Atzeni,2016]

Benefits of Finding the Optimal Design(s)

More control over the data design as opposed to trial and error

Reduce redesign cost

Reduce data movement cost

Avoid costly operations occurring from poor design

Improved data quality

4

Data Design Problem

• Storage space

• Query cost

• Execution time

• Degree of heterogeneity

Affects several criteria

5

• Relational

• Document

• Key-Value

• Wide column

• Graph

Alternative data models

• Structures

• Collections

• Nesting

Alternative Designs

Considers several alternative solutions

Contradicting requirements

Find the optimal or set of Pareto-optimal
solutions

6

Multicriteria Optimization for Data Design

Applied in different domains

Initial Focus on Document Stores

Later extend to other data

stores

Has multiple characteristics

• Semi-structured

• Heterogeneous collections

• Allows nesting

7
www.mongodb.com

MongoDB

Old

schema

Canonical

representation

Solution space

Multicriteria

optimization

Physical design

New schema Optimal schema(s)

Work Load

• Cost

• Execution time

• Storage Space

• Degree of

heterogeneity

Objective

functions

Workflow of the Approach

Queries

Process

Data flow

Search Space

1. P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to NoSQL systems. Information Systems, 43, 2014.

2. F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone. Database design for NoSQL systems. In International

Conference on Conceptual Modeling. Springer, 2014

9

Alternative data designs Design dimensions

• Structuring

• Grouping

• Nesting

Based on existing work

• SOS Model [1]

• NoAM [2]

Need for a

Canonical

Model

10

Represent heterogeneous

designs

No formal model

available

Based on search space

dimensions

Data operations

Queries over the design

Schema operations

Generate alternatives

Constraints

Based on the data store

A hypergraph-based Canonical Design Model
M. Hewasinghage, J. Varga, A. Abelló, and E. Zimányi. Managing Polyglot Systems Metadata with Hypergraphs.

In International Conference on Conceptual Modeling. ER, 2018.

11

A hypergraph-based Canonical Design Model Cont.

12https://github.com/modithah/ESTOCADA-CATALOG

Relational

Document Store

Column Family

• RDF exemplars in a graph

• Build generalized hypergraph representing

different design constructs

• Represent heterogeneous data models

• Relational

• Document Store

• Column Family

• Identified constraints over different data

models

• Simple query generation over the design

• Schema operations in the solution space

for alternative designs (transformations)

• Modify the query algorithm to calculate

other measures (size, frequency, runtime)

Objective Functions

13

Storage Space
• Calculated from the design

• Affected by

• Number of collections

• Nesting

• Number of objects

Execution Time
• Parallelism

Query Cost
• Disk I/O

• Memory usage

Degree of Heterogeneity
• Within objects in the collection

Cost Model for Queries in Document Stores

14

No existing cost model
• Primitive approaches for query

processing

M. Hewasinghage, A. Abelló, J. Varga, and E. Zimányi. In International Conference on

Data Engineering (ICDE) 2020 (Under review).

Based on disk I/O
• Similar to RDBMS

• Extended by including memory

management

Random access queries
• Access a document by primary

identifier

Key parameters
• Document size

• Number of documents

• Probability of access

• Memory sizeMongoDB and Couchbase
• Different cache policies

Overview of the Cost Model

15

Generic Cost Model

16

𝑅𝑑 𝐶 = 𝑓.
𝐵𝑠𝑖𝑧𝑒𝑑
𝑆𝑖𝑧𝑒𝑑(𝐶)

𝑅𝑖 𝐶 = 𝑓.
𝐵𝑠𝑖𝑧𝑒𝑖
𝑆𝑖𝑧𝑒𝑖(𝐶)𝑀 Total memory available for the document store

𝐵𝑠𝑖𝑧𝑒𝑑 Block size for data

𝐵𝑠𝑖𝑧𝑒𝑖 Block size for index

𝑇𝑚 Time to read a block from cache

𝑇𝑑 Time to read a block from disk

𝐶 A collection

𝑆𝑖𝑧𝑒𝑑(𝐶) Average document size of a collection

𝑆𝑖𝑧𝑒𝑖(𝐶) Average index entry size of a collection

|𝐶| Number of documents in a collections

𝑅𝑑(𝐶) Average number of documents in a block

𝑅𝑖(𝐶) Average number of index entries in a block

𝐵𝑑(𝐶) Total document size in blocks

𝐵𝑖(𝐶) Total index entry size in blocks

𝐵𝑑 𝐶 =
|𝐶|

𝑅𝑑(𝐶)
𝐵𝑖 𝐶 =

|𝐶|

𝑅𝑖(𝐶)

𝑃𝑑 𝐶 =
𝑀𝑑(𝐶)

𝐵𝑑(𝐶)
𝑃𝑖 𝐶 =

𝑀𝑖(𝐶)

𝐵𝑖(𝐶)

Parameters Affecting the Memory Usage

17

Memory Usage Estimation

18

• Predefined memory size in Couchbase

(buckets)

• Keep metadata in memory

• Full eviction

• LRU-like cache policy in MongoDB

• Cache policy biased towards collection name

(https://jira.mongodb.org/browse/WT-4732)

• Isolated the issue, made fixes, notified

developers

• Fix will be released in WiredTiger 3.2.1

Cost Model Parameters

19

20

Results Obtained – Couchbase

21

Results Obtained – MongoDB

Single Collection

Two Collections

22

Runtime Estimates - MongoDB

• Cost model for document stores using disk I/O, memory,

storage size (size, count), and access frequency.

• Predicting the memory usage with average error of 3% for

Couchbase, 9% for MongoDB

• Accurately predict the time estimation trend with high

correlation (0.97 Couchbase, 0.99 MongoDB)

Publication Strategy
• Managing Polyglot Systems Metadata with Hypergraphs (Published ER 2018)

• A Cost Model for Queries in Document Stores (Under review ICDE 2020)

• Cost-based Data Design for Document Stores (DASFAA 2020)

• Extend the algorithms for cost parameters

• Storage size

• Query cost

• Access probability

• Evaluate pre-defined designs to choose the best one

• A Framework for Optimal Data Design in Document Stores (SIGMOD Demo – Jan 2020)

• Multi-criteria Decision Making in Data Design for Document Stores (TKDE – March 2020)

• Extend the hypergraph model transformations

• Implement multicriteria based data design framework

• Data Design for NoSQL Systems (ICDE 2021 – July 2020)

• Extend to another data store

Planned PhD Courses

24

Activity ECTS

Spanish Language (A1, A2) 2.5

4th International Winter School on Big Data 2

Big Data analytics 2

Semantic Data Management (SDM) 2

Seminar on Crypto currency 1

Seminar on Text Analytics 1

French Language (B1) 2.5

IT4BI Summer School 2

Project management for PhD candidates 1

Dutch-Belgian Database Day 1

Academic Writing 2

Academic Communication 2

ER 2018 Participation 2

IT4BI-DC Doctoral Colloquium 3

Research group seminar 2

Offered seminar 1

Offered seminar 1

Offered seminar 1

Conference Presentation 2

26/30 Completed

14 Project

10 General

2 Project – Informal activity

Optimal Design for a Given

Dataset and Workload

25

MongoDB

Schema

Canonical

Representation

Solution Space

Multi-criteria

optimization

Physical Design

Implementation Optimal Schema(s)

Workload

• Cost

• Execution time

• Storage Space

• Degree of

heterogeneity

Objective

Functions

Queries

Process

Data flow

moditha@essi.upc.edu

Constraints & Rules – Document Store

𝐸𝐷
𝐷𝑜𝑐 ⇒ 𝐸𝐹

𝐷𝑜𝑐 ∗
𝐸𝐹
𝐷𝑜𝑐 ⇒ 𝐸𝑆

𝐷𝑜𝑐 +

𝐸𝑆
𝐷𝑜𝑐 ⇒ 𝐴𝐶 𝐴 𝐸𝑆𝑒𝑡

𝐷𝑜𝑐 𝐸𝑆𝑡𝑟𝑢𝑐𝑡
𝐷𝑜𝑐 ∗

𝐸𝑆𝑒𝑡
𝐷𝑜𝑐 ⇒ 𝐸𝑆𝑡𝑟𝑢𝑐𝑡

𝐷𝑜𝑐 +

𝐸𝑆𝑡𝑟𝑢𝑐𝑡
𝐷𝑜𝑐 ⇒ 𝐴 𝐸𝑆𝑒𝑡

𝐷𝑜𝑐 𝐸𝑆𝑡𝑟𝑢𝑐𝑡
𝐷𝑜𝑐 +

26

Query generation on hypergraph

27

{ a:””,
b:””,
c:””,
x:{d:””,e:””}}

db.test.find({},{ a:1,b:1,"x.d":1})

test a

b c

d e

x

Definitions

1. A polyglot catalog 𝐶 =< 𝑨,𝑬 > is a generalized hypergraph where A is a set of

atoms and E is a set of edges.

2. The set of all atoms A is composed of two disjoint subsets of class atoms AC and

attribute atoms AA.

A = AC | AA

3. The set of all edges E composed of two disjoints subsets of relationships ER that

denote the connectivity between A, and hyperedges EH that denotes connectivity

between o their constructs of C.

E = ER | EH

4. A relationship 𝐸𝑅
𝑥,𝑦

is a binary edge between two atoms Ax and Ay and a URI u

that represents the semantics of ER. At least one of the atoms in the relationship

must be an AC.

𝐸𝑅
𝑥,𝑦

=< 𝐴𝑥 , 𝐴𝑦 , 𝑢 > |𝐴𝑥 , 𝐴𝑦 ∈ 𝑨 ∧ (𝐴𝑥 ∈ 𝑨𝑐 ∨ 𝐴𝑦 ∈ 𝑨𝑐)

28

Definitions

5. The transitive closure of an edge E is denoted as 𝐸+, where

𝐸 ∈ 𝐸+, ∀𝑒 ∈ 𝐸+: 𝑒 ∈ 𝑒′. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑒𝑡 ⇒ 𝑒′ ∈ 𝐸+

6. A hyperedge 𝐸𝐻 is a subset of atoms 𝑨 and edges 𝑬 and it cannot be transitively

contained in itself

𝐸𝐻 ⊆ 𝑨 ∪ 𝑬 ∧ 𝐸𝐻 . 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑆𝑒𝑡 ∩ 𝐸𝐻
+ = ∅

7. A struct 𝐸𝑆𝑡𝑟𝑢𝑐𝑡 is a hyperedge that contains a set of atoms 𝑨, relationships 𝑬𝑹, and

or hyperedges 𝑬𝑯. All atoms within 𝐸𝑆𝑡𝑟𝑢𝑐𝑡
+ must be connected by a set of 𝐸𝑅 that

also belong to 𝐸𝑆𝑡𝑟𝑢𝑐𝑡
+

𝐸𝑆𝑡𝑟𝑢𝑐𝑡 ⊆ 𝑬𝑯 ∪ 𝑨 ∪ 𝑬𝑹|∀𝐴𝑥, 𝐴𝑦 ∈ 𝐸𝑆𝑡𝑟𝑢𝑐𝑡
+ : ∃ 𝐸𝑅

𝑥,𝑥1 , 𝐸𝑅
𝑥1,𝑥2 , … , 𝐸𝑅

𝑥𝑛,𝑦 ∈ 𝑬𝑆𝑡𝑟𝑢𝑐𝑡
+

8. A Set 𝐸𝑆𝑒𝑡 is a hyperedge that contains a set of arbitrary hyperedges 𝑬𝑯 or/and

atoms 𝑨.
𝐸𝑆𝑒𝑡 ⊆ 𝑬𝑯 ∪ 𝑨

29

30

Constraints & Rules - RDBMS

𝐸𝐷
𝑅𝑒𝑙 ⇒ 𝐸𝐹

𝑅𝑒𝑙 ∗

𝐸𝐹
𝑅𝑒𝑙 ⇒ 𝐸𝑆

𝑅𝑒𝑙

𝐸𝑆
𝑅𝑒𝑙 ⇒ 𝐴𝐶𝐴 ∗

31

Constraints & Rules – Wide-Column Store

𝐸𝐷
𝐶𝑜𝑙 ⇒ 𝐸𝐹

𝐶𝑜𝑙 ∗

𝐸𝐹
𝐶𝑜𝑙 ⇒ 𝐸𝑆

𝐶𝑜𝑙

𝐸𝑆
𝐶𝑜𝑙 ⇒ 𝐴𝐶𝐸𝑆𝑡𝑟𝑢𝑐𝑡

𝐶𝑜𝑙 +

𝐸𝑆𝑡𝑟𝑢𝑐𝑡
𝐶𝑜𝑙 ⇒ 𝐴+

32

PostgreSQL Cost model background

• Measured on an arbitrary scale

• By default based on the cost of

sequential page fetches

• Other variables are set with reference to

that

• Can use and edit for a different scale

• "No well-defined method for

determining ideal values"

Cost model constants

• seq_page_cost (1.0): cost of disk page fetch that is part of a series of

sequential fetches

• random_page_cost (4.0) : cost of non-sequentially-fetched disk page
• raising it will make index scans more expensive
• usually random access is more than 4 times expensive 4 is used under the assumption that majority

of random access to disk like index reads are in cache
• The default value could be thought of as random access is 40 times slower while expecting 90\% to

be in the cache

• cpu_tuple_cost (0.01) : cost of processing each row during a query

• cpu_index_tuple_cost (0.005) : cost of processing each index entry

• cpu_operator_cost (0.0025) : cost of processing a each operator or

function

• parallel_setup_cost (1000) cost of launching parallel worker process

Cost Model Constants

• parallel_tuple_cost (0.1) : cost of transferring

one tuple from a parallel worker process to

another process

• min_parallel_table_scan_size (8MB):

minimum amount of table data that must be

scanned for a parallel scan to be considered

• min_parallel_index_scan_size (512kB):

minimum amount of index data that must be

scanned in order for a parallel scan to be

considered

• effective_cache_size (4GB) : effective size of

the cache available for a single query

Other cost models

• XML
• Tree traversal from root
• Page numbers from root to the value

• In memory database
• Memory cost is difficult because its managed by the OS not the DBMS
• Rely on number of tuples processed per operator

Cost Model Contd. - MongoDB

37

B-tree leaf nodes with internal
system identifiers

User-defined external identifiers

B-tree leaf nodes with documents

Internal system idenfiers

Primary index B-tree Data B-tree

38

MongoDB B-trees

39

Default Eviction Evicting metadata

|C|
documents

|C| metadata

x documents

y metadata

y documents

Bucket

Couchbase Memory

